101
|
Petitpoisson L, Pichette A, Alsarraf J. Towards better syntheses of partially methylated carbohydrates? Org Chem Front 2022. [DOI: 10.1039/d2qo00893a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We give an overview of the reported synthetic strategies towards partially methylated glycosides and discuss how better protocols could stem from catalytic site-selective transformations of carbohydrates and cleaner methylation reagents.
Collapse
Affiliation(s)
- Lucas Petitpoisson
- Centre de recherche sur la boréalie (CREB), Laboratoire d'analyse et de séparation des essences végétales (LASEVE), Université du Québec à Chicoutimi, 555 boulevard de l'Université, Chicoutimi G7H 2B1, Québec, Canada
| | - André Pichette
- Centre de recherche sur la boréalie (CREB), Laboratoire d'analyse et de séparation des essences végétales (LASEVE), Université du Québec à Chicoutimi, 555 boulevard de l'Université, Chicoutimi G7H 2B1, Québec, Canada
| | - Jérôme Alsarraf
- Centre de recherche sur la boréalie (CREB), Laboratoire d'analyse et de séparation des essences végétales (LASEVE), Université du Québec à Chicoutimi, 555 boulevard de l'Université, Chicoutimi G7H 2B1, Québec, Canada
| |
Collapse
|
102
|
Liu X, Guo Z, Liu Y, Chen X, Li J, Zou D, Wu Y, Wu Y. Metal-Free Alkylation of Quinoxalinones with Aryl Alkyl ketones. Org Biomol Chem 2022; 20:1391-1395. [DOI: 10.1039/d1ob02260a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first metal-free method for alkylation of quinoxalinones using cheap and stable aryl alkyl ketones as nucleophilic alkylation reagents is reported. This strategy greatly broadens the application channels of aryl...
Collapse
|
103
|
Gao Q, Sun Z, Wu M, Guo Y, Han X, Yan J, Ha MN, Le QM, Xu Y. Di- tert-butyl peroxide as an effective two-carbon unit in oxidative radical cyclization toward 7-methylazolo[1,5- a]pyrimidines. Org Chem Front 2022. [DOI: 10.1039/d2qo00381c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
An unexpected oxidative radical cyclization with DTBP as the C2 cyclic unit enables the assembly of privileged 7-methylazolo[1,5-a]pyrimidines.
Collapse
Affiliation(s)
- Qinghe Gao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Zhenhua Sun
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Manman Wu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Yimei Guo
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Xinya Han
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002, P. R. China
| | - Jufen Yan
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002, P. R. China
| | - Minh Ngoc Ha
- VNU Key Laboratory of Advanced Materials for Green Growth, Faculty of Chemistry, University of Science, Vietnam National University, Hanoi 100000, Vietnam
| | - Quynh Mai Le
- Department of Plant Science, Faculty of Biology, University of Science, Vietnam National University, Hanoi 100000, Vietnam
| | - Yongtao Xu
- School of Medical Engineering, Henan International Joint Laboratory of Neural Information analysis and Drug Intelligent Design, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| |
Collapse
|
104
|
Shen Y, Funez-Ardoiz I, Schoenebeck F, Rovis T. Site-Selective α-C-H Functionalization of Trialkylamines via Reversible Hydrogen Atom Transfer Catalysis. J Am Chem Soc 2021; 143:18952-18959. [PMID: 34738467 DOI: 10.1021/jacs.1c07144] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Trialkylamines are widely found in naturally occurring alkaloids, synthetic agrochemicals, biological probes, and especially pharmaceuticals agents and preclinical candidates. Despite the recent breakthrough of catalytic alkylation of dialkylamines, the selective α-C(sp3)-H bond functionalization of widely available trialkylamine scaffolds holds promise to streamline complex trialkylamine synthesis, accelerate drug discovery, and execute late-stage pharmaceutical modification with complementary reactivity. However, the canonical methods always result in functionalization at the less-crowded site. Herein, we describe a solution to switch the reaction site through fundamentally overcoming the steric control that dominates such processes. By rapidly establishing an equilibrium between α-amino C(sp3)-H bonds and a highly electrophilic thiol radical via reversible hydrogen atom transfer, we leverage a slower radical-trapping step with electron-deficient olefins to selectively forge a C(sp3)-C(sp3) bond with the more-crowded α-amino radical, with the overall selectivity guided by the Curtin-Hammett principle. This subtle reaction profile has unlocked a new strategic concept in direct C-H functionalization arena for forging C-C bonds from a diverse set of trialkylamines with high levels of site selectivity and preparative utility. Simple correlation of site selectivity and 13C NMR shift serves as a qualitative predictive guide. The broad consequences of this dynamic system, together with the ability to forge N-substituted quaternary carbon centers and implement late-stage functionalization techniques, hold potential to streamline complex trialkylamine synthesis and accelerate small-molecule drug discovery.
Collapse
Affiliation(s)
- Yangyang Shen
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | | | | | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
105
|
Sarmah BK, Konwar M, Das A. Copper-Catalyzed Oxidative Dehydrogenative Reaction of Quinoline- N-Oxides with Donor-Acceptor Cyclopropanes: Installation of a Tertiary Alkyl Motif at C2 Position. Org Lett 2021; 23:8390-8395. [PMID: 34633204 DOI: 10.1021/acs.orglett.1c03115] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A copper-catalyzed oxidative dehydrogenative reaction of quinoline N-oxides with donor-acceptor cyclopropanes has been demonstrated to construct C2-alkylated quinolines containing a γ-keto diester motif. The use of molecular oxygen as an oxidant, excellent site-selectivity, and good functional group tolerance are the important features in this process. The preliminary mechanistic studies demonstrate that the catalyst plays a dual role as a Lewis acid and a redox catalyst.
Collapse
Affiliation(s)
- Bikash Kumar Sarmah
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Monuranjan Konwar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Animesh Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
106
|
Jana R, Begam HM, Dinda E. The emergence of the C-H functionalization strategy in medicinal chemistry and drug discovery. Chem Commun (Camb) 2021; 57:10842-10866. [PMID: 34596175 DOI: 10.1039/d1cc04083a] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Owing to the market competitiveness and urgent societal need, an optimum speed of drug discovery is an important criterion for successful implementation. Despite the rapid ascent of artificial intelligence and computational and bioanalytical techniques to accelerate drug discovery in big pharma, organic synthesis of privileged scaffolds predicted in silico for in vitro and in vivo studies is still considered as the rate-limiting step. C-H activation is the latest technology added into an organic chemist's toolbox for the rapid construction and late-stage modification of functional molecules to achieve the desired chemical and physical properties. Particularly, elimination of prefunctionalization steps, exceptional functional group tolerance, complexity-to-diversity oriented synthesis, and late-stage functionalization of privileged medicinal scaffolds expand the chemical space. It has immense potential for the rapid synthesis of a library of molecules, structural modification to achieve the required pharmacological properties such as absorption, distribution, metabolism, excretion, toxicology (ADMET) and attachment of chemical reporters for proteome profiling, metabolite synthesis, etc. for preclinical studies. Although heterocycle synthesis, late-stage drug modification, 18F labelling, methylation, etc. via C-H functionalization have been reviewed from the synthetic standpoint, a general overview of these protocols from medicinal and drug discovery aspects has not been reviewed. In this feature article, we will discuss the recent trends of C-H activation methodologies such as synthesis of medicinal scaffolds through C-H activation/annulation cascade; C-H arylation for sp2-sp2 and sp2-sp3 cross-coupling; C-H borylation/silylation to introduce a functional linchpin for further manipulation; C-H amination for N-heterocycles and hydrogen bond acceptors; C-H fluorination/fluoroalkylation to tune polarity and lipophilicity; C-H methylation: methyl magic in drug discovery; peptide modification and macrocyclization for therapeutics and biologics; fluorescent labelling and radiolabelling for bioimaging; bioconjugation for chemical biology studies; drug-metabolite synthesis for biodistribution and excretion studies; late-stage diversification of drug-molecules to increase efficacy and safety; cutting-edge DNA encoded library synthesis and improved synthesis of drug molecules via C-H activation in medicinal chemistry and drug discovery.
Collapse
Affiliation(s)
- Ranjan Jana
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata-700032, India.
| | - Hasina Mamataj Begam
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata-700032, India.
| | - Enakshi Dinda
- Department of Chemistry and Environment, Heritage Institute of Technology, Kolkata-700107, India
| |
Collapse
|
107
|
Sarki N, Goyal V, Natte K, Jagadeesh RV. Base Metal‐Catalyzed C‐Methylation Reactions Using Methanol. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100762] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Naina Sarki
- Chemical and Material Science Division CSIR – Indian Institute of Petroleum Haridwar road, Mohkampur Dehradun 248005 India
| | - Vishakha Goyal
- Chemical and Material Science Division CSIR – Indian Institute of Petroleum Haridwar road, Mohkampur Dehradun 248005 India
| | - Kishore Natte
- Chemical and Material Science Division CSIR – Indian Institute of Petroleum Haridwar road, Mohkampur Dehradun 248005 India
| | | |
Collapse
|
108
|
Sun Q, Soulé JF. Broadening of horizons in the synthesis of CD 3-labeled molecules. Chem Soc Rev 2021; 50:10806-10835. [PMID: 34605827 DOI: 10.1039/d1cs00544h] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the light of the recent potentials of deuterated molecules as pharmaceuticals or even in mechanistic understanding, efficient methods for their synthesis are continually desired. CD3-containing molecules are prominent amongst these motifs due to the parallel of the "magic methyl effect": introducing a methyl group into pharmaceuticals could positively affect biological activities. The trideuteromethyl group is bound to molecules either by C, N, O, or S atom. For a long time, the preparation methods of such labeled compounds were underestimated and involved multi-step syntheses. More recently, specific approaches dealing with the direct incorporation of the CD3 group have been developed. This Review gives an overview of the methods for the preparation of CD3-labeled molecules from conventional functional group interconversion techniques to catalytic approaches and include radical strategy. Detailed reaction mechanisms are also discussed.
Collapse
Affiliation(s)
- Qiao Sun
- Process Chemistry Enabling Technology Platform, STA Pharmaceutical, a WuxiAppTech Company (Wuxi STA), Shanghai 201507, P. R. China
| | | |
Collapse
|
109
|
Fricke PJ, Dolewski RD, McNally A. Four‐Selective Pyridine Alkylation via Wittig Olefination of Dearomatized Pyridylphosphonium Ylides. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Patrick J. Fricke
- Department of Chemistry Colorado State University Fort Collins CO 80523 USA
| | - Ryan D. Dolewski
- Department of Chemistry Colorado State University Fort Collins CO 80523 USA
| | - Andrew McNally
- Department of Chemistry Colorado State University Fort Collins CO 80523 USA
| |
Collapse
|
110
|
Fricke PJ, Dolewski RD, McNally A. Four-Selective Pyridine Alkylation via Wittig Olefination of Dearomatized Pyridylphosphonium Ylides. Angew Chem Int Ed Engl 2021; 60:21283-21288. [PMID: 34343390 DOI: 10.1002/anie.202109271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/30/2021] [Indexed: 12/20/2022]
Abstract
Methods to synthesize alkylated pyridines are valuable because these structures are prevalent in pharmaceuticals and agrochemicals. We have developed a distinct approach to construct 4-alkylpyridines using dearomatized pyridylphosphonium ylide intermediates in a Wittig olefination-rearomatization sequence. Pyridine N-activation is key to this strategy, and N-triazinylpyridinium salts enable coupling between a wide variety of substituted pyridines and aldehydes. The alkylation protocol is viable for late-stage functionalization, including methylation of pyridine-containing drugs. This approach represents an alternative to metal-catalyzed sp2 -sp3 cross-coupling reactions and Minisci-type processes.
Collapse
Affiliation(s)
- Patrick J Fricke
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| | - Ryan D Dolewski
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| | - Andrew McNally
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
111
|
Massignan L, Zhu C, Hou X, Oliveira JCA, Salamé A, Ackermann L. Manganaelectro-Catalyzed Azine C–H Arylations and C–H Alkylations by Assistance of Weakly Coordinating Amides. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Leonardo Massignan
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen37077, Germany
- Woehler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen37077, Germany
| | - Cuiju Zhu
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen37077, Germany
| | - Xiaoyan Hou
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen37077, Germany
| | - João C. A. Oliveira
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen37077, Germany
| | - Aude Salamé
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen37077, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen37077, Germany
- Woehler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen37077, Germany
| |
Collapse
|
112
|
|
113
|
Mantry L, Maayuri R, Kumar V, Gandeepan P. Photoredox catalysis in nickel-catalyzed C-H functionalization. Beilstein J Org Chem 2021; 17:2209-2259. [PMID: 34621388 PMCID: PMC8451005 DOI: 10.3762/bjoc.17.143] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/18/2021] [Indexed: 01/24/2023] Open
Abstract
Catalytic C‒H functionalization has become a powerful strategy in organic synthesis due to the improved atom-, step- and resource economy in comparison with cross-coupling or classical organic functional group transformations. Despite the significant advances in the metal-catalyzed C‒H activations, recent developments in the field of metallaphotoredox catalysis enabled C‒H functionalizations with unique reaction pathways under mild reaction conditions. Given the relative earth-abundance and cost-effective nature, nickel catalysts for photoredox C‒H functionalization have received significant attention. In this review, we highlight the developments in the field of photoredox nickel-catalyzed C‒H functionalization reactions with a range of applications until summer 2021.
Collapse
Affiliation(s)
- Lusina Mantry
- Department of Chemistry, Indian Institute of Technology Tirupati, Tirupati – Renigunta Road, Settipalli Post, Tirupati, Andhra Pradesh 517506, India
| | - Rajaram Maayuri
- Department of Chemistry, Indian Institute of Technology Tirupati, Tirupati – Renigunta Road, Settipalli Post, Tirupati, Andhra Pradesh 517506, India
| | - Vikash Kumar
- Department of Chemistry, Indian Institute of Technology Tirupati, Tirupati – Renigunta Road, Settipalli Post, Tirupati, Andhra Pradesh 517506, India
| | - Parthasarathy Gandeepan
- Department of Chemistry, Indian Institute of Technology Tirupati, Tirupati – Renigunta Road, Settipalli Post, Tirupati, Andhra Pradesh 517506, India
| |
Collapse
|
114
|
Gong PX, Xu F, Cheng L, Gong X, Zhang J, Gu WJ, Han W. Iron-catalyzed domino decarboxylation-oxidation of α,β-unsaturated carboxylic acids enabled aldehyde C-H methylation. Chem Commun (Camb) 2021; 57:5905-5908. [PMID: 34008616 DOI: 10.1039/d1cc01536b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A practical and general iron-catalyzed domino decarboxylation-oxidation of α,β-unsaturated carboxylic acids enabling aldehyde C-H methylation for the synthesis of methyl ketones has been developed. This mild, operationally simple method uses ambient air as the sole oxidant and tolerates sensitive functional groups for the late-stage functionalization of complex natural-product-derived and polyfunctionalized molecules.
Collapse
Affiliation(s)
- Pei-Xue Gong
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Fangning Xu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Lu Cheng
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Xu Gong
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Jie Zhang
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Wei-Jin Gu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Wei Han
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China. and Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, Key Laboratory of Applied Photochemistry, Nanjing 210023, China
| |
Collapse
|
115
|
Steverlynck J, Sitdikov R, Rueping M. The Deuterated "Magic Methyl" Group: A Guide to Site-Selective Trideuteromethyl Incorporation and Labeling by Using CD 3 Reagents. Chemistry 2021; 27:11751-11772. [PMID: 34076925 PMCID: PMC8457246 DOI: 10.1002/chem.202101179] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Indexed: 12/12/2022]
Abstract
In the field of medicinal chemistry, the precise installation of a trideuteromethyl group is gaining ever-increasing attention. Site-selective incorporation of the deuterated "magic methyl" group can provide profound pharmacological benefits and can be considered an important tool for drug optimization and development. This review provides a structured overview, according to trideuteromethylation reagent, of currently established methods for site-selective trideuteromethylation of carbon atoms. In addition to CD3 , the selective introduction of CD2 H and CDH2 groups is also considered. For all methods, the corresponding mechanism and scope are discussed whenever reported. As such, this review can be a starting point for synthetic chemists to further advance trideuteromethylation methodologies. At the same time, this review aims to be a guide for medicinal chemists, offering them the available C-CD3 formation strategies for the preparation of new or modified drugs.
Collapse
Affiliation(s)
- Joost Steverlynck
- Kaust Catalysis Center (KCC)King Abdullah University Science and Technology (KAUST)Thuwal23955-6900Saudi Arabia
| | - Ruzal Sitdikov
- Kaust Catalysis Center (KCC)King Abdullah University Science and Technology (KAUST)Thuwal23955-6900Saudi Arabia
| | - Magnus Rueping
- Kaust Catalysis Center (KCC)King Abdullah University Science and Technology (KAUST)Thuwal23955-6900Saudi Arabia
- Institute for Experimental Molecular ImagingRWTH Aachen UniversityForckenbeckstrasse 5552074Aachen
| |
Collapse
|
116
|
Miyamoto Y, Sumida Y, Ohmiya H. Generation of Functionalized Alkyl Radicals via the Direct Photoexcitation of 2,2'-(Pyridine-2,6-diyl)diphenol-Based Borates. Org Lett 2021; 23:5865-5870. [PMID: 34236860 DOI: 10.1021/acs.orglett.1c01996] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new type of alkylborate was developed for the purpose of generating radicals via direct photoexcitation. These borates were prepared using 2,2'-(pyridine-2,6-diyl)diphenol as a tridentate ligand together with organoboronic acids or potassium trifluoroborates. The ready availability of organoboron compounds is a significant advantage of this direct photoexcitation protocol. The excited states of these borates can also serve as strong reductants, enabling various transformations.
Collapse
Affiliation(s)
- Yusuke Miyamoto
- Division of Pharmaceutical Science, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yuto Sumida
- Division of Pharmaceutical Science, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Hirohisa Ohmiya
- Division of Pharmaceutical Science, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.,JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
117
|
Choi I, Shen Z, Ronge E, Karius V, Jooss C, Ackermann L. Reusable Manganese Catalyst for Site-Selective Pyridine C-H Arylations and Alkylations. Chemistry 2021; 27:12737-12741. [PMID: 34181789 PMCID: PMC8518803 DOI: 10.1002/chem.202101894] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Indexed: 11/19/2022]
Abstract
Herein, we disclose a recyclable, hybrid manganese catalyst for site‐selective azine C−H activation by weak amide assistance. The novel, reusable catalyst enabled C3–H arylation and C3–H alkylation with ample scope, and was characterized by detailed transmission electron microscopy analysis.
Collapse
Affiliation(s)
- Isaac Choi
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry (WISCh)Georg-August-Universität GöttingenTammanstraße 237077GöttingenGermany
| | - Zhigao Shen
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry (WISCh)Georg-August-Universität GöttingenTammanstraße 237077GöttingenGermany
| | - Emanuel Ronge
- Institut für MaterialphysikGeorg-August-Universität GöttingenFriedrich-Hund-Platz 137077GöttingenGermany
| | - Volker Karius
- Geowissenschaftliches ZentrumGeorg-August-Universität GöttingenGoldschmidtstraße 337077GöttingenGermany
| | - Christian Jooss
- Institut für MaterialphysikGeorg-August-Universität GöttingenFriedrich-Hund-Platz 137077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry (WISCh)Georg-August-Universität GöttingenTammanstraße 237077GöttingenGermany
| |
Collapse
|
118
|
de Pedro Beato E, Spinnato D, Zhou W, Melchiorre P. A General Organocatalytic System for Electron Donor-Acceptor Complex Photoactivation and Its Use in Radical Processes. J Am Chem Soc 2021; 143:12304-12314. [PMID: 34320312 PMCID: PMC8361436 DOI: 10.1021/jacs.1c05607] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We report herein a modular class of organic catalysts that, acting as donors, can readily form photoactive electron donor-acceptor (EDA) complexes with a variety of radical precursors. Excitation with visible light generates open-shell intermediates under mild conditions, including nonstabilized carbon radicals and nitrogen-centered radicals. The modular nature of the commercially available xanthogenate and dithiocarbamate anion organocatalysts offers a versatile EDA complex catalytic platform for developing mechanistically distinct radical reactions, encompassing redox-neutral and net-reductive processes. Mechanistic investigations, by means of quantum yield determination, established that a closed catalytic cycle is operational for all of the developed radical processes, highlighting the ability of the organic catalysts to turn over and iteratively drive every catalytic cycle. We also demonstrate how the catalysts' stability and the method's high functional group tolerance could be advantageous for the direct radical functionalization of abundant functional groups, including aliphatic carboxylic acids and amines, and for applications in the late-stage elaboration of biorelevant compounds and enantioselective radical catalysis.
Collapse
Affiliation(s)
- Eduardo de Pedro Beato
- ICIQ-Institute of Chemical Research of Catalonia, the Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, 43007 Tarragona, Spain
| | - Davide Spinnato
- ICIQ-Institute of Chemical Research of Catalonia, the Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, 43007 Tarragona, Spain
| | - Wei Zhou
- ICIQ-Institute of Chemical Research of Catalonia, the Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, 43007 Tarragona, Spain
| | - Paolo Melchiorre
- ICIQ-Institute of Chemical Research of Catalonia, the Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, 43007 Tarragona, Spain.,ICREA-Catalan Institution for Research and Advanced Studies, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
119
|
Wei Y, Jiang X, Gao H, Bian M, Huang Y, Zhou Z, Yi W. Rhodium(III)‐Catalyzed Cascade C−H Coupling/C‐Terminus Michael Addition of
N
‐Phenoxy Amides with 1,6‐Enynes. ChemistrySelect 2021. [DOI: 10.1002/slct.202102186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Yinhui Wei
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 China
| | - Xinlin Jiang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 China
| | - Hui Gao
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 China
| | - Mengyao Bian
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 China
| | - Yugang Huang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 China
| | - Zhi Zhou
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 China
| | - Wei Yi
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 China
| |
Collapse
|
120
|
Olivo G, Bietti M. Aliphatic C–H bond methylation enabled by hydrogen atom transfer. Chem 2021. [DOI: 10.1016/j.chempr.2021.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
121
|
Vasilopoulos A, Krska SW, Stahl SS. C(sp 3)-H methylation enabled by peroxide photosensitization and Ni-mediated radical coupling. Science 2021; 372:398-403. [PMID: 33888639 PMCID: PMC8110093 DOI: 10.1126/science.abh2623] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/25/2021] [Indexed: 12/20/2022]
Abstract
The "magic methyl" effect describes the change in potency, selectivity, and/or metabolic stability of a drug candidate associated with addition of a single methyl group. We report a synthetic method that enables direct methylation of C(sp3)-H bonds in diverse drug-like molecules and pharmaceutical building blocks. Visible light-initiated triplet energy transfer promotes homolysis of the O-O bond in di-tert-butyl or dicumyl peroxide under mild conditions. The resulting alkoxyl radicals undergo divergent reactivity, either hydrogen-atom transfer from a substrate C-H bond or generation of a methyl radical via β-methyl scission. The relative rates of these steps may be tuned by varying the reaction conditions or peroxide substituents to optimize the yield of methylated product arising from nickel-mediated cross-coupling of substrate and methyl radicals.
Collapse
Affiliation(s)
| | | | - Shannon S Stahl
- Department of Chemistry, University of Wisconsin, Madison, WI 53706, USA.
| |
Collapse
|
122
|
Cao Z, Zhang H, Wu X, Li Y, Zhu C. Radical heteroarylation of unactivated remote C(sp 3)–H bonds via intramolecular heteroaryl migration. Org Chem Front 2021. [DOI: 10.1039/d1qo01209f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Described herein is the radical-mediated heteroarylation of unactivated remote C(sp3)–H bonds via intramolecular heteroaryl migration.
Collapse
Affiliation(s)
- Zhu Cao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| | - Huihui Zhang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| | - Xinxin Wu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| | - Yahong Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| | - Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
- Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|