101
|
Bodegård A, Geyer S, Grefkes C, Zilles K, Roland PE. Hierarchical processing of tactile shape in the human brain. Neuron 2001; 31:317-28. [PMID: 11502261 DOI: 10.1016/s0896-6273(01)00362-2] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
It is not known exactly which cortical areas compute somatosensory representations of shape. This was investigated using positron emission tomography and cytoarchitectonic mapping. Volunteers discriminated shapes by passive or active touch, brush velocity, edge length, curvature, and roughness. Discrimination of shape by active touch, as opposed to passive touch, activated the right anterior lobe of cerebellum only. Areas 3b and 1 were activated by all stimuli. Area 2 was activated with preference for surface curvature changes and shape stimuli. The anterior part of the supramarginal gyrus (ASM) and the cortex lining the intraparietal sulcus (IPA) were activated by active and passive shape discrimination, but not by other mechanical stimuli. We suggest, based on these findings, that somatosensory representations of shape are computed by areas 3b, 1, 2, IPA, and ASM in this hierarchical fashion.
Collapse
Affiliation(s)
- A Bodegård
- Division of Human Brain Research, Department of Neuroscience, Karolinska Institute, 171 77, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
102
|
Deiber MP, Caldara R, Ibañez V, Hauert CA. Alpha band power changes in unimanual and bimanual sequential movements, and during motor transitions. Clin Neurophysiol 2001; 112:1419-35. [PMID: 11459682 DOI: 10.1016/s1388-2457(01)00536-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To investigate the cortical activation during execution of unimanual and bimanual synchronous and asynchronous finger sequences, as well as during transitions between those sequences. METHODS Task-related power (TRPow) analysis of multichannel surface EEG was used to examine the regional oscillatory brain activity in the lower (7.8-9.8 Hz) and upper (10.8-11.8 Hz) alpha band. Unimanual to bimanual, bimanual to unimanual, and unimanual to unimanual transitions, prompted by visual cues, were studied in 10 right handed subjects. RESULTS (1) Execution of unimanual and bimanual movements was accompanied by a bilateral activation over the central regions. (2) The 7.8-9.8 Hz TRPow decrease was more prominent for left and bimanual movements, suggesting sensitivity of the lower alpha band to task difficulty. (3) No difference in alpha oscillatory activity was found between bimanual synchronous and asynchronous sequences. (4) Transitions between motor sequences were invariably accompanied by a mesioparietal TRPow decrease in the lower alpha band. (5) This mesioparietal activation was contingent to the change of motor program, and could not be accounted for by the change of visual cue, or related attentional processes. CONCLUSION The 7.8-9.8 Hz mesioparietal activation most likely reflects a posterior parietal motor command initiating transition between motor programs.
Collapse
Affiliation(s)
- M P Deiber
- Faculté de Psychologie et des Sciences de l'Education, Université de Genève, UniMail, Boulevard du Pont d'Arve 40, CH-1211 4, Geneva, Switzerland.
| | | | | | | |
Collapse
|
103
|
Ehrsson HH, Fagergren E, Forssberg H. Differential fronto-parietal activation depending on force used in a precision grip task: an fMRI study. J Neurophysiol 2001; 85:2613-23. [PMID: 11387405 DOI: 10.1152/jn.2001.85.6.2613] [Citation(s) in RCA: 214] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent functional magnetic resonance imaging (fMRI) studies suggest that the control of fingertip forces between the index finger and the thumb (precision grips) is dependent on bilateral frontal and parietal regions in addition to the primary motor cortex contralateral to the grasping hand. Here we use fMRI to examine the hypothesis that some of the areas of the brain associated with precision grips are more strongly engaged when subjects generate small grip forces than when they employ large grip forces. Subjects grasped a stationary object using a precision grip and employed a small force (3.8 N) that was representative of the forces that are typically used when manipulating small objects with precision grips in everyday situations or a large force (16.6 N) that represents a somewhat excessive force compared with normal everyday usage. Both force conditions involved the generation of time-variant static and dynamic grip forces under isometric conditions guided by auditory and tactile cues. The main finding was that we observed stronger activity in the bilateral cortex lining the inferior part of the precentral sulcus (area 44/ventral premotor cortex), the rostral cingulate motor area, and the right intraparietal cortex when subjects applied a small force in comparison to when they generated a larger force. This observation suggests that secondary sensorimotor related areas in the frontal and parietal lobes play an important role in the control of fine precision grip forces in the range typically used for the manipulation of small objects.
Collapse
Affiliation(s)
- H H Ehrsson
- Motor Control Laboratory, Department of Woman and Child Health, Karolinska Institutet, Stockhom, Sweden.
| | | | | |
Collapse
|
104
|
Nirkko AC, Ozdoba C, Redmond SM, Bürki M, Schroth G, Hess CW, Wiesendanger M. Different ipsilateral representations for distal and proximal movements in the sensorimotor cortex: activation and deactivation patterns. Neuroimage 2001; 13:825-35. [PMID: 11304079 DOI: 10.1006/nimg.2000.0739] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Each hemisphere is known to be also involved in controlling the ipsilateral arm, but with an asymmetry favoring the dominant hemisphere. However, the relative role of primary and secondary motor areas in ipsilateral control is not well defined. We used whole brain functional magnetic resonance imaging in healthy human subjects to differentiate between contributions from primary and secondary areas during discrete unilateral distal finger and proximal shoulder movements. It was found that ipsilateral distal movements activated secondary areas only, while sparing or even significantly deactivating the primary sensorimotor cortex. Ipsilateral proximal movements substantially activated both SM1 and secondary areas. A newly defined small territory within the precentral gyrus, extending from the premotor cortex and intruding toward SM1, showed an activation pattern corresponding to secondary motor areas. Finally, the effects of hemispheric dominance were confirmed, but attributed exclusively to secondary areas. These new imaging findings agree well with functional requirements as well as established anatomical and neurophysiological data.
Collapse
Affiliation(s)
- A C Nirkko
- Department of Neurology, University of Berne, Inselspital, Berne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
105
|
Pohl PS, Luchies CW, Stoker-Yates J, Duncan PW. Upper extremity control in adults post stroke with mild residual impairment. Neurorehabil Neural Repair 2001; 14:33-41. [PMID: 11228947 DOI: 10.1177/154596830001400104] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Motor control deficits in the upper extremity (UE) ipsilateral to the side of brain damage persist after stroke, but it is not known if the presence of these deficits is related to impairment of the contralateral UE. The purpose of this study was to investigate whether motor deficits are present in the ipsilateral UE when contralateral UE impairment is mild in adults with chronic stroke. Right-handed adults (10 controls, 10 right stroke, 10 left stroke) performed rapid continuous aiming movements to small and large targets. Using kinematic analysis, temporal measures of the movement were defined, including movement time (MT) and the three components of MT: acceleration, deceleration, and dwell time (i.e., time on target). Participants with right stroke had prolonged MT only with the left UE, primarily due to longer dwell times. Participants with left stroke had prolonged MT with both UEs as a result of longer dwell times. The results indicate that control deficits of the ipsilateral UE are evident in individuals with left but not right brain damage who have minimal impairment of the contralateral UE. These findings are consistent with the role of the left hemisphere in the control of both UEs.
Collapse
Affiliation(s)
- P S Pohl
- Department of Physical Therapy Education and Center on Aging, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160-7601, USA.
| | | | | | | |
Collapse
|
106
|
Haslinger B, Erhard P, Kämpfe N, Boecker H, Rummeny E, Schwaiger M, Conrad B, Ceballos-Baumann AO. Event-related functional magnetic resonance imaging in Parkinson's disease before and after levodopa. Brain 2001; 124:558-70. [PMID: 11222456 DOI: 10.1093/brain/124.3.558] [Citation(s) in RCA: 366] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Event-related functional MRI (fMRI) was used to study blood oxygen level dependent cortical signal changes associated with volitional limb movements off and on levodopa in Parkinson's disease. Eight patients with early stage akinetic Parkinson's disease and eight healthy volunteers underwent three functional imaging runs (high speed echo planar imaging with 600 scans/run) while performing paced single joystick movements in a freely chosen direction every 7-15 s. The non-magnetic joystick was linked to a monitoring system for on-line registration of performance parameters along with timing of the pacing tones and fMRI-scan acquisition parameters. This allowed correlation of movement onset, i.e. event-onset, to scanning time. We repeated the scanning procedure in the Parkinson's disease patients when akinesia improved 30 min after oral levodopa. Compared with the control group, patients both off and on levodopa showed movement-related impaired activation in the rostral supplementary motor area and increased activation in primary motor cortex (M1) and the lateral premotor cortex bilaterally. Levodopa led to a relative normalization of the impaired activation in the mesial premotor cortex and decreased signal levels in M1, lateral premotor and superior parietal cortex. We conclude that levodopa improves impaired motor initiation in the supplementary motor area and decreases hyperfunction of lateral premotor and M1 associated with Parkinson's disease during simple volitional movements.
Collapse
Affiliation(s)
- B Haslinger
- Neurologische Klinik, Neurozentrum Funktionelle Bildgebung, Klinikum Rechts der Isar, Technische Universität München, Möhlstrasse 28, D-81675 München, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
107
|
Liepert J, Dettmers C, Terborg C, Weiller C. Inhibition of ipsilateral motor cortex during phasic generation of low force. Clin Neurophysiol 2001; 112:114-21. [PMID: 11137668 DOI: 10.1016/s1388-2457(00)00503-4] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To study the effect of different types of unilateral pinch grips on excitability of the ipsilateral motor cortex. METHODS In 9 healthy volunteers, transcranial magnetic stimuli (TMS) were applied over one motor cortex while the subjects performed either phasic or tonic ipsilateral pinch grips with different force levels (range 1-40% maximum voluntary contraction, MVC). Motor evoked potentials (MEP) were recorded from the relaxed contralateral first dorsal interosseous muscle (FDI) and were compared to MEPs obtained during muscle relaxation of both hands. In additional experiments, transcranial electrical stimuli (TES) were administered and F waves were recorded after electrical stimulation of the ulnar nerve. RESULTS Phasic pinch grips with low force (1 and 2% MVC) induced a significant decrease of TMS-induced MEP amplitudes. The effect lasted for about 100 ms after reaching the force level and was similar for both right and left-handed pinch grips. TES-induced MEPs and F waves remained unchanged. In contrast, tonic contractions (20 and 40% MVC) enhanced MEPs in the homologous FDI. CONCLUSIONS Phasic pinch grips with low force inhibit the motor cortex responsible for the contralateral homologous hand muscle. This effect, which is probably mediated transcallosally, might act at the level of the motor cortex.
Collapse
Affiliation(s)
- J Liepert
- Department of Neurology, Friedrich Schiller University Jena, Jena, Germany.
| | | | | | | |
Collapse
|
108
|
Abstract
The mechanisms that are responsible for the remarkable potential for functional recovery from stroke in humans remain unclear, and functional tomographic neuroimaging techniques increasingly are being used to investigate this issue. Such studies confirmed that recovery of function is related to the volume of penumbra tissue that escapes infarction. For language, reactivation of the primary functional areas in the dominant hemisphere is associated with the best prognosis. Evidence for functional plasticity in the immediate vicinity of infarcts, as demonstrated under experimental conditions with invasive methods, is still limited after stroke in humans, probably because of the limitations of spatial resolution of most currently available methods. Often, functional changes in the large-scale networks that support motor (for example, supplementary and premotor cortex) and language functions (for example, prefrontal cortex) have been found, more extensively after lesions acquired during childhood than at adult age. A frequent finding is an increase in the cerebral blood flow response in corresponding regions of the healthy hemisphere during unilateral motor activation or language activation. It is, however, not yet clear whether that is related to functional recovery, and there are several observations indicating that it is often inefficient. Further systematic follow-up studies and therapeutic intervention trials are needed to clarify these issues.
Collapse
Affiliation(s)
- K Herholz
- Max-Planck-Institute for Neurological Research, Cologne, Germany
| | | |
Collapse
|
109
|
Connolly JD, Goodale MA, DeSouza JF, Menon RS, Vilis T. A comparison of frontoparietal fMRI activation during anti-saccades and anti-pointing. J Neurophysiol 2000; 84:1645-55. [PMID: 10980034 DOI: 10.1152/jn.2000.84.3.1645] [Citation(s) in RCA: 208] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
An anti-saccade, which is a saccade directed toward a mirror-symmetrical position in the opposite visual field relative to the visual stimulus, involves at least three separate operations: covert orienting, response suppression, and coordinate transformation. The distinction between pro- and anti-saccades can also be applied to pointing. We used fMRI to compare patterns of brain activation during pro- and anti-movements, to determine whether or not additional areas become active during the production of anti-movements. In parietal cortex, an inferior network was active during both saccades and pointing that included three foci along the intraparietal sulcus: 1) a posterior superior parietal area (pSPR), more active during the anti-tasks; 2) a middle inferior parietal area (mIPR), active only during the anti-tasks; and 3) an anterior inferior parietal area (aIPR), equally active for pro- and anti-movement. A superior parietal network was active during pointing but not saccades and included the following: 1) a medial region, active during anti- but not pro-pointing (mSPR); 2) an anterior and medial region, more active during pro-pointing (aSPR); and 3) an anterior and lateral region, equally active for pro- and anti-pointing (lSPR). In frontal cortex, areas selectively active during anti-movement were adjacent and anterior to areas that were active during both the anti- and pro-tasks, i.e., were anterior to the frontal eye field and the supplementary motor area. All saccade areas were also active during pointing. In contrast, foci in the dorsal premotor area, the anterior superior frontal region, and anterior cingulate were active during pointing but not saccades. In summary, pointing with central gaze activates a frontoparietal network that includes the saccade network. The operations required for the production of anti-movements recruited additional frontoparietal areas.
Collapse
Affiliation(s)
- J D Connolly
- Department of Psychology, University of Western Ontario, Ontario, Canada
| | | | | | | | | |
Collapse
|
110
|
Sainburg RL, Kalakanis D. Differences in control of limb dynamics during dominant and nondominant arm reaching. J Neurophysiol 2000; 83:2661-75. [PMID: 10805666 PMCID: PMC10709817 DOI: 10.1152/jn.2000.83.5.2661] [Citation(s) in RCA: 311] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study compares the coordination patterns employed for the left and right arms during rapid targeted reaching movements. Six right-handed subjects reached to each of three targets, designed to elicit progressively greater amplitude interaction torques at the elbow joint. All targets required the same elbow excursion (20 degrees ), but different shoulder excursions (5, 10, and 15 degrees, respectively). Movements were restricted to the shoulder and elbow and supported on a horizontal plane by a frictionless air-jet system. Subjects received visual feedback only of the final hand position with respect to the start and target locations. For motivation, points were awarded based on final position accuracy for movements completed within an interval of 400-600 ms. For all subjects, the right and left hands showed a similar time course of improvement in final position accuracy over repeated trials. After task adaptation, final position accuracy was similar for both hands; however, the hand trajectories and joint coordination patterns during the movements were systematically different. Right hand paths showed medial to lateral curvatures that were consistent in magnitude for all target directions, whereas the left hand paths had lateral to medial curvatures that increased in magnitude across the three target directions. Inverse dynamic analysis revealed substantial differences in the coordination of muscle and intersegmental torques for the left and right arms. Although left elbow muscle torque contributed largely to elbow acceleration, right arm coordination was characterized by a proximal control strategy, in which movement of both joints was primarily driven by the effects of shoulder muscles. In addition, right hand path direction changes were independent of elbow interaction torque impulse, indicating skillful coordination of muscle actions with intersegmental dynamics. In contrast, left hand path direction changes varied directly with elbow interaction torque impulse. These findings strongly suggest that distinct neural control mechanisms are employed for dominant and non dominant arm movements. However, whether interlimb differences in neural strategies are a consequence of asymmetric use of the two arms, or vice versa, is not yet understood. The implications for neural organization of voluntary movement control are discussed.
Collapse
Affiliation(s)
- R L Sainburg
- School of Health Related Professions, State University of New York at Buffalo, 14214, USA
| | | |
Collapse
|
111
|
Ehrsson HH, Fagergren A, Jonsson T, Westling G, Johansson RS, Forssberg H. Cortical activity in precision- versus power-grip tasks: an fMRI study. J Neurophysiol 2000; 83:528-36. [PMID: 10634893 DOI: 10.1152/jn.2000.83.1.528] [Citation(s) in RCA: 429] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Most manual grips can be divided in precision and power grips on the basis of phylogenetic and functional considerations. We used functional magnetic resonance imaging to compare human brain activity during force production by the right hand when subjects used a precision grip and a power grip. During the precision-grip task, subjects applied fine grip forces between the tips of the index finger and the thumb. During the power-grip task, subjects squeezed a cylindrical object using all digits in a palmar opposition grasp. The activity recorded in the primary sensory and motor cortex contralateral to the operating hand was higher when the power grip was applied than when subjects applied force with a precision grip. In contrast, the activity in the ipsilateral ventral premotor area, the rostral cingulate motor area, and at several locations in the posterior parietal and prefrontal cortices was stronger while making the precision grip than during the power grip. The power grip was associated predominately with contralateral left-sided activity, whereas the precision-grip task involved extensive activations in both hemispheres. Thus our findings indicate that in addition to the primary motor cortex, premotor and parietal areas are important for control of fingertip forces during precision grip. Moreover, the ipsilateral hemisphere appears to be strongly engaged in the control of precision-grip tasks performed with the right hand.
Collapse
Affiliation(s)
- H H Ehrsson
- Motoriklab, Department of Woman and Child Health, MR Research Center, 171 76 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|