101
|
Han GA, Malintan NT, Saw NMN, Li L, Han L, Meunier FA, Collins BM, Sugita S. Munc18-1 domain-1 controls vesicle docking and secretion by interacting with syntaxin-1 and chaperoning it to the plasma membrane. Mol Biol Cell 2011; 22:4134-49. [PMID: 21900502 PMCID: PMC3204074 DOI: 10.1091/mbc.e11-02-0135] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Munc18-1 plays pleiotropic roles in neurosecretion by acting as 1) a molecular chaperone of syntaxin-1, 2) a mediator of dense-core vesicle docking, and 3) a priming factor for soluble N-ethylmaleimide-sensitive factor attachment protein receptor-mediated membrane fusion. However, how these functions are executed and whether they are correlated remains unclear. Here we analyzed the role of the domain-1 cleft of Munc18-1 by measuring the abilities of various mutants (D34N, D34N/M38V, K46E, E59K, K46E/E59K, K63E, and E66A) to bind and chaperone syntaxin-1 and to restore the docking and secretion of dense-core vesicles in Munc18-1/-2 double-knockdown cells. We identified striking correlations between the abilities of these mutants to bind and chaperone syntaxin-1 with their ability to restore vesicle docking and secretion. These results suggest that the domain-1 cleft of Munc18-1 is essential for binding to syntaxin-1 and thereby critical for its chaperoning, docking, and secretory functions. Our results demonstrate that the effect of the alleged priming mutants (E59K, D34N/M38V) on exocytosis can largely be explained by their reduced syntaxin-1-chaperoning functions. Finally, our data suggest that the intracellular expression and distribution of syntaxin-1 determines the level of dense-core vesicle docking.
Collapse
Affiliation(s)
- Gayoung A Han
- Division of Fundamental Neurobiology, University Health Network, Toronto ON M5T 2S8, Canada
| | | | | | | | | | | | | | | |
Collapse
|
102
|
Shi L, Kümmel D, Coleman J, Melia TJ, Giraudo CG. Dual roles of Munc18-1 rely on distinct binding modes of the central cavity with Stx1A and SNARE complex. Mol Biol Cell 2011; 22:4150-60. [PMID: 21900493 PMCID: PMC3204075 DOI: 10.1091/mbc.e11-02-0150] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Sec1/Munc18 proteins play a fundamental role in multiple steps of intracellular membrane trafficking. Dual functions have been attributed to Munc18-1: it can act as a chaperone when it interacts with monomeric syntaxin 1A, and it can activate soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) for membrane fusion when it binds to SNARE complexes. Although both modes of binding involve the central cavity of Munc18-1, their precise molecular mechanisms of action are not fully understood. In this paper, we describe a novel Munc18-1 mutant in the central cavity that showed a reduced interaction with syntaxin 1A and impaired chaperone function, but still bound to assembled SNARE complexes and promoted liposome fusion and secretion in neuroendocrine cells. Soluble syntaxin 1A H3 domain partially blocks Munc18-1 activation of liposome fusion by occupying the Munc18-1 central cavity. Our findings lead us to propose a transition model between the two distinct binding modes by which Munc18 can control and assist in SNARE-complex assembly during neurotransmitter release.
Collapse
Affiliation(s)
- Lei Shi
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
103
|
Xu Y, Seven AB, Su L, Jiang QX, Rizo J. Membrane bridging and hemifusion by denaturated Munc18. PLoS One 2011; 6:e22012. [PMID: 21765933 PMCID: PMC3130787 DOI: 10.1371/journal.pone.0022012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 06/10/2011] [Indexed: 11/19/2022] Open
Abstract
Neuronal Munc18-1 and members of the Sec1/Munc18 (SM) protein family play a critical function(s) in intracellular membrane fusion together with SNARE proteins, but the mechanism of action of SM proteins remains highly enigmatic. During experiments designed to address this question employing a 7-nitrobenz-2-oxa-1,3-diazole (NBD) fluorescence de-quenching assay that is widely used to study lipid mixing between reconstituted proteoliposomes, we observed that Munc18-1 from squid (sMunc18-1) was able to increase the apparent NBD fluorescence emission intensity even in the absence of SNARE proteins. Fluorescence emission scans and dynamic light scattering experiments show that this phenomenon arises at least in part from increased light scattering due to sMunc18-1-induced liposome clustering. Nuclear magnetic resonance and circular dichroism data suggest that, although native sMunc18-1 does not bind significantly to lipids, sMunc18-1 denaturation at 37°C leads to insertion into membranes. The liposome clustering activity of sMunc18-1 can thus be attributed to its ability to bridge two membranes upon (perhaps partial) denaturation; correspondingly, this activity is hindered by addition of glycerol. Cryo-electron microscopy shows that liposome clusters induced by sMunc18-1 include extended interfaces where the bilayers of two liposomes come into very close proximity, and clear hemifusion diaphragms. Although the physiological relevance of our results is uncertain, they emphasize the necessity of complementing fluorescence de-quenching assays with alternative experiments in studies of membrane fusion, as well as the importance of considering the potential effects of protein denaturation. In addition, our data suggest a novel mechanism of membrane hemifusion induced by amphipathic macromolecules that does not involve formation of a stalk intermediate.
Collapse
Affiliation(s)
- Yi Xu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Alpay B. Seven
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Lijing Su
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Qiu-Xing Jiang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Josep Rizo
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
104
|
Rathore SS, Ghosh N, Ouyang Y, Shen J. Topological arrangement of the intracellular membrane fusion machinery. Mol Biol Cell 2011; 22:2612-9. [PMID: 21633111 PMCID: PMC3135485 DOI: 10.1091/mbc.e11-03-0190] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The topology of the SNARE complex is strictly restricted: of all the possible topological combinations, only one is fusogenic—the topology compatible with both the basal fusion and the SM activation. A fusogenic SNARE complex must contain a complete set of the QabcR SNARE helices. Soluble N-ethylmaleimide–sensitive factor attachment protein receptors (SNAREs) form a four-helix coiled-coil bundle that juxtaposes two bilayers and drives a basal level of membrane fusion. The Sec1/Munc18 (SM) protein binds to its cognate SNARE bundle and accelerates the basal fusion reaction. The question of how the topological arrangement of the SNARE helices affects the reactivity of the fusion proteins remains unanswered. Here we address the problem for the first time in a reconstituted system containing both SNAREs and SM proteins. We find that to be fusogenic a SNARE topology must support both basal fusion and SM stimulation. Certain topological combinations of exocytic SNAREs result in basal fusion but cannot support SM stimulation, whereas other topologies support SM stimulation without inducing basal fusion. It is striking that of all the possible topological combinations of exocytic SNARE helices, only one induces efficient fusion. Our results suggest that the intracellular membrane fusion complex is designed to fuse bilayers according to one genetically programmed topology.
Collapse
Affiliation(s)
- Shailendra S Rathore
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309, USA
| | | | | | | |
Collapse
|
105
|
Krämer L, Ungermann C. HOPS drives vacuole fusion by binding the vacuolar SNARE complex and the Vam7 PX domain via two distinct sites. Mol Biol Cell 2011; 22:2601-11. [PMID: 21613544 PMCID: PMC3135484 DOI: 10.1091/mbc.e11-02-0104] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The homotypic fusion and protein sorting (HOPS) tethering complex of the yeast vacuole is involved in multiple fusion reactions. We demonstrate that HOPS has two binding sites for SNAREs and that binding to the minimal SNARE complex is necessary for HOPS-stimulated fusion. Our data highlight the dual role of HOPS in Rab-mediated tethering and SNARE-driven fusion. Membrane fusion within the endomembrane system follows a defined order of events: membrane tethering, mediated by Rabs and tethers, assembly of soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptor (SNARE) complexes, and lipid bilayer mixing. Here we present evidence that the vacuolar HOPS tethering complex controls fusion through specific interactions with the vacuolar SNARE complex (consisting of Vam3, Vam7, Vti1, and Nyv1) and the N-terminal domains of Vam7 and Vam3. We show that homotypic fusion and protein sorting (HOPS) binds Vam7 via its subunits Vps16 and Vps18. In addition, we observed that Vps16, Vps18, and the Sec1/Munc18 protein Vps33, which is also part of the HOPS complex, bind to the Q-SNARE complex. In agreement with this observation, HOPS-stimulated fusion was inhibited if HOPS was preincubated with the minimal Q-SNARE complex. Importantly, artificial targeting of Vam7 without its PX domain to membranes rescued vacuole morphology in vivo, but resulted in a cytokinesis defect if the N-terminal domain of Vam3 was also removed. Our data thus support a model of HOPS-controlled membrane fusion by recognizing different elements of the SNARE complex.
Collapse
Affiliation(s)
- Lukas Krämer
- Biochemistry Section, Department of Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany
| | | |
Collapse
|
106
|
Graham ME, Prescott GR, Johnson JR, Jones M, Walmesley A, Haynes LP, Morgan A, Burgoyne RD, Barclay JW. Structure-function study of mammalian Munc18-1 and C. elegans UNC-18 implicates domain 3b in the regulation of exocytosis. PLoS One 2011; 6:e17999. [PMID: 21445306 PMCID: PMC3061876 DOI: 10.1371/journal.pone.0017999] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 02/22/2011] [Indexed: 11/19/2022] Open
Abstract
Munc18-1 is an essential synaptic protein functioning during multiple stages of the exocytotic process including vesicle recruitment, docking and fusion. These functions require a number of distinct syntaxin-dependent interactions; however, Munc18-1 also regulates vesicle fusion via syntaxin-independent interactions with other exocytotic proteins. Although the structural regions of the Munc18-1 protein involved in closed-conformation syntaxin binding have been thoroughly examined, regions of the protein involved in other interactions are poorly characterised. To investigate this we performed a random transposon mutagenesis, identifying domain 3b of Munc18-1 as a functionally important region of the protein. Transposon insertion in an exposed loop within this domain specifically disrupted Mint1 binding despite leaving affinity for closed conformation syntaxin and binding to the SNARE complex unaffected. The insertion mutation significantly reduced total amounts of exocytosis as measured by carbon fiber amperometry in chromaffin cells. Introduction of the equivalent mutation in UNC-18 in Caenorhabditis elegans also reduced neurotransmitter release as assessed by aldicarb sensitivity. Correlation between the two experimental methods for recording changes in the number of exocytotic events was verified using a previously identified gain of function Munc18-1 mutation E466K (increased exocytosis in chromaffin cells and aldicarb hypersensitivity of C. elegans). These data implicate a novel role for an exposed loop in domain 3b of Munc18-1 in transducing regulation of vesicle fusion independent of closed-conformation syntaxin binding.
Collapse
Affiliation(s)
- Margaret E. Graham
- Department of Cellular and Molecular Physiology, The Physiological Laboratory, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Gerald R. Prescott
- Department of Cellular and Molecular Physiology, The Physiological Laboratory, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - James R. Johnson
- Department of Cellular and Molecular Physiology, The Physiological Laboratory, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Mathew Jones
- Department of Cellular and Molecular Physiology, The Physiological Laboratory, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Alice Walmesley
- Department of Cellular and Molecular Physiology, The Physiological Laboratory, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Lee P. Haynes
- Department of Cellular and Molecular Physiology, The Physiological Laboratory, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Alan Morgan
- Department of Cellular and Molecular Physiology, The Physiological Laboratory, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Robert D. Burgoyne
- Department of Cellular and Molecular Physiology, The Physiological Laboratory, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Jeff W. Barclay
- Department of Cellular and Molecular Physiology, The Physiological Laboratory, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
- * E-mail:
| |
Collapse
|
107
|
|