101
|
Affiliation(s)
- Elizabeth J. New
- School
of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
102
|
Synthetic fluorescent probes to map metallostasis and intracellular fate of zinc and copper. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.11.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
103
|
Akassoglou K, Agalliu D, Chang CJ, Davalos D, Grutzendler J, Hillman EMC, Khakh BS, Kleinfeld D, McGavern DB, Nelson SJ, Zlokovic BV. Neurovascular and Immuno-Imaging: From Mechanisms to Therapies. Proceedings of the Inaugural Symposium. Front Neurosci 2016; 10:46. [PMID: 26941593 PMCID: PMC4761864 DOI: 10.3389/fnins.2016.00046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 02/01/2016] [Indexed: 12/20/2022] Open
Abstract
Breakthrough advances in intravital imaging have launched a new era for the study of dynamic interactions at the neurovascular interface in health and disease. The first Neurovascular and Immuno-Imaging Symposium was held at the Gladstone Institutes, University of California, San Francisco in March, 2015. This highly interactive symposium brought together a group of leading researchers who discussed how recent studies have unraveled fundamental biological mechanisms in diverse scientific fields such as neuroscience, immunology, and vascular biology, both under physiological and pathological conditions. These Proceedings highlight how advances in imaging technologies and their applications revolutionized our understanding of the communication between brain, immune, and vascular systems and identified novel targets for therapeutic intervention in neurological diseases.
Collapse
Affiliation(s)
- Katerina Akassoglou
- Gladstone Institute of Neurological Disease, University of California, San FranciscoSan Francisco, CA, USA; Department of Neurology, University of California, San FranciscoSan Francisco, CA, USA
| | - Dritan Agalliu
- Departments of Neurology, Pathology and Cell Biology and Pharmacology, Columbia University Medical Center New York, NY, USA
| | - Christopher J Chang
- Departments of Chemistry and Molecular and Cell Biology, Howard Hughes Medical Institute, Helen Wills Neuroscience Institute, University of California, Berkeley Berkeley, CA, USA
| | - Dimitrios Davalos
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation Cleveland, OH, USA
| | | | - Elizabeth M C Hillman
- Laboratory for Functional Optical Imaging, Departments of Biomedical Engineering and Radiology, Kavli Institute for Brain Science, Columbia University New York, NY, USA
| | - Baljit S Khakh
- Departments of Neurobiology and Physiology, David Geffen School of Medicine, University of California, Los Angeles Los Angeles, CA, USA
| | - David Kleinfeld
- Department of Physics and Section of Neurobiology, University of California, San Diego La Jolla, CA, USA
| | - Dorian B McGavern
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health Bethesda, MD, USA
| | - Sarah J Nelson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco San Francisco, CA, USA
| | - Berislav V Zlokovic
- Department of Physiology and Biophysics, Keck School of Medicine, Zilkha Neurogenetic Institute, University of Southern California Los Angeles, CA, USA
| |
Collapse
|
104
|
|
105
|
Cheung CCH, Soon CY, Chuang CL, Phillips ARJ, Zhang S, Cooper GJS. Low-dose copper infusion into the coronary circulation induces acute heart failure in diabetic rats: New mechanism of heart disease. Biochem Pharmacol 2015. [PMID: 26208785 DOI: 10.1016/j.bcp.2015.06.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Diabetes impairs copper (Cu) regulation, causing elevated serum Cu and urinary Cu excretion in patients with established cardiovascular disease; it also causes cardiomyopathy and chronic cardiac impairment linked to defective Cu homeostasis in rats. However, the mechanisms that link impaired Cu regulation to cardiac dysfunction in diabetes are incompletely understood. Chronic treatment with triethylenetetramine (TETA), a Cu²⁺-selective chelator, improves cardiac function in diabetic patients, and in rats with heart disease; the latter displayed ∼3-fold elevations in free Cu²⁺ in the coronary effluent when TETA was infused into their coronary arteries. To further study the nature of defective cardiac Cu regulation in diabetes, we employed an isolated-perfused, working-heart model in which we infused micromolar doses of Cu²⁺ into the coronary arteries and measured acute effects on cardiac function in diabetic and non-diabetic-control rats. Infusion of CuCl₂ solutions caused acute dose-dependent cardiac dysfunction in normal hearts. Several measures of baseline cardiac function were impaired in diabetic hearts, and these defects were exacerbated by low-micromolar Cu²⁺ infusion. The response to infused Cu²⁺ was augmented in diabetic hearts, which became defective at lower infusion levels and underwent complete pump failure (cardiac output = 0 ml/min) more often (P < 0.0001) at concentrations that only moderately impaired function of control hearts. To our knowledge, this is the first report describing the acute effects on cardiac function of pathophysiological elevations in coronary Cu²⁺. The effects of Cu²⁺ infusion occur within minutes in both control and diabetic hearts, which suggests that they are not due to remodelling. Heightened sensitivity to the acute effects of small elevations in Cu²⁺ could contribute substantively to impaired cardiac function in patients with diabetes and is thus identified as a new mechanism of heart disease.
Collapse
Affiliation(s)
- Carlos Chun Ho Cheung
- The School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Choong Yee Soon
- The School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Chia-Lin Chuang
- The School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Anthony R J Phillips
- The School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Shaoping Zhang
- The School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand; The Maurice Wilkins Centre for Molecular BioDiscovery, Faculty of Science, The University of Auckland, Auckland, New Zealand
| | - Garth J S Cooper
- The School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand; The Maurice Wilkins Centre for Molecular BioDiscovery, Faculty of Science, The University of Auckland, Auckland, New Zealand; Department of Pharmacology, Medical Sciences Division, University of Oxford, Oxford, UK; The Centre for Advanced Discovery and Experimental Therapeutics, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, The University of Manchester, Manchester, UK; The Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical and Human Sciences, The University of Manchester, Manchester, UK.
| |
Collapse
|
106
|
Aron AT, Ramos-Torres KM, Cotruvo JA, Chang CJ. Recognition- and reactivity-based fluorescent probes for studying transition metal signaling in living systems. Acc Chem Res 2015. [PMID: 26215055 PMCID: PMC4542203 DOI: 10.1021/acs.accounts.5b00221] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
Metals are essential for life, playing critical
roles in all aspects
of the central dogma of biology (e.g., the transcription and translation
of nucleic acids and synthesis of proteins). Redox-inactive alkali,
alkaline earth, and transition metals such as sodium, potassium, calcium,
and zinc are widely recognized as dynamic signals, whereas redox-active
transition metals such as copper and iron are traditionally thought
of as sequestered by protein ligands, including as static enzyme cofactors,
in part because of their potential to trigger oxidative stress and
damage via Fenton chemistry. Metals in biology can be broadly categorized
into two pools: static and labile. In the former, proteins and other
macromolecules tightly bind metals; in the latter, metals are bound relatively
weakly to cellular ligands, including proteins and low molecular weight
ligands. Fluorescent probes can be useful tools for
studying the roles of transition metals in their labile forms. Probes
for imaging transition metal dynamics in living systems must meet
several stringent criteria. In addition to exhibiting desirable photophysical
properties and biocompatibility, they must be selective and show a
fluorescence turn-on response to the metal of interest. To meet this
challenge, we have pursued two general strategies for metal detection,
termed “recognition” and “reactivity”.
Our design of transition metal probes makes use of a recognition-based
approach for copper and nickel and a reactivity-based approach for
cobalt and iron. This Account summarizes progress in our laboratory
on both the development and application of fluorescent probes to identify
and study the signaling roles of transition metals in biology. In
conjunction with complementary methods for direct metal detection
and genetic and/or pharmacological manipulations, fluorescent probes
for transition metals have helped reveal a number of principles underlying transition metal dynamics. In this Account, we give three
recent examples from our laboratory and collaborations in which applications
of chemical probes reveal that labile copper contributes to various
physiologies. The first example shows that copper is an endogenous
regulator of neuronal activity, the second illustrates cellular prioritization
of mitochondrial copper homeostasis, and the third identifies the “cuprosome” as a new copper storage compartment in Chlamydomonas reinhardtii green algae. Indeed, recognition-
and reactivity-based fluorescent probes have helped to uncover new
biological roles for labile transition metals, and the further development
of fluorescent probes, including ones with varied Kd values and new reaction triggers and recognition receptors,
will continue to reveal exciting and new biological roles for labile
transition metals.
Collapse
Affiliation(s)
- Allegra T. Aron
- Department of Chemistry, ‡Department of Molecular and Cell
Biology, and the §Howard Hughes
Medical Institute, University of California, Berkeley, California 94720, United States
| | - Karla M. Ramos-Torres
- Department of Chemistry, ‡Department of Molecular and Cell
Biology, and the §Howard Hughes
Medical Institute, University of California, Berkeley, California 94720, United States
| | - Joseph A. Cotruvo
- Department of Chemistry, ‡Department of Molecular and Cell
Biology, and the §Howard Hughes
Medical Institute, University of California, Berkeley, California 94720, United States
| | - Christopher J. Chang
- Department of Chemistry, ‡Department of Molecular and Cell
Biology, and the §Howard Hughes
Medical Institute, University of California, Berkeley, California 94720, United States
| |
Collapse
|
107
|
Pushie MJ, Shaw K, Franz KJ, Shearer J, Haas KL. Model Peptide Studies Reveal a Mixed Histidine-Methionine Cu(I) Binding Site at the N-Terminus of Human Copper Transporter 1. Inorg Chem 2015; 54:8544-51. [PMID: 26258435 DOI: 10.1021/acs.inorgchem.5b01162] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Copper is a vital metal cofactor in enzymes that are essential to myriad biological processes. Cellular acquisition of copper is primarily accomplished through the Ctr family of plasma membrane copper transport proteins. Model peptide studies indicate that the human Ctr1 N-terminus binds to Cu(II) with high affinity through an amino terminal Cu(II), Ni(II) (ATCUN) binding site. Unlike typical ATCUN-type peptides, the Ctr1 peptide facilitates the ascorbate-dependent reduction of Cu(II) bound in its ATCUN site by virtue of an adjacent HH (bis-His) sequence in the peptide. It is likely that the Cu(I) coordination environment influences the redox behavior of Cu bound to this peptide; however, the identity and coordination geometry of the Cu(I) site has not been elucidated from previous work. Here, we show data from NMR, XAS, and structural modeling that sheds light on the identity of the Cu(I) binding site of a Ctr1 model peptide. The Cu(I) site includes the same bis-His site identified in previous work to facilitate ascorbate-dependent Cu(II) reduction. The data presented here are consistent with a rational mechanism by which Ctr1 provides coordination environments that facilitate Cu(II) reduction prior to Cu(I) transport.
Collapse
Affiliation(s)
- M Jake Pushie
- Department of Anatomy and Cell Biology, University of Saskatchewan , Saskatoon, Saskatchewan, Canada.,Canadian Light Source Incorporated, Saskatoon, Saskatchewan, Canada
| | - Katharine Shaw
- Department of Chemistry and Physics, Saint Mary's College , Notre Dame, Indiana 46556, United States
| | - Katherine J Franz
- Department of Chemistry, Duke University , Durham, North Carolina 27708, United States
| | - Jason Shearer
- Department of Chemistry, University of Nevada , Reno, Nevada 895030, United States
| | - Kathryn L Haas
- Department of Chemistry and Physics, Saint Mary's College , Notre Dame, Indiana 46556, United States
| |
Collapse
|
108
|
Cellular sensing and transport of metal ions: implications in micronutrient homeostasis. J Nutr Biochem 2015; 26:1103-15. [PMID: 26342943 DOI: 10.1016/j.jnutbio.2015.08.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/23/2015] [Accepted: 08/04/2015] [Indexed: 12/15/2022]
Abstract
Micronutrients include the transition metal ions zinc, copper and iron. These metals are essential for life as they serve as cofactors for many different proteins. On the other hand, they can also be toxic to cell growth when in excess. As a consequence, all organisms require mechanisms to tightly regulate the levels of these metal ions. In eukaryotes, one of the primary ways in which metal levels are regulated is through changes in expression of genes required for metal uptake, compartmentalization, storage and export. By tightly regulating the expression of these genes, each organism is able to balance metal levels despite fluctuations in the diet or extracellular environment. The goal of this review is to provide an overview of how gene expression can be controlled at a transcriptional, posttranscriptional and posttranslational level in response to metal ions in lower and higher eukaryotes. Specifically, I review what is known about how these metalloregulatory factors sense fluctuations in metal ion levels and how changes in gene expression maintain nutrient homeostasis.
Collapse
|
109
|
Meinig JM, Fu L, Peterson BR. Synthesis of Fluorophores that Target Small Molecules to the Endoplasmic Reticulum of Living Mammalian Cells. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201504156] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
110
|
Meinig JM, Fu L, Peterson BR. Synthesis of Fluorophores that Target Small Molecules to the Endoplasmic Reticulum of Living Mammalian Cells. Angew Chem Int Ed Engl 2015; 54:9696-9. [PMID: 26118368 DOI: 10.1002/anie.201504156] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Indexed: 01/09/2023]
Abstract
The endoplasmic reticulum (ER) plays critical roles in the processing of secreted and transmembrane proteins. To deliver small molecules to this organelle, we synthesized fluorinated hydrophobic analogues of the fluorophore rhodol. These cell-permeable fluorophores are exceptionally bright, with quantum yields of around 0.8, and they were found to specifically accumulate in the ER of living HeLa cells, as imaged by confocal laser scanning microscopy. To target a biological pathway controlled by the ER, we linked a fluorinated hydrophobic rhodol to 5-nitrofuran-2-acrylaldehyde. In contrast to an untargeted nitrofuran warhead, delivery of this electrophilic nitrofuran to the ER by the rhodol resulted in cytotoxicity comparable to the ER-targeted cytotoxin eeyarestatin I, and specifically inhibited protein processing by the ubiquitin-proteasome system. Fluorinated hydrophobic rhodols are outstanding fluorophores that enable the delivery of small molecules for targeting ER-associated proteins and pathways.
Collapse
Affiliation(s)
- J Matthew Meinig
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, KS 66045 (USA)
| | - Liqiang Fu
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, KS 66045 (USA)
| | - Blake R Peterson
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, KS 66045 (USA).
| |
Collapse
|
111
|
Cotruvo JA, Aron AT, Ramos-Torres KM, Chang CJ. Synthetic fluorescent probes for studying copper in biological systems. Chem Soc Rev 2015; 44:4400-14. [PMID: 25692243 DOI: 10.1039/c4cs00346b] [Citation(s) in RCA: 383] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The potent redox activity of copper is required for sustaining life. Mismanagement of its cellular pools, however, can result in oxidative stress and damage connected to aging, neurodegenerative diseases, and metabolic disorders. Therefore, copper homeostasis is tightly regulated by cells and tissues. Whereas copper and other transition metal ions are commonly thought of as static cofactors buried within protein active sites, emerging data points to the presence of additional loosely bound, labile pools that can participate in dynamic signalling pathways. Against this backdrop, we review advances in sensing labile copper pools and understanding their functions using synthetic fluorescent indicators. Following brief introductions to cellular copper homeostasis and considerations in sensor design, we survey available fluorescent copper probes and evaluate their properties in the context of their utility as effective biological screening tools. We emphasize the need for combined chemical and biological evaluation of these reagents, as well as the value of complementing probe data with other techniques for characterizing the different pools of metal ions in biological systems. This holistic approach will maximize the exciting opportunities for these and related chemical technologies in the study and discovery of novel biology of metals.
Collapse
Affiliation(s)
- Joseph A Cotruvo
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.
| | | | | | | |
Collapse
|
112
|
Verwilst P, Sunwoo K, Kim JS. The role of copper ions in pathophysiology and fluorescent sensors for the detection thereof. Chem Commun (Camb) 2015; 51:5556-71. [DOI: 10.1039/c4cc10366a] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Copper ions are crucial to life, and some fundamental roles of copper in pathophysiology have been elucidated using fluorescent sensors.
Collapse
Affiliation(s)
- Peter Verwilst
- Department of Chemistry
- Korea Univesity
- Seoul 136-701
- Korea
| | - Kyoung Sunwoo
- Department of Chemistry
- Korea Univesity
- Seoul 136-701
- Korea
| | - Jong Seung Kim
- Department of Chemistry
- Korea Univesity
- Seoul 136-701
- Korea
| |
Collapse
|