101
|
Insights into the cytotoxic activity of the phosphane copper(I) complex [Cu(thp) 4][PF 6]. J Inorg Biochem 2016; 165:80-91. [PMID: 27449160 DOI: 10.1016/j.jinorgbio.2016.07.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/30/2016] [Accepted: 07/07/2016] [Indexed: 11/24/2022]
Abstract
The phosphane Cu(I) complex [Cu(thp)4][PF6], 1 (thp=tris(hydroxymethyl)phosphane) shows notable in vitro antitumour activity against a wide range of solid tumours. Uptake experiments performed in 1-treated colon cancer cells by atomic absorption spectrometry, reveal that the antiproliferative activity is consistent with the intracellular copper content. The solution chemistry of this agent, investigated by means of X-ray Absorption Spectroscopy and spectrophotometric titrations in aqueous media, indicates that 1 is labile giving coordinative unsaturated [Cu(thp)n]+ species (n=3 and 2) at micromolar concentrations. [Cu(thp)n]+ are reactive species that yield the mixed-ligand complex [Cu(thp)2(BCS)]- (BCS: bathocuproinedisulphonate(2-)) upon interaction with N,N-diimine. Analogously, [Cu(thp)n]+ interact with the methionine-rich peptide sequence (Ac-MMMMPMTFK-NH2; Pep1), relevant in the recruiting of physiological copper, giving [Cu(thp)(Pep1)]+ and [Cu(Pep1)]+ species. The formation of these adducts was assessed by electrospray mass spectrometry in the positive ion mode and validated by density functional theory investigations. The possibility to trans-chelate Cu(I) from pure inorganic [Cu(thp)n]+ assemblies into more physiological adducts represents a pathway that complex 1 might follow during the internalization process into cancer cells.
Collapse
|
102
|
Synthesis, characterization and antimicrobial evaluation of mono- and polynuclear ferrocenyl-derived amino and imino complexes. J Organomet Chem 2016. [DOI: 10.1016/j.jorganchem.2016.02.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
103
|
Melnikov SV, Söll D, Steitz TA, Polikanov YS. Insights into RNA binding by the anticancer drug cisplatin from the crystal structure of cisplatin-modified ribosome. Nucleic Acids Res 2016; 44:4978-87. [PMID: 27079977 PMCID: PMC4889946 DOI: 10.1093/nar/gkw246] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cisplatin is a widely prescribed anticancer drug, which triggers cell death by covalent binding to a broad range of biological molecules. Among cisplatin targets, cellular RNAs remain the most poorly characterized molecules. Although cisplatin was shown to inactivate essential RNAs, including ribosomal, spliceosomal and telomeric RNAs, cisplatin binding sites in most RNA molecules are unknown, and therefore it remains challenging to study how modifications of RNA by cisplatin contributes to its toxicity. Here we report a 2.6Å-resolution X-ray structure of cisplatin-modified 70S ribosome, which describes cisplatin binding to the ribosome and provides the first nearly atomic model of cisplatin-RNA complex. We observe nine cisplatin molecules bound to the ribosome and reveal consensus structural features of the cisplatin-binding sites. Two of the cisplatin molecules modify conserved functional centers of the ribosome-the mRNA-channel and the GTPase center. In the mRNA-channel, cisplatin intercalates between the ribosome and the messenger RNA, suggesting that the observed inhibition of protein synthesis by cisplatin is caused by impaired mRNA-translocation. Our structure provides an insight into RNA targeting and inhibition by cisplatin, which can help predict cisplatin-binding sites in other cellular RNAs and design studies to elucidate a link between RNA modifications by cisplatin and cisplatin toxicity.
Collapse
Affiliation(s)
- Sergey V Melnikov
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Thomas A Steitz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA Department of Chemistry, Yale University, New Haven, CT 06520, USA Howard Hughes Medical Institute at Yale University, New Haven, CT 06520, USA
| | - Yury S Polikanov
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
104
|
Zhang Y, Zheng W, Luo Q, Zhao Y, Zhang E, Liu S, Wang F. Dual-targeting organometallic ruthenium(II) anticancer complexes bearing EGFR-inhibiting 4-anilinoquinazoline ligands. Dalton Trans 2016; 44:13100-11. [PMID: 26106875 DOI: 10.1039/c5dt01430a] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have recently demonstrated that complexation with (η(6)-arene)Ru(II) fragments confers 4-anilinoquinazoline pharmacophores a higher potential for inducing cellular apoptosis while preserving the highly inhibitory activity of 4-anilinoquinazolines against EGFR and the reactivity of the ruthenium centre to 9-ethylguanine (Chem. Commun., 2013, 49, 10224-10226). Reported herein are the synthesis, characterisation and evaluation of the biological activity of a new series of ruthenium(ii) complexes of the type [(η(6)-arene)Ru(N,N-L)Cl]PF6 (arene = p-cymene, benzene, 2-phenylethanol or indane, L = 4-anilinoquinazolines). These organometallic ruthenium complexes undergo fast hydrolysis in aqueous solution. Intriguingly, the ligation of (arene)Ru(II) fragments with 4-anilinoquinazolines not only makes the target complexes excellent EGFR inhibitors, but also confers the complexes high affinity to bind to DNA minor grooves while maintaining their reactivity towards DNA bases, characterising them with dual-targeting properties. Molecular modelling studies reveal that the hydrolysis of these complexes is a favourable process which increases the affinity of the target complexes to bind to EGFR and DNA. In vitro biological activity assays show that most of this group of ruthenium complexes are selectively active inhibiting the EGF-stimulated growth of the HeLa cervical cancer cell line, and the most active complex [(η(6)-arene)Ru(N,N-L13)Cl]PF6 (, IC50 = 1.36 μM, = 4-(3'-chloro-4'-fluoroanilino)-6-(2-(2-aminoethyl)aminoethoxy)-7-methoxyquinazoline) is 29-fold more active than its analogue, [(η(6)-arene)Ru(N,N-ethylenediamine)Cl]PF6, and 21-fold more active than gefitinib, a well-known EGFR inhibitor in use clinically. These results highlight the strong promise to develop highly active ruthenium anticancer complexes by ligation of cytotoxic ruthenium pharmacophores with bioactive organic molecules.
Collapse
Affiliation(s)
- Yang Zhang
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, PR China.
| | | | | | | | | | | | | |
Collapse
|
105
|
Synthesis, structure and anticancer activity of (η6-benzene) ruthenium(II) complexes containing aroylhydrazone ligands. J Organomet Chem 2016. [DOI: 10.1016/j.jorganchem.2016.01.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
106
|
Zaki M, Arjmand F, Tabassum S. Current and future potential of metallo drugs: Revisiting DNA-binding of metal containing molecules and their diverse mechanism of action. Inorganica Chim Acta 2016; 444:1-22. [DOI: 10.1016/j.ica.2016.01.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
107
|
Montani M, Pazmay GVB, Hysi A, Lupidi G, Pettinari R, Gambini V, Tilio M, Marchetti F, Pettinari C, Ferraro S, Iezzi M, Marchini C, Amici A. The water soluble ruthenium(II) organometallic compound [Ru(p-cymene)(bis(3,5 dimethylpyrazol-1-yl)methane)Cl]Cl suppresses triple negative breast cancer growth by inhibiting tumor infiltration of regulatory T cells. Pharmacol Res 2016; 107:282-290. [PMID: 27038531 DOI: 10.1016/j.phrs.2016.03.032] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 02/11/2016] [Accepted: 03/01/2016] [Indexed: 12/21/2022]
Abstract
Ruthenium compounds have become promising alternatives to platinum drugs by displaying specific activities against different cancers and favorable toxicity and clearance properties. Here, we show that the ruthenium(II) complex [Ru(p-cymene)(bis(3,5-dimethylpyrazol-1-yl)methane)Cl]Cl (UNICAM-1) exhibits potent in vivo antitumor effects. When administered as four-dose course, by repeating a single dose (52.4mgkg-1) every three days, UNICAM-1 significantly reduces the growth of A17 triple negative breast cancer cells transplanted into FVB syngeneic mice. Pharmacokinetic studies indicate that UNICAM-1 is rapidly eliminated from kidney, liver and bloodstream thanks to its high hydrosolubility, exerting excellent therapeutic activity with minimal side effects. Immunohistological analysis revealed that the efficacy of UNICAM-1, mainly relies on its capacity to reverse tumor-associated immune suppression by significantly reducing the number of tumor-infiltrating regulatory T cells. Therefore, UNICAM-1 appears very promising for the treatment of TNBC.
Collapse
Affiliation(s)
- Maura Montani
- School of Bioscience and Veterinary Medicine, University of Camerino, Camerino, MC, 62032, Italy
| | - Gretta V Badillo Pazmay
- School of Bioscience and Veterinary Medicine, University of Camerino, Camerino, MC, 62032, Italy; School of Pharmacy, University of Camerino, Camerino, MC, 62032, Italy
| | - Albana Hysi
- Aging Research Centre, G. dAnnunzio University, Chieti, 66100, Italy
| | - Giulio Lupidi
- School of Pharmacy, University of Camerino, Camerino, MC, 62032, Italy.
| | | | - Valentina Gambini
- School of Bioscience and Veterinary Medicine, University of Camerino, Camerino, MC, 62032, Italy
| | - Martina Tilio
- School of Bioscience and Veterinary Medicine, University of Camerino, Camerino, MC, 62032, Italy
| | - Fabio Marchetti
- School of Science and Technology, University of Camerino, Camerino, MC, 62032, Italy
| | - Claudio Pettinari
- School of Pharmacy, University of Camerino, Camerino, MC, 62032, Italy
| | - Stefano Ferraro
- School of Science and Technology, University of Camerino, Camerino, MC, 62032, Italy
| | - Manuela Iezzi
- Aging Research Centre, G. dAnnunzio University, Chieti, 66100, Italy
| | - Cristina Marchini
- School of Bioscience and Veterinary Medicine, University of Camerino, Camerino, MC, 62032, Italy
| | - Augusto Amici
- School of Bioscience and Veterinary Medicine, University of Camerino, Camerino, MC, 62032, Italy.
| |
Collapse
|
108
|
Sanina NA, Shmatko NY, Korchagin DV, Shilov GV, Terent’ev AA, Stupina TS, Balakina AA, Komleva NV, Ovanesyan NS, Kulikov AV, Aldoshin SM. A new member of the cationic dinitrosyl iron complexes family incorporating N-ethylthiourea is effective against human HeLa and MCF-7 tumor cell lines. J COORD CHEM 2016. [DOI: 10.1080/00958972.2016.1142536] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Nataliya A. Sanina
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
| | - Natal’ya Yu. Shmatko
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
| | - Denis V. Korchagin
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
| | - Gennadii V. Shilov
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
| | - Alexey A. Terent’ev
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
| | - Tatyana S. Stupina
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
| | - Anastasiya A. Balakina
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
| | - Natal’ya V. Komleva
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
| | - Nikolay S. Ovanesyan
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
| | - Alexander V. Kulikov
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
| | - Sergey M. Aldoshin
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
| |
Collapse
|
109
|
Wenzel M, de Almeida A, Bigaeva E, Kavanagh P, Picquet M, Le Gendre P, Bodio E, Casini A. New Luminescent Polynuclear Metal Complexes with Anticancer Properties: Toward Structure–Activity Relationships. Inorg Chem 2016; 55:2544-57. [DOI: 10.1021/acs.inorgchem.5b02910] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Margot Wenzel
- School
of Chemistry, Cardiff University, Main Building, Park Place, CF10 3AT Cardiff, United Kingdom
- Institut
de Chimie Moléculaire de l’Université de Bourgogne,
UMR 6302 CNRS, Université de Bourgogne Franche-Comté, 9 avenue
A. Savary, BP47870, 21078 Dijon, France
| | - Andreia de Almeida
- Department
of Pharmacokinetics, Toxicology and Targeting, Groningen Research
Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Emilia Bigaeva
- Department
of Pharmacokinetics, Toxicology and Targeting, Groningen Research
Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Paul Kavanagh
- School
of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland
| | - Michel Picquet
- Institut
de Chimie Moléculaire de l’Université de Bourgogne,
UMR 6302 CNRS, Université de Bourgogne Franche-Comté, 9 avenue
A. Savary, BP47870, 21078 Dijon, France
| | - Pierre Le Gendre
- Institut
de Chimie Moléculaire de l’Université de Bourgogne,
UMR 6302 CNRS, Université de Bourgogne Franche-Comté, 9 avenue
A. Savary, BP47870, 21078 Dijon, France
| | - Ewen Bodio
- Institut
de Chimie Moléculaire de l’Université de Bourgogne,
UMR 6302 CNRS, Université de Bourgogne Franche-Comté, 9 avenue
A. Savary, BP47870, 21078 Dijon, France
| | - Angela Casini
- School
of Chemistry, Cardiff University, Main Building, Park Place, CF10 3AT Cardiff, United Kingdom
- Department
of Pharmacokinetics, Toxicology and Targeting, Groningen Research
Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
110
|
Hockey SC, Barbante GJ, Francis PS, Altimari JM, Yoganantharajah P, Gibert Y, Henderson LC. A comparison of novel organoiridium(III) complexes and their ligands as a potential treatment for prostate cancer. Eur J Med Chem 2016; 109:305-13. [DOI: 10.1016/j.ejmech.2015.12.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 12/18/2015] [Accepted: 12/19/2015] [Indexed: 01/01/2023]
|
111
|
Muhammad N, Wang X, Wang K, Zhu C, Zhu Z, Jiao Y, Guo Z. Dual-drug loaded nanoformulation with a galactosamine homing moiety for liver-targeted anticancer therapy. Dalton Trans 2016; 45:13169-78. [DOI: 10.1039/c6dt01434h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A platinum(iv) complex was prepared as a prodrug of cisplatin and co-loaded with α-tocopheryl succinate into the galactosamine-modified PLGA nanoparticle for combinational chemotherapy of liver cancer.
Collapse
Affiliation(s)
- Nafees Muhammad
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- P. R. China
| | - Xiaoyong Wang
- State Key Laboratory of Pharmaceutical Biotechnology
- School of Life Sciences
- Nanjing University
- Nanjing 210023
- P. R. China
| | - Kun Wang
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- P. R. China
| | - Chengcheng Zhu
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- P. R. China
| | - Zhenzhu Zhu
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- P. R. China
| | - Yang Jiao
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- P. R. China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- P. R. China
| |
Collapse
|
112
|
Wang T, Zhou Q, Zhang Y, Zheng Y, Wang W, Hou Y, Jiang G, Cheng X, Wang X. A ferrocenyl pyridine-based Ru(ii) arene complex capable of generating ·OH and 1O2 along with photoinduced ligand dissociation. RSC Adv 2016. [DOI: 10.1039/c6ra05182k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A ferrocene modified Ru(ii) arene complex was developed to present dual activity of photoactivated chemotherapy (PACT) and photodynamic therapy (PDT).
Collapse
Affiliation(s)
- Tianji Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Qianxiong Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Yangyang Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Yue Zheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Weibo Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Yuanjun Hou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Guoyu Jiang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Xuexin Cheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Xuesong Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| |
Collapse
|
113
|
Hildebrandt J, Görls H, Häfner N, Ferraro G, Dürst M, Runnebaum IB, Weigand W, Merlino A. Unusual mode of protein binding by a cytotoxic π-arene ruthenium(ii) piano-stool compound containing an O,S-chelating ligand. Dalton Trans 2016; 45:12283-7. [DOI: 10.1039/c6dt02380k] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A new π-arene Ru(ii) piano-stool compound, showing significant cytotoxic activityin vitro, was synthesized. The X-ray structure of this compound and that of its complex with RNase A were determined.
Collapse
Affiliation(s)
- Jana Hildebrandt
- Department of Inorganic and Analytical Chemistry
- University of Jena
- Germany
| | - Helmar Görls
- Department of Inorganic and Analytical Chemistry
- University of Jena
- Germany
| | - Norman Häfner
- Department of Gynecology
- Jena University Hospital - Friedrich-Schiller-University Jena
- Germany
| | - Giarita Ferraro
- Department of Chemical Sciences
- University of Naples Federico II
- Italy
| | - Matthias Dürst
- Department of Gynecology
- Jena University Hospital - Friedrich-Schiller-University Jena
- Germany
| | - Ingo B. Runnebaum
- Department of Gynecology
- Jena University Hospital - Friedrich-Schiller-University Jena
- Germany
| | - Wolfgang Weigand
- Department of Inorganic and Analytical Chemistry
- University of Jena
- Germany
| | - Antonello Merlino
- Department of Chemical Sciences
- University of Naples Federico II
- Italy
- Institute of Biostructures and Bioimages
- Naples
| |
Collapse
|
114
|
Serratrice M, Maiore L, Zucca A, Stoccoro S, Landini I, Mini E, Massai L, Ferraro G, Merlino A, Messori L, Cinellu MA. Cytotoxic properties of a new organometallic platinum(ii) complex and its gold(i) heterobimetallic derivatives. Dalton Trans 2016; 45:579-90. [DOI: 10.1039/c5dt02714d] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The high antiproliferative effects of a new organoplatinum(ii) complex are further enhanced upon coordination of a gold(i) phosphane moiety.
Collapse
|
115
|
Adeniyi AA, Ajibade PA. Development of ruthenium-based complexes as anticancer agents: toward a rational design of alternative receptor targets. REV INORG CHEM 2016. [DOI: 10.1515/revic-2015-0008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractIn the search for novel anticancer agents, the development of metal-based complexes that could serve as alternatives to cisplatin and its derivatives has received considerable attention in recent years. This becomes necessary because, at present, cisplatin and its derivatives are the only coordination complexes being used as anticancer agents in spite of inherent serious side effects and their limitation against metastasized platinum-resistant cancer cells. Although many metal ions have been considered as possible alternatives to cisplatin, the most promising are ruthenium (Ru) complexes and two Ru compounds, KP1019 and NAMI-A, which are currently in phase II clinical trials. The major obstacle against the rational design of these compounds is the fact that their mode of action in relation to their therapeutic activities and selectivity is not fully understood. There is an urgent need to develop novel metal-based anticancer agents, especially Ru-based compounds, with known mechanism of actions, probable targets, and pharmacodynamic activity. In this paper, we review the current efforts in developing metal-based anticancer agents based on promising Ru complexes and the development of compounds targeting receptors and then examine the future prospects.
Collapse
|
116
|
Elumalai P, Jeong YJ, Park DW, Kim DH, Kim H, Kang SC, Chi KW. Antitumor and biological investigation of doubly cyclometalated ruthenium(ii) organometallics derived from benzimidazolyl derivatives. Dalton Trans 2016; 45:6667-73. [DOI: 10.1039/c5dt04400f] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In this study, we report the synthesis, anticancer and biological properties of three doubly cyclometalated phenylbenzimidazole derived ruthenium(ii) organometallics (1–3) and their corresponding three organic ligands.
Collapse
Affiliation(s)
- Palani Elumalai
- Department of Chemistry
- University of Ulsan
- Ulsan 680-749
- Republic of Korea
| | - Yong Joon Jeong
- Department of Oriental Medicinal Material & Processing
- College of Life Science
- Kyung Hee University
- Yongin 17104
- Republic of Korea
| | - Dae Won Park
- Department of Oriental Medicinal Material & Processing
- College of Life Science
- Kyung Hee University
- Yongin 17104
- Republic of Korea
| | - Dong Hwan Kim
- Department of Chemistry
- University of Ulsan
- Ulsan 680-749
- Republic of Korea
| | - Hyunuk Kim
- Energy Materials Lab
- Korea Institute of Energy Research
- Daejeon 305-343
- Republic of Korea
| | - Se Chan Kang
- Department of Oriental Medicinal Material & Processing
- College of Life Science
- Kyung Hee University
- Yongin 17104
- Republic of Korea
| | - Ki-Whan Chi
- Department of Chemistry
- University of Ulsan
- Ulsan 680-749
- Republic of Korea
| |
Collapse
|
117
|
Zheng Y, Zhou QX, Zhang YY, Li C, Hou YJ, Wang XS. Substituent effect and wavelength dependence of the photoinduced Ru–O homolysis in the [Ru(bpy)2(py-SO3)]+-type complexes. Dalton Trans 2016; 45:2897-905. [DOI: 10.1039/c5dt03694a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Electron-withdrawing substituents on bpy ligands improve the photoinduced Ru–O homolysis in the [Ru(bpy)2(py-SO3)]+-type complexes.
Collapse
Affiliation(s)
- Yue Zheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Qian-Xiong Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Yang-Yang Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Chao Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Yuan-Jun Hou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Xue-Song Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| |
Collapse
|
118
|
Kumar A, Kumar A, Gupta RK, Paitandi RP, Singh KB, Trigun SK, Hundal MS, Pandey DS. Cationic Ru(II), Rh(III) and Ir(III) complexes containing cyclic -perimeter and 2-aminophenyl benzimidazole ligands: Synthesis, molecular structure, DNA and protein binding, cytotoxicity and anticancer activity. J Organomet Chem 2016. [DOI: 10.1016/j.jorganchem.2015.10.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
119
|
Beauperin M, Top S, Richard MA, Plażuk D, Pigeon P, Toma S, Poláčková V, Jaouen G. The length of the bridging chain in ansa-metallocenes influences their antiproliferative activity against triple negative breast cancer cells (TNBC). Dalton Trans 2016; 45:13126-34. [DOI: 10.1039/c6dt01640e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
[n]Ferrocenophane and [n]ruthenocenophane derivatives have been synthesized and their antiproliferative activity evaluated against MDA-MB-231 cells.
Collapse
Affiliation(s)
| | - Siden Top
- Sorbonne Universités
- UPMC Univ Paris 6
- UMR 8232
- IPCM
- F-75005 Paris
| | | | - Damian Plażuk
- University of Lodz
- Faculty of Chemistry
- Department of Organic Chemistry
- Lodz 91-403
- Poland
| | - Pascal Pigeon
- Sorbonne Universités
- UPMC Univ Paris 6
- UMR 8232
- IPCM
- F-75005 Paris
| | - Stefan Toma
- Faculty of Natural Sciences
- Comenius University
- SK-84215 Bratislava
- Slovakia
| | - Viera Poláčková
- Faculty of Natural Sciences
- Comenius University
- SK-84215 Bratislava
- Slovakia
| | - Gérard Jaouen
- Sorbonne Universités
- UPMC Univ Paris 6
- UMR 8232
- IPCM
- F-75005 Paris
| |
Collapse
|
120
|
Palermo G, Magistrato A, Riedel T, von Erlach T, Davey CA, Dyson PJ, Rothlisberger U. Fighting Cancer with Transition Metal Complexes: From Naked DNA to Protein and Chromatin Targeting Strategies. ChemMedChem 2015; 11:1199-210. [PMID: 26634638 PMCID: PMC5063137 DOI: 10.1002/cmdc.201500478] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Indexed: 12/12/2022]
Abstract
Many transition metal complexes have unique physicochemical properties that can be efficiently exploited in medicinal chemistry for cancer treatment. Traditionally, double-stranded DNA has been assumed to be the main binding target; however, recent studies have shown that nucleosomal DNA as well as proteins can act as dominant molecular binding partners. This has raised new questions about the molecular determinants that govern DNA versus protein binding selectivity, and has offered new ways to rationalize their biological activity and possible side effects. To address these questions, molecular simulations at an atomistic level of detail have been used to complement, support, and rationalize experimental data. Herein we review some relevant studies-focused on platinum and ruthenium compounds-to illustrate the power of state-of-the-art molecular simulation techniques and to demonstrate how the interplay between molecular simulations and experiments can make important contributions to elucidating the target preferences of some promising transition metal anticancer agents. This contribution aims at providing relevant information that may help in the rational design of novel drug-discovery strategies.
Collapse
Affiliation(s)
- Giulia Palermo
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Alessandra Magistrato
- CNR-IOM-Democritos National Simulation Center, c/o SISSA, via Bonomea 265, 34136 Trieste, Italy
| | - Tina Riedel
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Thibaud von Erlach
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Curt A Davey
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Paul J Dyson
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Ursula Rothlisberger
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
| |
Collapse
|
121
|
Synthesis, characterization and anticancer activity of gold(III) complexes with (1R,2R)-(−)-1,2-diaminocyclohexane. Polyhedron 2015. [DOI: 10.1016/j.poly.2015.10.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
122
|
Mujahid M, Kia AFA, Duff B, Egan DA, Devereux M, McClean S, Walsh M, Trendafilova N, Georgieva I, Creaven BS. Spectroscopic studies, DFT calculations, and cytotoxic activity of novel silver(I) complexes of hydroxy ortho-substituted-nitro-2H-chromen-2-one ligands and a phenanthroline adduct. J Inorg Biochem 2015; 153:103-113. [DOI: 10.1016/j.jinorgbio.2015.10.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/08/2015] [Accepted: 10/05/2015] [Indexed: 11/29/2022]
|
123
|
Pettinari R, Marchetti F, Pettinari C, Condello F, Petrini A, Scopelliti R, Riedel T, Dyson PJ. Organometallic rhodium(III) and iridium(III) cyclopentadienyl complexes with curcumin and bisdemethoxycurcumin co-ligands. Dalton Trans 2015; 44:20523-31. [PMID: 26548708 DOI: 10.1039/c5dt03037d] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A series of half-sandwich cyclopentadienyl rhodium(III) and iridium(III) complexes of the type [Cp*M(curc/bdcurc)Cl] and [Cp*M(curc/bdcurc)(PTA)][SO3CF3], in which Cp* = pentamethylcyclopentadienyl, curcH = curcumin and bdcurcH = bisdemethoxycurcumin as O^O-chelating ligands, and PTA = 1,3,5-triaza-7-phosphaadamantane, is described. The X-ray crystal structures of three of the complexes, i.e. [Cp*Rh(curc)(PTA)][SO3CF3] (5), [Cp*Rh(bdcurc)(PTA)][SO3CF3] (6) and [Cp*Ir(bdcurc)(PTA)][SO3CF3] (8), confirm the expected "piano-stool" geometry. With the exception of 5, the complexes are stable under pseudo-physiological conditions and are moderately cytotoxic to human ovarian carcinoma (A2780 and A2780cisR) cells and also to non-tumorigenic human embryonic kidney (HEK293) cells, but lack the cancer cell selectivity observed for related arene ruthenium(II) complexes.
Collapse
Affiliation(s)
- Riccardo Pettinari
- School of Pharmacy, University of Camerino, via S. Agostino 1, 62032 Camerino MC, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
124
|
Grozav A, Balacescu O, Balacescu L, Cheminel T, Berindan-Neagoe I, Therrien B. Synthesis, Anticancer Activity, and Genome Profiling of Thiazolo Arene Ruthenium Complexes. J Med Chem 2015; 58:8475-90. [PMID: 26488797 DOI: 10.1021/acs.jmedchem.5b00855] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Sixteen hydrazinyl-thiazolo arene ruthenium complexes of the general formula [(η(6)-p-cymene)Ru(N,N'-hydrazinyl-thiazolo)Cl]Cl were synthesized. All complexes were tested in vitro for their antiproliferative activity on three tumor cell lines (HeLa, A2780, and A2780cisR) and on a noncancerous cell line (HFL-1). A superior cytotoxic activity of the ruthenium complexes as compared to cisplatin and oxaliplatin, on both cisplatin-sensitive and cisplatin resistant ovarian cancer cells, was observed. In addition, the biological activity of two selected derivatives was evaluated using microarray gene expression assay and ingenuity pathway analysis. p53 signaling was identified as an important pathway modulated by both arene ruthenium compounds. New activated molecules such as FAS, ZMAT3, PRMT2, BBC3/PUMA, and PDCD4, whose overexpressions are correlated with overcoming resistance to cisplatin therapy, were also identified as potential targets. Moreover, the arene ruthenium complexes can be used in association with cisplatin to prevent cisplatin resistance development and synergistically to induce cell death in ovarian cancer cells.
Collapse
Affiliation(s)
- Adriana Grozav
- Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy , Victor Babes Str. 41, RO-400012 Cluj-Napoca, Romania
| | - Ovidiu Balacescu
- Department of Functional Genomics, Proteomics and Experimental Pathology, The Oncology Institute "Prof Dr. Ion Chiricuta" , 34-36 Republicii Str, RO-400015, Cluj-Napoca, Romania
| | - Loredana Balacescu
- Department of Functional Genomics, Proteomics and Experimental Pathology, The Oncology Institute "Prof Dr. Ion Chiricuta" , 34-36 Republicii Str, RO-400015, Cluj-Napoca, Romania
| | - Thomas Cheminel
- Institut de Chimie, Université de Neuchâtel , 51 Avenue de Bellevaux, CH-2000 Neuchâtel, Switzerland
| | - Ioana Berindan-Neagoe
- Department of Functional Genomics, Proteomics and Experimental Pathology, The Oncology Institute "Prof Dr. Ion Chiricuta" , 34-36 Republicii Str, RO-400015, Cluj-Napoca, Romania.,Research Center of Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu″ University of Medicine and Pharmacy , 23 Marinescu Str, RO-400337 Cluj-Napoca, Romania
| | - Bruno Therrien
- Institut de Chimie, Université de Neuchâtel , 51 Avenue de Bellevaux, CH-2000 Neuchâtel, Switzerland
| |
Collapse
|
125
|
Santos RLSR, Sanches RNF, de Oliveira Silva D. Spectroscopic studies on interactions of the tetrakis(acetato)chloridodiruthenium(II,III) complex and the Ru2(II,III)-NSAID-derived metallodrugs of ibuprofen and ketoprofen with human serum albumin. J COORD CHEM 2015. [DOI: 10.1080/00958972.2015.1074684] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
| | | | - Denise de Oliveira Silva
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brasil
| |
Collapse
|
126
|
Synthesis, characterization and theoretical calculations of (1,2-diaminocyclohexane)(1,3-diaminopropane)gold(III) chloride complexes: in vitro cytotoxic evaluations against human cancer cell lines. Biometals 2015; 28:827-44. [PMID: 26099502 DOI: 10.1007/s10534-015-9869-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 06/13/2015] [Indexed: 01/04/2023]
Abstract
The gold(III) complexes of the type (1,2-diaminocyclohexane)(1,3-diaminopropane)gold(III) chloride, [(DACH)Au(pn)]Cl3, [where DACH = cis-, trans-1,2- and S,S-1,2-diaminocyclohexane and pn = 1,3-diaminopropane] have been synthesized and characterized using various spectroscopic and analytical techniques including elemental analysis, UV-Vis and FTIR spectroscopy; solution as well as solid-state NMR measurements. The solid-state (13)C NMR shows that 1,2-diaminocyclohexane (1,2-DACH) and 1,3-diaminopropane (pn) are strongly bound to the gold(III) center via N donor atoms. The stability of the mixed diamine ligand gold(III) was checked by UV-Vis spectroscopy and NMR measurements. The molecular structure of compound 1 (containing cis-1,2-DACH) was determined by X-ray diffraction analysis. The structure of 1 consists of [(cis-DACH)Au(pn)](3+) complex ion and chloride counter ions. Each gold atom in the complex ion adopts a distorted square-planar geometry. The structural details and relative stabilities of the four possible isomers of the complexes were also estimated at the B3LYP/LANL2DZ level of theoretical calculations. The computational study demonstrates that trans- conformations are slightly more stable than the cis- conformations. The antiproliferative effects and cytotoxic properties of the mixed ligand gold(III) complexes were evaluated in vitro on human gastric SGC7901 and prostate PC3 cancer cells using MTT assay. The antiproliferative study of the gold(III) complexes on PC3 and SGC7901 cells indicate that complex 3 (containing 1S,2S-(+)-1,2-(DACH)) is the most effective antiproliferative agent. The IC50 data reveal that the in vitro cytotoxicity of complex 3 against SGC7901 cancer cells manifested similar and very pronounced cytotoxic effects with respect to cisplatin. Moreover, the electrochemical behavior, and the interaction of complex 3 with two well-known model proteins, namely, hen egg white lysozyme and bovine serum albumin is also reported.
Collapse
|
127
|
Millett AJ, Habtemariam A, Romero-Canelón I, Clarkson GJ, Sadler PJ. Contrasting Anticancer Activity of Half-Sandwich Iridium(III) Complexes Bearing Functionally Diverse 2-Phenylpyridine Ligands. Organometallics 2015; 34:2683-2694. [PMID: 26146437 PMCID: PMC4482135 DOI: 10.1021/acs.organomet.5b00097] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Indexed: 12/30/2022]
Abstract
We report the synthesis, characterization, and antiproliferative activity of 15 iridium(III) half-sandwich complexes of the type [(η5-Cp*)Ir(2-(R'-phenyl)-R-pyridine)Cl] bearing either an electron-donating (-OH, -CH2OH, -CH3) or electron-withdrawing (-F, -CHO, -NO2) group at various positions on the 2-phenylpyridine (2-PhPy) chelating ligand giving rise to six sets of structural isomers. The X-ray crystal structures of [(η5-Cp*)Ir(2-(2'-fluorophenyl)pyridine)Cl] (1) and [(η5-Cp*)Ir(2-(4'-fluorophenyl)pyridine)Cl] (2) exhibit the expected "piano-stool" configuration. DFT calculations showed that substituents caused only localized effects on the electrostatic potential surface of the chelating 2-PhPy ligand of the complexes. Hydrolysis of all complexes is rapid, but readily reversed by addition of NaCl. The complexes show preferential binding to 9-ethylguanine over 9-methyladenine and are active catalysts for the oxidation of NADH to NAD+. Antiproliferative activity experiments in A2780 ovarian, MCF-7 breast, A549 lung, and HCT116 colon cancer cell lines showed IC50 values ranging from 1 to 89 μM, with the most potent complex, [(η5-Cp*)Ir(2-(2'-methylphenyl)pyridine)Cl] (13) (A2780 IC50 = 1.18 μM), being 10× more active than the parent, [(η5-Cp*)Ir(2-phenylpyridine)Cl], and 2× more active than [(η5-CpxPh)Ir(2-phenylpyridine)Cl]. Intriguingly, contrasting biological activities are observed between structural isomers despite exhibiting similar chemical reactivity. For pairs of structural isomers both the nature and position of the functional group can affect the hydrophobicity of the complex. An increase in hydrophobicity resulted in enhanced cellular-iridium accumulation in A2780 ovarian cells, which generally gave rise to an increase in potency. The structural isomers [(η5-Cp*)Ir(2-(4'-fluorophenyl)pyridine)Cl] (2) and [(η5-Cp*)Ir(2-phenyl-5-fluoropyridine)Cl] (4) preferentially localized in the cytosol > membrane and particulate > nucleus > cytoskeleton. This work highlights the strong dependence of biological behavior on the nature and position of the substituent on the chelating ligand and shows how this class of organometallic anticancer complexes can be fine-tuned to increase their potency without using extended cyclopentadienyl systems.
Collapse
Affiliation(s)
- Adam J. Millett
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, U.K.
| | - Abraha Habtemariam
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, U.K.
| | - Isolda Romero-Canelón
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, U.K.
| | - Guy J. Clarkson
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, U.K.
| | - Peter J. Sadler
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, U.K.
| |
Collapse
|
128
|
A ruthenium(II) complex inhibits tumor growth in vivo with fewer side-effects compared with cisplatin. J Inorg Biochem 2015; 146:89-96. [DOI: 10.1016/j.jinorgbio.2015.02.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 02/05/2015] [Accepted: 02/05/2015] [Indexed: 11/20/2022]
|
129
|
Brunk E, Rothlisberger U. Mixed Quantum Mechanical/Molecular Mechanical Molecular Dynamics Simulations of Biological Systems in Ground and Electronically Excited States. Chem Rev 2015; 115:6217-63. [PMID: 25880693 DOI: 10.1021/cr500628b] [Citation(s) in RCA: 319] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Elizabeth Brunk
- †Laboratory of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.,‡Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California 94618, United States
| | - Ursula Rothlisberger
- †Laboratory of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.,§National Competence Center of Research (NCCR) MARVEL-Materials' Revolution: Computational Design and Discovery of Novel Materials, 1015 Lausanne, Switzerland
| |
Collapse
|
130
|
Benabdelouahab Y, Muñoz-Moreno L, Frik M, de la Cueva-Alique I, El Amrani MA, Contel M, Bajo AM, Cuenca T, Royo E. Hydrogen bonding and anticancer properties of water-soluble chiral p-cymene Ru(II) compounds with amino-oxime ligands. Eur J Inorg Chem 2015; 2015:2295-2307. [PMID: 27175101 DOI: 10.1002/ejic.201500097] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The investigation of the hydrogen-bonding effect on the aggregation tendency of ruthenium compounds [(η6-p-cymene)Ru(κNHR,κNOH)Cl]Cl (R = Ph (1a), Bn (1b)) and [(η6-p-cymene)Ru(κ2NH(2-pic),κNOH)][PF6]2 (1c), [(η6-p-cymene)Ru(κNHBn,κNO)Cl] (2b) and [(η6-p-cymene)Ru(κNBn,κ2NO)] (3b), has been performed by means of concentration dependence 1H NMR chemical shifts and DOSY experiments. The synthesis and full characterization of new compounds 1c, [(η6-p-cymene)Ru(κNPh,κ2NO)] (3a) and 3b are also reported. The effect of the water soluble ruthenium complexes 1a-1c on cytotoxicity, cell adhesion and cell migration of the androgen-independent prostate cancer PC3 cells have been assessed by MTT, adhesion to type-I-collagen and recovery of monolayer wounds assays, respectively. Interactions of 1a-1c with DNA and human serum albumin have also been studied. Altogether, the properties reported herein suggest that ruthenium compounds 1a-1c have considerable potential as anticancer agents against advanced prostate cancer.
Collapse
Affiliation(s)
- Yosra Benabdelouahab
- Departamento de Química Orgánica y Química Inorgánica, Facultad de Química, Biología y Ciencias Ambientales, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain
| | - Laura Muñoz-Moreno
- Department of Systems Biology, Faculty of Medicine and Health Sciences, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain
| | - Malgorzata Frik
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, New York, 11210, United States; Chemistry PhD Program, The Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY 10016, United States
| | - Isabel de la Cueva-Alique
- Departamento de Química Orgánica y Química Inorgánica, Facultad de Química, Biología y Ciencias Ambientales, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain
| | - Mohammed Amin El Amrani
- Université Abdelmalek Essaâdi, Faculté des Sciences, Departement de Chimie- Laboratoire de Chimie Organique Appliquée. Mhannech II, B.P : 2121 Tétouan, Morocco
| | - María Contel
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, New York, 11210, United States; Chemistry PhD Program, The Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY 10016, United States
| | - Ana M Bajo
- Department of Systems Biology, Faculty of Medicine and Health Sciences, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain
| | - Tomás Cuenca
- Departamento de Química Orgánica y Química Inorgánica, Facultad de Química, Biología y Ciencias Ambientales, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain
| | - Eva Royo
- Departamento de Química Orgánica y Química Inorgánica, Facultad de Química, Biología y Ciencias Ambientales, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
131
|
Leung CH, Lin S, Zhong HJ, Ma DL. Metal complexes as potential modulators of inflammatory and autoimmune responses. Chem Sci 2015; 6:871-884. [PMID: 28660015 PMCID: PMC5472922 DOI: 10.1039/c4sc03094j] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 11/07/2014] [Indexed: 01/05/2023] Open
Abstract
Over the past few decades, the realm of inorganic medicinal chemistry has been dominated by the study of the anti-cancer properties of transition metal complexes, particularly those based on platinum or ruthenium. However, comparatively less attention has been focused on the development of metal complexes for the treatment of inflammatory or autoimmune diseases. Metal complexes possess a number of advantages that render them as attractive alternatives to organic small molecules for the development of therapeutic agents. In this perspective, we highlight recent examples in the development of transition metal complexes as modulators of inflammatory and autoimmune responses. The studies presented here serve to highlight the potential of transition metal complexes in modulating inflammatory or immune pathways in cells.
Collapse
Affiliation(s)
- Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences , University of Macau , Macao , China .
| | - Sheng Lin
- Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong , China .
| | - Hai-Jing Zhong
- State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences , University of Macau , Macao , China .
| | - Dik-Lung Ma
- Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong , China .
| |
Collapse
|
132
|
Senerovic L, Zivkovic MD, Veselinovic A, Pavic A, Djuran MI, Rajkovic S, Nikodinovic-Runic J. Synthesis and evaluation of series of diazine-bridged dinuclear platinum(II) complexes through in vitro toxicity and molecular modeling: correlation between structure and activity of Pt(II) complexes. J Med Chem 2015; 58:1442-51. [PMID: 25551180 DOI: 10.1021/jm5017686] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Polynuclear Pt(II) complexes are a novel class of promising anticancer agents with potential clinical significance. A series of pyrazine (pz) bridged dinuclear Pt(II) complexes with general formulas {[Pt(L)Cl]2(μ-pz)}(2+) (L, ethylenediamine, en; (±)-1,2-propylenediamine, 1,2-pn; isobutylenediamine, ibn; trans-(±)-1,2-diaminocyclohexane, dach; 1,3-propylenediamine, 1,3-pd; 2,2-dimethyl-1,3-propylenediamine, 2,2-diMe-1,3-pd) and one pyridazine (pydz) bridged {[Pt(en)Cl]2(μ-pydz)}(2+) complex were prepared. The anticancer potential of these complexes were determined through in vitro cytotoxicity assay in human fibroblasts (MRC5) and two carcinoma cell lines (A375 and HCT116), interaction with double stranded DNA through in vitro assay, and molecular docking study. All complexes inhibited cell proliferation with inhibitory concentrations in the 0.5-120 μM range. While {[Pt(1,3-pd)Cl]2(μ-pz)}(2+) showed improved activity and {[Pt(en)Cl]2(μ-pydz)}(2+) showed comparable activity to that of clinically relevant cisplatin, {[Pt(en)Cl]2(μ-pydz)}(2+) was less toxic in an assay with zebrafish (Danio rerio) embryos, causing no adverse developmental effects. The in vitro cytotoxicity of all diazine-bridged dinuclear Pt(II) complexes is discussed in correlation to their structural characteristics.
Collapse
Affiliation(s)
- Lidija Senerovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade , Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | | | | | | | | | | | | |
Collapse
|
133
|
Paul LEH, Therrien B, Furrer J. Interactions of arene ruthenium metallaprisms with human proteins. Org Biomol Chem 2015; 13:946-53. [DOI: 10.1039/c4ob02194k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Interactions between three hexacationic arene ruthenium metallaprisms and human proteins have been studied using NMR spectroscopy, mass spectrometry and circular dichroism spectroscopy, showing that proteins are potential biological targets for these metallaprisms.
Collapse
Affiliation(s)
- Lydia E. H. Paul
- Departement für Chemie und Biochemie
- Universität Bern
- CH-3012 Bern
- Switzerland
| | - Bruno Therrien
- Institut de Chimie
- Université de Neuchâtel
- CH-2000 Neuchâtel
- Switzerland
| | - Julien Furrer
- Departement für Chemie und Biochemie
- Universität Bern
- CH-3012 Bern
- Switzerland
| |
Collapse
|
134
|
Mendiguchia BS, Aiello I, Crispini A. Zn(ii) and Cu(ii) complexes containing bioactive O,O-chelated ligands: homoleptic and heteroleptic metal-based biomolecules. Dalton Trans 2015; 44:9321-34. [DOI: 10.1039/c5dt00817d] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Zn(ii) or Cu(ii) highly stable complexes with chelated O,O-donor ligands from natural extractions give rise to drug delivery systems, new biologically active complexes and potential diagnostic agents due to their intrinsic spectroscopic properties.
Collapse
Affiliation(s)
- Barbara Sanz Mendiguchia
- MAT_INLAB (Laboratorio di Materiali Molecolari Inorganici)
- Dipartimento di Chimica e Tecnologie Chimiche
- Università della Calabria
- 87036 Arcavacata di Rende
- Italy
| | - Iolinda Aiello
- MAT_INLAB (Laboratorio di Materiali Molecolari Inorganici)
- Dipartimento di Chimica e Tecnologie Chimiche
- Università della Calabria
- 87036 Arcavacata di Rende
- Italy
| | - Alessandra Crispini
- MAT_INLAB (Laboratorio di Materiali Molecolari Inorganici)
- Dipartimento di Chimica e Tecnologie Chimiche
- Università della Calabria
- 87036 Arcavacata di Rende
- Italy
| |
Collapse
|
135
|
Busto N, Martínez-Alonso M, Leal JM, Rodríguez AM, Domínguez F, Acuña MI, Espino G, García B. Monomer–Dimer Divergent Behavior toward DNA in a Half-Sandwich Ruthenium(II) Aqua Complex. Antiproliferative Biphasic Activity. Organometallics 2014. [DOI: 10.1021/om5011275] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Natalia Busto
- Departamento
de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain
| | - Marta Martínez-Alonso
- Departamento
de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain
| | - José M. Leal
- Departamento
de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain
| | - Ana M. Rodríguez
- Departamento
de Química Inorgánica, Orgánica y Bioquímica,
Facultad de Químicas, Universidad de Castilla-La Mancha, Avenida Camilo J. Cela 10, 13071, Ciudad Real, Spain
| | - Fernando Domínguez
- CIMUS, Universidad de Santiago de Compostela, Avenida Barcelona s/n, 15782, Santiago de Compostela, Spain
| | - M Isabel Acuña
- CIMUS, Universidad de Santiago de Compostela, Avenida Barcelona s/n, 15782, Santiago de Compostela, Spain
| | - Gustavo Espino
- Departamento
de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain
| | - Begoña García
- Departamento
de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain
| |
Collapse
|
136
|
Martínez-Alonso M, Busto N, Jalón FA, Manzano BR, Leal JM, Rodríguez AM, García B, Espino G. Derivation of structure-activity relationships from the anticancer properties of ruthenium(II) arene complexes with 2-aryldiazole ligands. Inorg Chem 2014; 53:11274-88. [PMID: 25302401 DOI: 10.1021/ic501865h] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The ligands 2-pyridin-2-yl-1H-benzimidazole (HL(1)), 1-methyl-2-pyridin-2-ylbenzimidazole (HL(2)), and 2-(1H-imidazol-2-yl)pyridine (HL(3)) and the proligand 2-phenyl-1H-benzimidazole (HL(4)) have been used to prepare five different types of new ruthenium(II) arene compounds: (i) monocationic complexes with the general formula [(η(6)-arene)RuCl(κ(2)-N,N-HL)]Y [HL = HL(1), HL(2), or HL(3); Y = Cl or BF4; arene = 2-phenoxyethanol (phoxet), benzene (bz), or p-cymene (p-cym)]; (ii) dicationic aqua complexes of the formula [(η(6)-arene)Ru(OH2)(κ(2)-N,N-HL(1))](Y)2 (Y = Cl or TfO; arene = phoxet, bz, or p-cym); (iii) the nucleobase derivative [(η(6)-arene)Ru(9-MeG)(κ(2)-N,N-HL(1))](PF6)2 (9-MeG = 9-methylguanine); (iv) neutral complexes consistent with the formulation [(η(6)-arene)RuCl(κ(2)-N,N-L(1))] (arene = bz or p-cym); (v) the neutral cyclometalated complex [(η(6)-p-cym)RuCl(κ(2)-N,C-L(4))]. The cytototoxic activity of the new ruthenium(II) arene compounds has been evaluated in several cell lines (MCR-5, MCF-7, A2780, and A2780cis) in order to establish structure-activity relationships. Three of the compounds with the general formula [(η(6)-arene)RuCl(κ(2)-N,N-HL(1))]Cl differing in the arene moiety have been studied in depth in terms of thermodynamic dissociation constants, aquation kinetic constants, and DNA binding measurements. The biologically most active compound is the p-cym derivative, which strongly destabilizes the DNA double helix, whereas those with bz and phoxet have only a small effect on the stability of the DNA double helix. Moreover, the inhibitory activity of several compounds toward CDK1 has also been evaluated. The DNA binding ability of some of the studied compounds and their CDK1 inhibitory effect suggest a multitarget mechanism for their biological activity.
Collapse
Affiliation(s)
- Marta Martínez-Alonso
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos , Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | | | | | | | | | | | | | | |
Collapse
|
137
|
Sun YG, Guo Y, Sun D, Zhu MC, Ding F, Liu YN, Gao EJ, Wang SJ, Xiong G, Dragutan I, Dragutan V. Palladium(II) and Platinum(II) Complexes Containing Six-Membered N-Heterocyclic Ligands: Synthesis, Characterization, Interaction with DNA, DFT Calculation, and Cytotoxicity. Eur J Inorg Chem 2014. [DOI: 10.1002/ejic.201402532] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
138
|
Allam A, Maigre L, Alimi M, Alves de Sousa R, Hessani A, Galardon E, Pagès JM, Artaud I. New peptides with metal binding abilities and their use as drug carriers. Bioconjug Chem 2014; 25:1811-9. [PMID: 25192490 DOI: 10.1021/bc500317u] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Many new designed molecules that target efficiently in vitro bacterial metalloproteases were completely inactive in cellulo against Gram negative bacteria. Their activities were limited by the severe restriction of the penetration/diffusion rate through the outer membrane barrier. To bypass this limitation, we have assayed the strategy of metallodrugs, to improve the delivery of hydroxamic acid inhibitors to peptide deformylase. In this metal-chaperone, to facilitate bacterial uptake, the ancillary ligand tris(2-pyridylmethyl)amine (TPA) or di(picolyl)amine (DPA) was functionalized by a tetrapeptide analogue of antimicrobial peptide, RWRW(OBn) (AA08 with TPA) and/or an efflux pump modulator PAβN (AA09 with TPA and AA27 with DPA). We prepared Co(III), Zn(II), and Cu(II) metallodrugs. Using a fluorescent hydroxamic acid, we showed that, in contrast to Cu(II) metallodrugs, Co(III) metallodrugs were stable in the Mueller Hinton (MH) broth during the time required for bacterial assays. The antibacterial activities were determined against E. coli strain wild-type (AG100) and E. coli strain deleted from acrAB efflux pump (AG100A). While none of the PDFinhs used in this study (SMP289 with an indole scaffold, AT015 and AT019 built on a 1,2,4-oxadiazole scaffold) displayed activity higher than 128 μM, all the metallodrugs were active with MICs around 8 μM both against AG100 and AG100A. However, compared to the activities of equimolar combinations of PDFinhs and the free chelating peptides (AA08, AA09, or AA27), they showed similar activities. A synergistic association between AT019 and AA08 or AA09 was determined using the fractional inhibitory concentration with AG100 and AG100A. Combinations of peptides lacking the chelating group with PDFinhs were inefficient. LC-MS analyses showed that the chelating peptides bind Zn(II) cation when incubated in MH broth. These results support the in situ formation of a zinc metallodrug, but we failed to detect it by LC-MS in MH. Nevertheless, this chelating peptides metalated with zinc act as permeabilizers which are more efficient than PAβN to facilitate the uptake of PDFinhs by Gram(-) bacteria.
Collapse
Affiliation(s)
- Anas Allam
- UMR8601, LCBPT, CNRS Université Paris Descartes, PRES Paris Cité , 45 rue des Sts Pères 75270 Paris Cedex 06, France
| | | | | | | | | | | | | | | |
Collapse
|
139
|
Cipriani M, Toloza J, Bradford L, Putzu E, Vieites M, Curbelo E, Tomaz AI, Garat B, Guerrero J, Gancheff JS, Maya JD, Olea Azar C, Gambino D, Otero L. Effect of the Metal Ion on the antiT. cruziActivity and Mechanism of Action of 5-Nitrofuryl-Containing Thiosemicarbazone Metal Complexes. Eur J Inorg Chem 2014. [DOI: 10.1002/ejic.201402614] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
140
|
Barreiro E, Casas JS, Couce MD, Sánchez A, Sánchez-Gonzalez A, Sordo J, Vázquez-López EM. Mono and dinuclear phosphinegold(I) sulfanylcarboxylates: Influence of nuclearity and substitution of PPh 3 for PEt 3 on cytotoxicity. J Inorg Biochem 2014; 138:89-98. [DOI: 10.1016/j.jinorgbio.2014.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 05/06/2014] [Accepted: 05/06/2014] [Indexed: 12/01/2022]
|
141
|
Li Y, de Kock C, Smith PJ, Chibale K, Smith GS. Synthesis and Evaluation of a Carbosilane Congener of Ferroquine and Its Corresponding Half-Sandwich Ruthenium and Rhodium Complexes for Antiplasmodial and β-Hematin Inhibition Activity. Organometallics 2014. [DOI: 10.1021/om500622p] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Yiqun Li
- Department
of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Carmen de Kock
- Division
of Pharmacology, Department of Medicine, University of Cape Town, K45, OMB, Groote
Schuur Hospital, Observatory 7925, South Africa
| | - Peter J. Smith
- Division
of Pharmacology, Department of Medicine, University of Cape Town, K45, OMB, Groote
Schuur Hospital, Observatory 7925, South Africa
| | - Kelly Chibale
- Department
of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
- Institute
of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
- South
African Medical Research Council Drug Discovery and Development Research
Unit, University of Cape Town, Rondebosch 7701, South Africa
| | - Gregory S. Smith
- Department
of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
142
|
Vargiu AV, Magistrato A. Atomistic-Level Portrayal of Drug-DNA Interplay: A History of Courtships and Meetings Revealed by Molecular Simulations. ChemMedChem 2014; 9:1966-81. [DOI: 10.1002/cmdc.201402203] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Indexed: 12/19/2022]
|
143
|
Nazarov AA, Baquié M, Nowak-Sliwinska P, Zava O, van Beijnum JR, Groessl M, Chisholm DM, Ahmadi Z, McIndoe JS, Griffioen AW, van den Bergh H, Dyson PJ. Synthesis and characterization of a new class of anti-angiogenic agents based on ruthenium clusters. Sci Rep 2014; 3:1485. [PMID: 23508096 PMCID: PMC6504821 DOI: 10.1038/srep01485] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 02/07/2013] [Indexed: 11/09/2022] Open
Abstract
New triruthenium-carbonyl clusters derivatized with glucose-modified bicyclophosphite ligands have been synthesized. These compounds were found to have cytostatic and cytotoxic activity and depending on the number of bicyclophosphite ligands, and could be tuned for either anti-cancer or specific anti-angiogenic activity. While some compounds had a broad cellular toxicity profile in several cell types others showed endothelial cell specific dose-dependent anti-proliferative and anti-migratory efficacy. A profound inhibition of angiogenesis was also observed in the in vivo chicken chorioallantoic membrane (CAM) model, and consequently, these new compounds have considerable potential in drug design, e.g. for the treatment of cancer.
Collapse
Affiliation(s)
- Alexey A Nazarov
- 1] Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland [2] Department of Chemistry, Moscow State University, Leninskie Gory, 119991, Moscow, Russia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Ma DL, Liu LJ, Leung KH, Chen YT, Zhong HJ, Chan DSH, Wang HMD, Leung CH. Antagonizing STAT3 dimerization with a rhodium(III) complex. Angew Chem Int Ed Engl 2014; 53:9178-82. [PMID: 24889897 DOI: 10.1002/anie.201404686] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Indexed: 12/22/2022]
Abstract
Kinetically inert metal complexes have arisen as promising alternatives to existing platinum and ruthenium chemotherapeutics. Reported herein, to our knowledge, is the first example of a substitutionally inert, Group 9 organometallic compound as a direct inhibitor of signal transducer and activator of transcription 3 (STAT3) dimerization. From a series of cyclometalated rhodium(III) and iridium(III) complexes, a rhodium(III) complex emerged as a potent inhibitor of STAT3 that targeted the SH2 domain and inhibited STAT3 phosphorylation and dimerization. Significantly, the complex exhibited potent anti-tumor activities in an in vivo mouse xenograft model of melanoma. This study demonstrates that rhodium complexes may be developed as effective STAT3 inhibitors with potent anti-tumor activity.
Collapse
Affiliation(s)
- Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong (China).
| | | | | | | | | | | | | | | |
Collapse
|
145
|
Ma DL, Liu LJ, Leung KH, Chen YT, Zhong HJ, Chan DSH, Wang HMD, Leung CH. Antagonizing STAT3 Dimerization with a Rhodium(III) Complex. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201404686] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
146
|
Brackemeyer D, Hervé A, Schulte to Brinke C, Jahnke MC, Hahn FE. A versatile methodology for the regioselective C⁸-metalation of purine bases. J Am Chem Soc 2014; 136:7841-4. [PMID: 24823250 DOI: 10.1021/ja5030904] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Purine nucleobases are excellent ligands for metal ions, forming normally coordinative Werner-type bonds by utilizing the N donor atoms of the nucleobase skeleton. Here we show that purines such as 8-chlorocaffeine and 8-bromo-9-methyladenine react with [Pt(PPh3)4] under oxidative addition of the C(8)-halogen bond to the metal center. The resulting Pt(II) complexes feature a C(8)-bound ylidene ligand. Protonation of the ylidene at the N(7/9)-atom yields complexes bearing a protic N-heterocyclic carbene ligand derived from the purine base with an NMe,NH-substitution pattern.
Collapse
Affiliation(s)
- Dirk Brackemeyer
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster , D-48149 Münster, Germany
| | | | | | | | | |
Collapse
|
147
|
Zheng W, Luo Q, Lin Y, Zhao Y, Wang X, Du Z, Hao X, Yu Y, Lü S, Ji L, Li X, Yang L, Wang F. Complexation with organometallic ruthenium pharmacophores enhances the ability of 4-anilinoquinazolines inducing apoptosis. Chem Commun (Camb) 2014; 49:10224-6. [PMID: 23856988 DOI: 10.1039/c3cc43000f] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The complexation with organoruthenium fragments confers 4-anilinoquinazoline pharmacophores with higher potential for inducing cellular apoptosis while the highly inhibitory activity of 4-anilinoquinazolines against EGFR and the reactivity of the ruthenium centre to 9-ethylguanine are well preserved.
Collapse
Affiliation(s)
- Wei Zheng
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Dobrov A, Göschl S, Jakupec MA, Popović-Bijelić A, Gräslund A, Rapta P, Arion VB. A highly cytotoxic modified paullone ligand bearing a TEMPO free-radical unit and its copper(II) complex as potential hR2 RNR inhibitors. Chem Commun (Camb) 2014; 49:10007-9. [PMID: 24042148 PMCID: PMC4047831 DOI: 10.1039/c3cc45743e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A new modified paullone ligand bearing a TEMPO free-radical unit (HL2) and its copper(ii) complex have been prepared. The compounds demonstrate high cytotoxicity in vitro and strongly inhibit cell-free hR2 RNR activity.
A new paullone–TEMPO conjugate and its copper(ii) complex inhibit RNR activity and show high antiproliferative activity in human cancer cell lines.
Collapse
Affiliation(s)
- Anatolie Dobrov
- Institute of Inorganic Chemistry of the University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria.
| | | | | | | | | | | | | |
Collapse
|
149
|
Adhireksan Z, Davey GE, Campomanes P, Groessl M, Clavel CM, Yu H, Nazarov AA, Yeo CHF, Ang WH, Dröge P, Rothlisberger U, Dyson PJ, Davey CA. Ligand substitutions between ruthenium-cymene compounds can control protein versus DNA targeting and anticancer activity. Nat Commun 2014; 5:3462. [PMID: 24637564 PMCID: PMC3959212 DOI: 10.1038/ncomms4462] [Citation(s) in RCA: 230] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 02/18/2014] [Indexed: 01/06/2023] Open
Abstract
Ruthenium compounds have become promising alternatives to platinum drugs by displaying specific activities against different cancers and favourable toxicity and clearance properties. Nonetheless, their molecular targeting and mechanism of action are poorly understood. Here we study two prototypical ruthenium-arene agents-the cytotoxic antiprimary tumour compound [(η(6)-p-cymene)Ru(ethylene-diamine)Cl]PF6 and the relatively non-cytotoxic antimetastasis compound [(η(6)-p-cymene)Ru(1,3,5-triaza-7-phosphaadamantane)Cl2]-and discover that the former targets the DNA of chromatin, while the latter preferentially forms adducts on the histone proteins. Using a novel 'atom-to-cell' approach, we establish the basis for the surprisingly site-selective adduct formation behaviour and distinct cellular impact of these two chemically similar anticancer agents, which suggests that the cytotoxic effects arise largely from DNA lesions, whereas the protein adducts may be linked to the other therapeutic activities. Our study shows promise for developing new ruthenium drugs, via ligand-based modulation of DNA versus protein binding and thus cytotoxic potential, to target distinguishing epigenetic features of cancer cells.
Collapse
Affiliation(s)
- Zenita Adhireksan
- Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- These authors contributed equally to this work
| | - Gabriela E. Davey
- Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- These authors contributed equally to this work
| | - Pablo Campomanes
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Computational Biophysics, German Research School for Simulation Sciences, D-52425 Jülich, Germany
- These authors contributed equally to this work
| | - Michael Groessl
- Institute of Analytical Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| | - Catherine M. Clavel
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Haojie Yu
- Division of Molecular Genetics and Cell Biology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Alexey A. Nazarov
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Present address: Department of Chemistry, Moscow State University, Leninskie gory, 119991 Moscow, Russia
| | - Charmian Hui Fang Yeo
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Wee Han Ang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Peter Dröge
- Division of Molecular Genetics and Cell Biology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Ursula Rothlisberger
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Paul J. Dyson
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Curt A. Davey
- Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
150
|
Escolà A, Crespo M, Quirante J, Cortés R, Jayaraman A, Badía J, Baldomà L, Calvet T, Font-Bardía M, Cascante M. Exploring the Scope of [Pt2(4-FC6H4)4(μ-SEt2)2] as a Precursor for New Organometallic Platinum(II) and Platinum(IV) Antitumor Agents. Organometallics 2014. [DOI: 10.1021/om5000908] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Anna Escolà
- Departament de Química Inorgànica,
Facultat de Química, Universitat de Barcelona, Diagonal
645, 08028 Barcelona, Spain
| | - Margarita Crespo
- Departament de Química Inorgànica,
Facultat de Química, Universitat de Barcelona, Diagonal
645, 08028 Barcelona, Spain
- Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Josefina Quirante
- Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
- Laboratori de Química
Orgànica, Facultat de Farmàcia, Universitat de Barcelona, Avenida Joan XXIII, s/n, 08028 Barcelona, Spain
| | - Roldán Cortés
- Department of Biochemistry
and Molecular Biology, Faculty of Biology, Universitat de Barcelona, and IDIBAPS, Unit Associated with CSIC, Diagonal 643, 08028 Barcelona, Spain
| | - Anusha Jayaraman
- Department of Biochemistry
and Molecular Biology, Faculty of Biology, Universitat de Barcelona, and IDIBAPS, Unit Associated with CSIC, Diagonal 643, 08028 Barcelona, Spain
| | - Josefa Badía
- Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
- Departament de Bioquímica
i Biologia Molecular, Facultat de Farmàcia, Avenida Joan XXIII s/n, 08028 Barcelona, Spain
| | - Laura Baldomà
- Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
- Departament de Bioquímica
i Biologia Molecular, Facultat de Farmàcia, Avenida Joan XXIII s/n, 08028 Barcelona, Spain
| | - Teresa Calvet
- Departament
de Cristal·lografia, Mineralogia i Dipòsits Minerals,
Facultat de Geologia, Universitat de Barcelona, Martí i Franquès s/n, 08028 Barcelona, Spain
| | - Mercè Font-Bardía
- Departament
de Cristal·lografia, Mineralogia i Dipòsits Minerals,
Facultat de Geologia, Universitat de Barcelona, Martí i Franquès s/n, 08028 Barcelona, Spain
- Unitat de Difracció de Raigs-X, Centre Científic i Tecnològic de la Universitat de Barcelona (CCiTUB), Solé
i Sabarís, 1-3, 08028 Barcelona, Spain
| | - Marta Cascante
- Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
- Department of Biochemistry
and Molecular Biology, Faculty of Biology, Universitat de Barcelona, and IDIBAPS, Unit Associated with CSIC, Diagonal 643, 08028 Barcelona, Spain
| |
Collapse
|