101
|
Staab J, Herrmann-Lingen C, Meyer T. CDK8 as the STAT1 serine 727 kinase? JAKSTAT 2013; 2:e24275. [PMID: 24069555 PMCID: PMC3772107 DOI: 10.4161/jkst.24275] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 03/11/2013] [Accepted: 03/12/2013] [Indexed: 11/19/2022] Open
Abstract
Whereas cytokine-induced tyrosine phosphorylation of STAT (signal transducer and activator of transcription) proteins by JAK kinases has been well studied, much less is known about STAT-specific serine kinases and their signal-dependent regulation. The paper by Joanna Bancerek and colleagues published recently in Immunity reports that upon interferon-γ (IFNγ) stimulation of cells the chromatin-associated cyclin-dependent kinase 8 (CDK8) phosphorylates the regulatory serine residue 727 in the transactivation domain of STAT1. The authors state that the CDK8 module of the Mediator complex is a key component in the STAT1 signal pathway, linking serine phosphorylation to gene-specific transcriptional events.
Collapse
Affiliation(s)
- Julia Staab
- Department of Psychosomatic Medicine and Psychotherapy; University of Göttingen; Göttingen, Germany
| | | | | |
Collapse
|
102
|
Putz EM, Gotthardt D, Hoermann G, Csiszar A, Wirth S, Berger A, Straka E, Rigler D, Wallner B, Jamieson AM, Pickl WF, Zebedin-Brandl EM, Müller M, Decker T, Sexl V. CDK8-mediated STAT1-S727 phosphorylation restrains NK cell cytotoxicity and tumor surveillance. Cell Rep 2013; 4:437-44. [PMID: 23933255 PMCID: PMC3748339 DOI: 10.1016/j.celrep.2013.07.012] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 02/06/2013] [Accepted: 07/11/2013] [Indexed: 12/17/2022] Open
Abstract
The transcription factor STAT1 is important in natural killer (NK) cells, which provide immediate defense against tumor and virally infected cells. We show that mutation of a single phosphorylation site (Stat1-S727A) enhances NK cell cytotoxicity against a range of tumor cells, accompanied by increased expression of perforin and granzyme B. Stat1-S727A mice display significantly delayed disease onset in NK cell-surveilled tumor models including melanoma, leukemia, and metastasizing breast cancer. Constitutive phosphorylation of S727 depends on cyclin-dependent kinase 8 (CDK8). Inhibition of CDK8-mediated STAT1-S727 phosphorylation may thus represent a therapeutic strategy for stimulating NK cell-mediated tumor surveillance.
Collapse
Affiliation(s)
- Eva Maria Putz
- Institute of Pharmacology and Toxicology, Department for Biomedical Sciences, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Shaposhnikov AV, Komar’kov IF, Lebedeva LA, Shidlovskii YV. Molecular components of JAK/STAT signaling pathway and its interaction with transcription machinery. Mol Biol 2013. [DOI: 10.1134/s0026893313030126] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
104
|
Burke SJ, Goff MR, Lu D, Proud D, Karlstad MD, Collier JJ. Synergistic Expression of the CXCL10 Gene in Response to IL-1β and IFN-γ Involves NF-κB, Phosphorylation of STAT1 at Tyr701, and Acetylation of Histones H3 and H4. THE JOURNAL OF IMMUNOLOGY 2013; 191:323-36. [DOI: 10.4049/jimmunol.1300344] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
105
|
Satoh JI, Tabunoki H. A Comprehensive Profile of ChIP-Seq-Based STAT1 Target Genes Suggests the Complexity of STAT1-Mediated Gene Regulatory Mechanisms. GENE REGULATION AND SYSTEMS BIOLOGY 2013; 7:41-56. [PMID: 23645984 PMCID: PMC3623615 DOI: 10.4137/grsb.s11433] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Interferon-gamma (IFNγ) plays a key role in macrophage activation, T helper and regulatory cell differentiation, defense against intracellular pathogens, tissue remodeling, and tumor surveillance. The diverse biological functions of IFNγ are mediated by direct activation of signal transducer and activator of transcription 1 (STAT1) as well as numerous downstream effector genes. Because a perturbation in STAT1 target gene networks is closely associated with development of autoimmune diseases and cancers, it is important to characterize the global picture of these networks. Chromatin immunoprecipitation followed by deep sequencing (ChIP-Seq) provides a highly efficient method for genome-wide profiling of DNA-binding proteins. We analyzed the STAT1 ChIP-Seq dataset of IFNγ-stimulated HeLa S3 cells derived from the ENCODE project, along with transcriptome analysis on microarray. We identified 1,441 stringent ChIP-Seq peaks of protein-coding genes. They were located in the promoter (21.5%) and more often in intronic regions (72.2%) with an existence of IFNγ-activated site (GAS) elements. Among the 1,441 STAT1 target genes, 212 genes are known IFN-regulated genes (IRGs) and 194 genes (13.5%) are actually upregulated in response to IFNγ by transcriptome analysis. The panel of upregulated genes constituted IFN-signaling molecular networks pivotal for host defense against infections, where interferon-regulatory factor (IRF) and STAT transcription factors serve as a hub on which biologically important molecular connections concentrate. The genes with the peak location in intronic regions showed significantly lower expression levels in response to IFNγ. These results indicate that the binding of STAT1 to GAS is not sufficient to fully activate target genes, suggesting the high complexity of STAT1-mediated gene regulatory mechanisms.
Collapse
Affiliation(s)
- Jun-Ichi Satoh
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical, University, Noshio, Kiyose, Tokyo, Japan
| | | |
Collapse
|
106
|
Bancerek J, Poss ZC, Steinparzer I, Sedlyarov V, Pfaffenwimmer T, Mikulic I, Dölken L, Strobl B, Müller M, Taatjes DJ, Kovarik P. CDK8 kinase phosphorylates transcription factor STAT1 to selectively regulate the interferon response. Immunity 2013; 38:250-62. [PMID: 23352233 PMCID: PMC3580287 DOI: 10.1016/j.immuni.2012.10.017] [Citation(s) in RCA: 216] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Accepted: 10/24/2012] [Indexed: 11/25/2022]
Abstract
Gene regulation by cytokine-activated transcription factors of the signal transducer and activator of transcription (STAT) family requires serine phosphorylation within the transactivation domain (TAD). STAT1 and STAT3 TAD phosphorylation occurs upon promoter binding by an unknown kinase. Here, we show that the cyclin-dependent kinase 8 (CDK8) module of the Mediator complex phosphorylated regulatory sites within the TADs of STAT1, STAT3, and STAT5, including S727 within the STAT1 TAD in the interferon (IFN) signaling pathway. We also observed a CDK8 requirement for IFN-γ-inducible antiviral responses. Microarray analyses revealed that CDK8-mediated STAT1 phosphorylation positively or negatively regulated over 40% of IFN-γ-responsive genes, and RNA polymerase II occupancy correlated with gene expression changes. This divergent regulation occurred despite similar CDK8 occupancy at both S727 phosphorylation-dependent and -independent genes. These data identify CDK8 as a key regulator of STAT1 and antiviral responses and suggest a general role for CDK8 in STAT-mediated transcription. As such, CDK8 represents a promising target for therapeutic manipulation of cytokine responses.
Collapse
Affiliation(s)
- Joanna Bancerek
- Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Steen HC, Nogusa S, Thapa RJ, Basagoudanavar SH, Gill AL, Merali S, Barrero CA, Balachandran S, Gamero AM. Identification of STAT2 serine 287 as a novel regulatory phosphorylation site in type I interferon-induced cellular responses. J Biol Chem 2012; 288:747-58. [PMID: 23139419 DOI: 10.1074/jbc.m112.402529] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
STAT2 is a positive modulator of the transcriptional response to type I interferons (IFNs). STAT2 acquires transcriptional function by becoming tyrosine phosphorylated and imported to the nucleus following type I IFN receptor activation. Although most STAT proteins become dually phosphorylated on specific tyrosine and serine residues to acquire full transcriptional activity, no serine phosphorylation site in STAT2 has been reported. To find novel phosphorylation sites, mass spectrometry of immunoprecipitated STAT2 was used to identify several phosphorylated residues. Of these, substitution of serine 287 with alanine (S287A) generated a gain-of-function mutant that enhanced the biological effects of IFN-α. S287A-STAT2 increased cell growth inhibition, prolonged protection against vesicular stomatitis virus infection and enhanced transcriptional responses following exposure of cells to IFN-α. In contrast, a phosphomimetic STAT2 mutant (S287D) produced a loss-of-function protein that weakly activated IFN-induced ISGs. Our mechanistic studies suggest that S287A-STAT2 likely mediates its gain-of-function effects by prolonging STAT2/STAT1 dimer activation and retaining it in transcriptionally active complexes with chromatin. Altogether, we have uncovered that in response to type I IFN, STAT2 is serine phosphorylated in the coiled-coil domain that when phosphorylated can negatively regulate the biological activities of type I IFNs.
Collapse
Affiliation(s)
- Håkan C Steen
- Department of Biochemistry, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Kossow C, Jose D, Jaster R, Wolkenhauer O, Rateitschak K. Mathematical modelling unravels regulatory mechanisms of interferon-γ-induced STAT1 serine-phosphorylation and MUC4 expression in pancreatic cancer cells. IET Syst Biol 2012; 6:73-85. [PMID: 22757586 DOI: 10.1049/iet-syb.2011.0017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Interferon-γ (IFNγ)-mediated signal transduction via upregulation of signal transducer and activator of transcription (STAT) 1 leads to the expression of the mucin (MUC) 4 gene in pancreatic cancer cells. Upregulation of STAT1 may also implicate STAT1 tyrosine- or serine-phosphorylation. Experimental data indicate that reaction steps involved in IFN-γ induced serine-phosphorylation of STAT1 vary between cell types in contrast to conserved IFN-γ induced tyrosine-phosphorylation of STAT1. The above observations raise the following two questions: (i) How does IFNγ stimulation regulates serine-phosphorylation of STAT1 in the pancreatic cancer cell line CD18/HPAF? (ii) Which type of STAT1 acts as a transcription factor of MUC4? Our objective is to address these two questions by data-driven mathematical modelling. Simulation results of the parameterised ordinary differential equation models show that serine-phosphorylation of unphosphorylated STAT1 occurs in the cytoplasm. In contrast, serine-phosphorylation of tyrosine-phosphorylated STAT1 can take place in the cytoplasm or in the nucleus. In addition, our results propose that unphosphorylated or serine-phosphorylated STAT1 can act as transcription factors of MUC4, either alone by progressive binding to different sites in the promoter or both together.
Collapse
Affiliation(s)
- C Kossow
- Department of Systems Biology and Bioinformatics, University of Rostock, 18051 Rostock, Germany
| | | | | | | | | |
Collapse
|
109
|
Simon-Keller K, Mößinger K, Bohlender AL, Ströbel P, Marx A. Variable Resistance of RMS to Interferon γ Signaling. ISRN ONCOLOGY 2012; 2012:789152. [PMID: 22919516 PMCID: PMC3420146 DOI: 10.5402/2012/789152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 04/10/2012] [Indexed: 11/24/2022]
Abstract
Aims. Chimeric T cells directed to the γ-subunit of the fetal acetylcholine receptor (fAChR) produce large amounts of interferon-γ (IFNγ) on coculture with fAChR-expressing rhabdomyosarcoma (RMS) cells prior to RMS cell death. The aim of this study was to elucidate whether IFNγ blocks proliferation and survival of RMS cells and modulates expression of genes with relevance for cytotoxicity of chimeric T cells. Methods. Expression levels of IFNγ receptor (IFNGR), AChR, MHCI, MHCII, and CIITA (class II transactivator) by RMS were checked by flow cytometry, qRT-PCR, and western blot. Proliferation and cell survival were investigated by annexin V and propidium iodide staining and MTT (thiazolyl-blue-tetrazolium-bromide) assay. Key phosphorylation and binding sites of IFNGRs were checked by DNA sequencing. Results. IFNγ treatment blocked proliferation in 3 of 6 RMS cell lines, but reduced survival in only one. IFNGR was expressed at levels comparable to controls and binding sites for JAK and STAT1 were intact. Induction of several target genes (e.g., AChR, MHCI, and MHCII) by IFNγ was detected on the RNA level but not protein level. Conclusions. IFNγ does not significantly contribute to the killing of RMS cells by fAChR directed chimeric T cells. Signalling downstream of the IFNR receptor, including the posttranscriptional level, is impaired in most RMS cell lines.
Collapse
Affiliation(s)
- Katja Simon-Keller
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, 68135 Mannheim, Germany
| | | | | | | | | |
Collapse
|
110
|
Ginter T, Bier C, Knauer SK, Sughra K, Hildebrand D, Münz T, Liebe T, Heller R, Henke A, Stauber RH, Reichardt W, Schmid JA, Kubatzky KF, Heinzel T, Krämer OH. Histone deacetylase inhibitors block IFNγ-induced STAT1 phosphorylation. Cell Signal 2012; 24:1453-60. [PMID: 22425562 DOI: 10.1016/j.cellsig.2012.02.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 02/29/2012] [Indexed: 01/02/2023]
Abstract
Signal transducer and activator of transcription 1 (STAT1) is important for innate and adaptive immunity. Histone deacetylase inhibitors (HDACi) antagonize unbalanced immune functions causing chronic inflammation and cancer. Phosphorylation and acetylation regulate STAT1 and different IFNs induce phosphorylated STAT1 homo-/heterodimers, e.g. IFNα activates several STATs whereas IFNγ only induces phosphorylated STAT1 homodimers. In transformed cells HDACi trigger STAT1 acetylation linked to dephosphorylation by the phosphatase TCP45. It is unclear whether acetylation differentially affects STAT1 activated by IFNα or IFNγ, and if cellular responses to both cytokines depend on a phosphatase-dependent inactivation of acetylated STAT1. Here, we report that HDACi counteract IFN-induced phosphorylation of a critical tyrosine residue in the STAT1 C-terminus in primary cells and hematopoietic cells. STAT1 mutants mimicking a functionally inactive DNA binding domain (DBD) reveal that the number of acetylation-mimicking sites in STAT1 determines whether STAT1 is recruited to response elements after stimulation with IFNγ. Furthermore, we show that IFNα-induced STAT1 heterodimers carrying STAT1 molecules mimicking acetylation bind cognate DNA and provide innate anti-viral immunity. IFNγ-induced acetylated STAT1 homodimers are though inactive, suggesting that heterodimerization and complex formation can rescue STAT1 lacking a functional DBD. Apparently, the type of cytokine determines how acetylation affects the nuclear entry and DNA binding of STAT1. Our data contribute to a better understanding of STAT1 regulation by acetylation.
Collapse
Affiliation(s)
- Torsten Ginter
- Center for Molecular Biomedicine (CMB), Department of Biochemistry, University of Jena, Jena, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Santos CI, Costa-Pereira AP. Signal transducers and activators of transcription-from cytokine signalling to cancer biology. Biochim Biophys Acta Rev Cancer 2011; 1816:38-49. [PMID: 21447371 DOI: 10.1016/j.bbcan.2011.03.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 03/17/2011] [Accepted: 03/22/2011] [Indexed: 10/18/2022]
Abstract
Signal transducers and activators of transcription (STATs) are, as the name indicates, both signal transducers and transcription factors. STATs are activated by cytokines and some growth factors and thus control important biological processes. These include cell growth, cell differentiation, apoptosis and immune responses. Dysregulation of STATs, either due to constitutive activation or function impairment, can have, therefore, deleterious biological consequences. This review places particular emphasis on their structural organization, biological activities and regulatory mechanisms most commonly utilized by cells to control STAT-mediated signalling. STATs also play important roles in cancer and immune deficiencies and are thus being exploited as therapeutic targets.
Collapse
Affiliation(s)
- Cristina Isabel Santos
- Imperial College London, Faculty of Medecine, Department of Surgery and Cancer, Hammersmith Hospital Campus, Du Cane Road, London W12 ONN, UK
| | | |
Collapse
|
112
|
Knoblach T, Grandel B, Seiler J, Nevels M, Paulus C. Human cytomegalovirus IE1 protein elicits a type II interferon-like host cell response that depends on activated STAT1 but not interferon-γ. PLoS Pathog 2011; 7:e1002016. [PMID: 21533215 PMCID: PMC3077363 DOI: 10.1371/journal.ppat.1002016] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 02/02/2011] [Indexed: 12/12/2022] Open
Abstract
Human cytomegalovirus (hCMV) is a highly prevalent pathogen that, upon primary infection, establishes life-long persistence in all infected individuals. Acute hCMV infections cause a variety of diseases in humans with developmental or acquired immune deficits. In addition, persistent hCMV infection may contribute to various chronic disease conditions even in immunologically normal people. The pathogenesis of hCMV disease has been frequently linked to inflammatory host immune responses triggered by virus-infected cells. Moreover, hCMV infection activates numerous host genes many of which encode pro-inflammatory proteins. However, little is known about the relative contributions of individual viral gene products to these changes in cellular transcription. We systematically analyzed the effects of the hCMV 72-kDa immediate-early 1 (IE1) protein, a major transcriptional activator and antagonist of type I interferon (IFN) signaling, on the human transcriptome. Following expression under conditions closely mimicking the situation during productive infection, IE1 elicits a global type II IFN-like host cell response. This response is dominated by the selective up-regulation of immune stimulatory genes normally controlled by IFN-γ and includes the synthesis and secretion of pro-inflammatory chemokines. IE1-mediated induction of IFN-stimulated genes strictly depends on tyrosine-phosphorylated signal transducer and activator of transcription 1 (STAT1) and correlates with the nuclear accumulation and sequence-specific binding of STAT1 to IFN-γ-responsive promoters. However, neither synthesis nor secretion of IFN-γ or other IFNs seems to be required for the IE1-dependent effects on cellular gene expression. Our results demonstrate that a single hCMV protein can trigger a pro-inflammatory host transcriptional response via an unexpected STAT1-dependent but IFN-independent mechanism and identify IE1 as a candidate determinant of hCMV pathogenicity.
Collapse
Affiliation(s)
- Theresa Knoblach
- Institute for Medical Microbiology and Hygiene, University of Regensburg,
Regensburg, Germany
| | - Benedikt Grandel
- Institute for Medical Microbiology and Hygiene, University of Regensburg,
Regensburg, Germany
| | - Jana Seiler
- Institute for Medical Microbiology and Hygiene, University of Regensburg,
Regensburg, Germany
| | - Michael Nevels
- Institute for Medical Microbiology and Hygiene, University of Regensburg,
Regensburg, Germany
| | - Christina Paulus
- Institute for Medical Microbiology and Hygiene, University of Regensburg,
Regensburg, Germany
| |
Collapse
|
113
|
Yang J, Huang J, Dasgupta M, Sears N, Miyagi M, Wang B, Chance MR, Chen X, Du Y, Wang Y, An L, Wang Q, Lu T, Zhang X, Wang Z, Stark GR. Reversible methylation of promoter-bound STAT3 by histone-modifying enzymes. Proc Natl Acad Sci U S A 2010; 107:21499-21504. [PMID: 21098664 PMCID: PMC3003019 DOI: 10.1073/pnas.1016147107] [Citation(s) in RCA: 251] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Following its tyrosine phosphorylation, STAT3 is methylated on K140 by the histone methyl transferase SET9 and demethylated by LSD1 when it is bound to a subset of the promoters that it activates. Methylation of K140 is a negative regulatory event, because its blockade greatly increases the steady-state amount of activated STAT3 and the expression of many (i.e., SOCS3) but not all (i.e., CD14) STAT3 target genes. Biological relevance is shown by the observation that overexpression of SOCS3 when K140 cannot be methylated blocks the ability of cells to activate STAT3 in response to IL-6. K140 methylation does not occur with mutants of STAT3 that do not enter nuclei or bind to DNA. Following treatment with IL-6, events at the SOCS3 promoter occur in an ordered sequence, as shown by chromatin immunoprecipitations. Y705-phosphoryl-STAT3 binds first and S727 is then phosphorylated, followed by the coincident binding of SET9 and dimethylation of K140, and lastly by the binding of LSD1. We conclude that the lysine methylation of promoter-bound STAT3 leads to biologically important down-regulation of the dependent responses and that SET9, which is known to help provide an activating methylation mark to H3K4, is recruited to the newly activated SOCS3 promoter by STAT3.
Collapse
Affiliation(s)
- Jinbo Yang
- School of Life Science, Lanzhou University, Lanzhou, Gansu 73000, People's Republic of China
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Jing Huang
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, MD 20892; and
| | - Maupali Dasgupta
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Nathan Sears
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | | | | | | | - Xing Chen
- School of Life Science, Lanzhou University, Lanzhou, Gansu 73000, People's Republic of China
| | - Yuping Du
- School of Life Science, Lanzhou University, Lanzhou, Gansu 73000, People's Republic of China
| | - Yuxin Wang
- School of Life Science, Lanzhou University, Lanzhou, Gansu 73000, People's Republic of China
| | - Lizhe An
- School of Life Science, Lanzhou University, Lanzhou, Gansu 73000, People's Republic of China
| | - Qin Wang
- School of Life Science, Lanzhou University, Lanzhou, Gansu 73000, People's Republic of China
| | - Tao Lu
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Xiaodong Zhang
- Department of Genetics and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106
| | - Zhenghe Wang
- Department of Genetics and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106
| | - George R. Stark
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
- Department of Genetics and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
114
|
Lysine methylation of promoter-bound transcription factors and relevance to cancer. Cell Res 2010; 21:375-80. [PMID: 21151202 DOI: 10.1038/cr.2010.174] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
p53, NFκB, STAT3, and several other transcription factors are reversibly methylated on lysine residues by enzymes that also modify histones. The methylations of NFκB and STAT3 take place when they are bound to promoters, suggesting a more general model in which the binding of inducible transcription factors to DNA helps to recruit chromatin-modification machinery, which then may modify not only histones but also the bound transcription factors. Mutations of some histone-lysine methyltransferases and demethylases are linked to cancer, and these mutations may alter the methylation not only of histones but also of transcription factors, and thus may be tumorigenic through more than one mechanism.
Collapse
|
115
|
Wilhelm K, Ganesan J, Müller T, Dürr C, Grimm M, Beilhack A, Krempl CD, Sorichter S, Gerlach UV, Jüttner E, Zerweck A, Gärtner F, Pellegatti P, Di Virgilio F, Ferrari D, Kambham N, Fisch P, Finke J, Idzko M, Zeiser R. Graft-versus-host disease is enhanced by extracellular ATP activating P2X7R. Nat Med 2010; 16:1434-8. [PMID: 21102458 DOI: 10.1038/nm.2242] [Citation(s) in RCA: 365] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 09/10/2010] [Indexed: 12/11/2022]
Abstract
Danger signals released upon cell damage can cause excessive immune-mediated tissue destruction such as that found in acute graft-versus-host disease (GVHD), allograft rejection and systemic inflammatory response syndrome. Given that ATP is found in small concentrations in the extracellular space under physiological conditions, and its receptor P2X(7)R is expressed on several immune cell types, ATP could function as a danger signal when released from dying cells. We observed increased ATP concentrations in the peritoneal fluid after total body irradiation, and during the development of GVHD in mice and in humans. Stimulation of antigen-presenting cells (APCs) with ATP led to increased expression of CD80 and CD86 in vitro and in vivo and actuated a cascade of proinflammatory events, including signal transducer and activator of transcription-1 (STAT1) phosphorylation, interferon-γ (IFN-γ) production and donor T cell expansion, whereas regulatory T cell numbers were reduced. P2X(7)R expression increased when GVHD evolved, rendering APCs more responsive to the detrimental effects of ATP, thereby providing positive feedback signals. ATP neutralization, early P2X(7)R blockade or genetic deficiency of P2X(7)R during GVHD development improved survival without immune paralysis. These data have major implications for transplantation medicine, as pharmacological interference with danger signals that act via P2X(7)R could lead to the development of tolerance without the need for intensive immunosuppression.
Collapse
Affiliation(s)
- Konrad Wilhelm
- Department of Hematology and Oncology, Freiburg University Medical Center, Albert-Ludwigs-University, Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Hofmann E, Reichart U, Gausterer C, Guelly C, Meijer D, Müller M, Strobl B. Octamer-binding factor 6 (Oct-6/Pou3f1) is induced by interferon and contributes to dsRNA-mediated transcriptional responses. BMC Cell Biol 2010; 11:61. [PMID: 20687925 PMCID: PMC2924845 DOI: 10.1186/1471-2121-11-61] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 08/05/2010] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Octamer-binding factor 6 (Oct-6, Pou3f1, SCIP, Tst-1) is a transcription factor of the Pit-Oct-Unc (POU) family. POU proteins regulate key developmental processes and have been identified from a diverse range of species. Oct-6 expression is described to be confined to the developing brain, Schwann cells, oligodendrocyte precursors, testes, and skin. Its function is primarily characterised in Schwann cells, where it is required for correctly timed transition to the myelinating state. In the present study, we report that Oct-6 is an interferon (IFN)-inducible protein and show for the first time expression in murine fibroblasts and macrophages. RESULTS Oct-6 was induced by type I and type II IFN, but not by interleukin-6. Induction of Oct-6 after IFNbeta treatment was mainly dependent on signal transducer and activator of transcription 1 (Stat1) and partially on tyrosine kinase 2 (Tyk2). Chromatin immunopreciptitation experiments revealed binding of Stat1 to the Oct-6 promoter in a region around 500 bp upstream of the transcription start site, a region different from the downstream regulatory element involved in Schwann cell-specific Oct-6 expression. Oct-6 was also induced by dsRNA treatment and during viral infections, in both cases via autocrine/paracrine actions of IFNalpha/beta. Using microarray and RT-qPCR, we furthermore show that Oct-6 is involved in the regulation of transcriptional responses to dsRNA, in particular in the gene regulation of serine/threonine protein kinase 40 (Stk40) and U7 snRNA-associated Sm-like protein Lsm10 (Lsm10). CONCLUSION Our data show that Oct-6 expression is not as restricted as previously assumed. Induction of Oct-6 by IFNs and viruses in at least two different cell types, and involvement of Oct-6 in gene regulation after dsRNA treatment, suggest novel functions of Oct-6 in innate immune responses.
Collapse
Affiliation(s)
- Elisabeth Hofmann
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Ursula Reichart
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Christian Gausterer
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
- Department of Forensic Medicine, Medical University of Vienna, Austria
| | - Christian Guelly
- Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Dies Meijer
- Department of Cell Biology and Genetics, ErasmusMC, Rotterdam, Netherlands
| | - Mathias Müller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
- Biomodels Austria, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Birgit Strobl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
117
|
Leishmania donovani amastigotes impair gamma interferon-induced STAT1alpha nuclear translocation by blocking the interaction between STAT1alpha and importin-alpha5. Infect Immun 2010; 78:3736-43. [PMID: 20566692 DOI: 10.1128/iai.00046-10] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The protozoan parasite Leishmania donovani, the etiological agent of visceral leishmaniasis, is renowned for its capacity to sabotage macrophage functions and signaling pathways stimulated by activators such as gamma interferon (IFN-gamma). Our knowledge of the strategies utilized by L. donovani to impair macrophage responsiveness to IFN-gamma remains fragmentary. In the present study, we investigated the impact of an infection by the amastigote stage of L. donovani on IFN-gamma responses and signaling via the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway in mouse bone marrow-derived macrophages. The levels of IFN-gamma-induced expression of major histocompatibility complex class II and inducible nitric oxide synthase (iNOS) were strongly reduced in L. donovani amastigote-infected macrophages. As the expression of those genes is mediated by the transcription factors STAT1alpha and IFN regulatory factor 1 (IRF-1), we investigated their activation in amastigote-infected macrophages treated with IFN-gamma. We found that whereas STAT1alpha protein levels and the levels of phosphorylation on Tyr701 and Ser727 were normal, IRF-1 expression was inhibited in infected macrophages. This inhibition of IRF-1 expression correlated with a defective nuclear translocation of STAT1alpha, and further analyses revealed that the IFN-gamma-induced STAT1alpha association with the nuclear transport adaptor importin-alpha5 was compromised in L. donovani amastigote-infected macrophages. Taken together, our results provide evidence for a novel mechanism used by L. donovani amastigotes to interfere with IFN-gamma-activated macrophage functions and provide a better understanding of the strategies deployed by this parasite to ensure its intracellular survival.
Collapse
|
118
|
Functional crosstalk between type I and II interferon through the regulated expression of STAT1. PLoS Biol 2010; 8:e1000361. [PMID: 20436908 PMCID: PMC2860501 DOI: 10.1371/journal.pbio.1000361] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 03/18/2010] [Indexed: 01/14/2023] Open
Abstract
Small "priming" quantities of type I interferon enhance cellular responses to type II interferon by maintaining basal levels of STAT1, explaining the observed crosstalk between these two cytokines. Autocrine priming of cells by small quantities of constitutively produced type I interferon (IFN) is a well-known phenomenon. In the absence of type I IFN priming, cells display attenuated responses to other cytokines, such as anti-viral protection in response to IFNγ. This phenomenon was proposed to be because IFNα/β receptor1 (IFNAR1) is a component of the IFNγ receptor (IFNGR), but our new data are more consistent with a previously proposed model indicating that regulated expression of STAT1 may also play a critical role in the priming process. Initially, we noticed that DNA binding activity of STAT1 was attenuated in c-Jun−/− fibroblasts because they expressed lower levels of STAT1 than wild-type cells. However, expression of STAT1 was rescued by culturing c-Jun−/− fibroblasts in media conditioned by wild-type fibroblasts suggesting they secreted a STAT1-inducing factor. The STAT1-inducing factor in fibroblast-conditioned media was IFNβ, as it was inhibited by antibodies to IFNAR1, or when IFNβ expression was knocked down in wild-type cells. IFNAR1−/− fibroblasts, which cannot respond to this priming, also expressed reduced levels of STAT1, which correlated with their poor responses to IFNγ. The lack of priming in IFNAR1−/− fibroblasts was compensated by over-expression of STAT1, which rescued molecular responses to IFNγ and restored the ability of IFNγ to induce protective anti-viral immunity. This study provides a comprehensive description of the molecular events involved in priming by type I IFN. Adding to the previous working model that proposed an interaction between type I and II IFN receptors, our work and that of others demonstrates that type I IFN primes IFNγ-mediated immune responses by regulating expression of STAT1. This may also explain how type I IFN can additionally prime cells to respond to a range of other cytokines that use STAT1 (e.g., IL-6, M-CSF, IL-10) and suggests a potential mechanism for the changing levels of STAT1 expression observed during viral infection. Cells of the immune system release interferons (IFNs) in response to pathogens or tumor cells; these proteins signal to other immune cells to initiate the body's defense mechanisms. The two classes of IFNs—types I and II—have different receptors and distinct effects on the cells; however, there is “crosstalk” between them. In particular, small quantities of type I IFN can “prime” cells to produce a robust response to type II IFN. In this paper, we provide evidence to explain the molecular basis of this crosstalk. We show that continuous expression of the transcriptional activator c-Jun is responsible for producing basal, priming levels of a type I IFN; this signals to immune cells with the type I IFN receptor (IFNAR1) to maintain expression of STAT1 inside these cells. STAT1 is a key factor for immune cell responses to type II IFN. Thus, signaling by low levels of type I IFN primes the cells with sufficient STAT1 to respond robustly to a subsequent type II IFN signal. This work provides an alternative explanation of the priming phenomenon to a previous proposal that the ligand-bound type I receptor, IFNAR1, acts as a component of the type II IFN receptor.
Collapse
|
119
|
Krämer OH, Heinzel T. Phosphorylation-acetylation switch in the regulation of STAT1 signaling. Mol Cell Endocrinol 2010; 315:40-8. [PMID: 19879327 DOI: 10.1016/j.mce.2009.10.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 10/13/2009] [Accepted: 10/19/2009] [Indexed: 02/07/2023]
Abstract
STAT1 signaling regulates the expression of important genes controlling cell growth, differentiation, apoptosis, and immune functions. Biochemical and genetic experiments have identified how this cascade is modulated. Phosphorylation of STAT1 tyrosine and serine moieties is induced rapidly by cytokines and growth factors. Upon nuclear translocation, phosphorylated STAT1 homo- and heterodimers activate gene expression. Inactivation of phosphorylated nuclear STAT1 has to be precisely regulated in order to allow signal transduction within limited time frames. Lysine acetylation has recently been appreciated as a novel mechanism regulating signal transduction events relying on STAT proteins. Here, we review these analyses and the finding that a switch from phosphorylated to acetylated STAT1 regulates acetylation-dependent dephosphorylation of STAT1 via the T cell tyrosine phosphatase. We discuss how these observations can be integrated into our current understanding of STAT-dependent cytokine signaling and its potential relevance for endocrine functions.
Collapse
Affiliation(s)
- Oliver H Krämer
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine (CMB), University of Jena, Hans-Knöll-Str. 2, 07743 Jena, Germany.
| | | |
Collapse
|
120
|
Lu T, Stark GR. Use of forward genetics to discover novel regulators of NF-kappaB. Cold Spring Harb Perspect Biol 2009; 2:a001966. [PMID: 20516132 DOI: 10.1101/cshperspect.a001966] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Forward and reverse genetic experiments have both played important roles in revealing critical aspects of mammalian signal transduction pathways in cell culture experiments. Only recently have we begun to comprehend the depth, breadth, and complexity of these pathways and of their interrelationships. Here, we summarize successful examples in which different forward genetic approaches have led to novel discoveries in NF-kappaB signaling. We believe that forward genetics will continue to play an irreplaceable role in advancing our understanding of the complexities of the pathways that regulate the functions of this key transcription factor.
Collapse
Affiliation(s)
- Tao Lu
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | |
Collapse
|
121
|
Pilz A, Kratky W, Stockinger S, Simma O, Kalinke U, Lingnau K, von Gabain A, Stoiber D, Sexl V, Kolbe T, Rülicke T, Müller M, Decker T. Dendritic cells require STAT-1 phosphorylated at its transactivating domain for the induction of peptide-specific CTL. THE JOURNAL OF IMMUNOLOGY 2009; 183:2286-93. [PMID: 19620292 DOI: 10.4049/jimmunol.0901383] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Phosphorylation of transcription factor STAT-1 on Y701 regulates subcellular localization whereas phosphorylation of the transactivating domain at S727 enhances transcriptional activity. In this study, we investigate the impact of STAT-1 and the importance of transactivating domain phosphorylation on the induction of peptide-specific CTL in presence of the TLR9-dependent immune adjuvant IC31. STAT-1 deficiency completely abolished CTL induction upon immunization, which was strongly reduced in animals carrying the mutation of the S727 phospho-acceptor site. A comparable reduction of CTL was found in mice lacking the type I IFN (IFN-I) receptor, whereas IFN-gamma-deficient mice behaved like wild-type controls. This finding suggests that S727-phosphorylated STAT-1 supports IFN-I-dependent induction of CTL. In adoptive transfer experiments, IFN-I- and S727-phosphorylated STAT-1 were critical for the activation and function of dendritic cells. Mice with a T cell-specific IFN-I receptor ablation did not show impaired CTL responses. Unlike the situation observed for CTL development S727-phosphorylated STAT-1 restrained proliferation of naive CD8(+) T cells both in vitro and following transfer into Rag-deficient mice. In summary, our data reveal a dual role of S727-phosphorylated STAT-1 for dendritic cell maturation as a prerequisite for the induction of CTL activity and for T cell autonomous control of activation-induced or homeostatic proliferation.
Collapse
Affiliation(s)
- Andreas Pilz
- Department of Genetics, Max F Perutz Laboratories, University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Maldonado RA, Soriano MA, Perdomo LC, Sigrist K, Irvine DJ, Decker T, Glimcher LH. Control of T helper cell differentiation through cytokine receptor inclusion in the immunological synapse. J Exp Med 2009; 206:877-92. [PMID: 19349465 PMCID: PMC2715121 DOI: 10.1084/jem.20082900] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Accepted: 03/06/2009] [Indexed: 01/14/2023] Open
Abstract
The antigen recognition interface formed by T helper precursors (Thps) and antigen-presenting cells (APCs), called the immunological synapse (IS), includes receptors and signaling molecules necessary for Thp activation and differentiation. We have recently shown that recruitment of the interferon-gamma receptor (IFNGR) into the IS correlates with the capacity of Thps to differentiate into Th1 effector cells, an event regulated by signaling through the functionally opposing receptor to interleukin-4 (IL4R). Here, we show that, similar to IFN-gamma ligation, TCR stimuli induce the translocation of signal transducer and activator of transcription 1 (STAT1) to IFNGR1-rich regions of the membrane. Unexpectedly, STAT1 is preferentially expressed, is constitutively serine (727) phosphorylated in Thp, and is recruited to the IS and the nucleus upon TCR signaling. IL4R engagement controls this process by interfering with both STAT1 recruitment and nuclear translocation. We also show that in cells with deficient Th1 or constitutive Th2 differentiation, the IL4R is recruited to the IS. This observation suggest that the IL4R is retained outside the IS, similar to the exclusion of IFNGR from the IS during IL4R signaling. This study provides new mechanistic cues for the regulation of lineage commitment by mutual immobilization of functionally antagonistic membrane receptors.
Collapse
Affiliation(s)
- Roberto A Maldonado
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
123
|
Shen X, Xi G, Radhakrishnan Y, Clemmons DR. Identification of novel SHPS-1-associated proteins and their roles in regulation of insulin-like growth factor-dependent responses in vascular smooth muscle cells. Mol Cell Proteomics 2009; 8:1539-51. [PMID: 19299420 DOI: 10.1074/mcp.m800543-mcp200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tyrosine phosphatase non-receptor type substrate-1 (SHPS-1), a transmembrane protein, plays a vital role in cell migration and proliferation. Our previous studies have shown that insulin-like growth factor-I (IGF-I) stimulates SHPS-1 phosphorylation, leading to recruitment of SHP-2, c-Src, Shc, and Grb2.p85 to phosphorylated SHPS-1. Assembly of this signaling complex is required for optimal stimulation of both mitogen-activated protein and phosphatidylinositol 3-kinase pathways. The main aim of the present study was to identify novel proteins that interacted with the cytoplasmic domain of SHPS-1 (SHPS-1/CD) in response to IGF-I stimulation and define the role of these interactions in mediating specific biological functions. We performed a functional proteomic screening to identify SHPS-1 binding partners using combination of mRNA display and the tandem affinity purification-tag methods. Screening identified a number of proteins not previously known to interact with phosphorylated SHPS-1/CD. These novel SHPS-1 binding partners represent several functional categories including heat shock proteins, protein kinases and phosphatases, and proteins that regulate transcription or translation. In Vivo and in vitro studies suggested that most of the proteins bound to SHPS-1 via binding to one of the four SH2 domain containing proteins, SHP-2, CTK, SUPT6H, and STAT1, that directly bound to SHPS-1. Although the binding of most of these proteins to SHPS-1 was positively regulated by IGF-I, a few were negatively regulated, suggesting differential regulation of protein complexes assembled on SHPS-1/CD in response to IGF-I. Further studies showed that truncation of SHPS-1/CD significantly impaired IGF-I-dependent AKT signal transduction and subsequent biological functions including cell survival, protein synthesis, protein aggregation, and prevention of apoptosis. The results emphasize the importance of formation of SHPS-1 signaling complex induced by IGF-I and provide novel insights into our knowledge of the role of this molecular scaffold in regulation of IGF-I-stimulated signal transduction and biological actions.
Collapse
Affiliation(s)
- Xinchun Shen
- Department of Medicine, University of North Carolina, School of Medicine, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
124
|
Structural basis for recruitment of CBP/p300 coactivators by STAT1 and STAT2 transactivation domains. EMBO J 2009; 28:948-58. [PMID: 19214187 DOI: 10.1038/emboj.2009.30] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Accepted: 01/20/2009] [Indexed: 11/08/2022] Open
Abstract
CBP/p300 transcriptional coactivators mediate gene expression by integrating cellular signals through interactions with multiple transcription factors. To elucidate the molecular and structural basis for CBP-dependent gene expression, we determined structures of the CBP TAZ1 and TAZ2 domains in complex with the transactivation domains (TADs) of signal transducer and activator of transcription 2 (STAT2) and STAT1, respectively. Despite the topological similarity of the TAZ1 and TAZ2 domains, subtle differences in helix packing and surface grooves constitute major determinants of target selectivity. Our results suggest that TAZ1 preferentially binds long TADs capable of contacting multiple surface grooves simultaneously, whereas smaller TADs that are restricted to a single contiguous binding surface form complexes with TAZ2. Complex formation for both STAT TADs involves coupled folding and binding, driven by intermolecular hydrophobic and electrostatic interactions. Phosphorylation of S727, required for maximal transcriptional activity of STAT1, does not enhance binding to any of the CBP domains. Because the different STAT TADs recognize different regions of CBP/p300, there is a potential for multivalent binding by STAT heterodimers that could enhance the recruitment of the coactivators to promoters.
Collapse
|