101
|
Elias KM, Fendler W, Stawiski K, Fiascone SJ, Vitonis AF, Berkowitz RS, Frendl G, Konstantinopoulos P, Crum CP, Kedzierska M, Cramer DW, Chowdhury D. Diagnostic potential for a serum miRNA neural network for detection of ovarian cancer. eLife 2017; 6:28932. [PMID: 29087294 PMCID: PMC5679755 DOI: 10.7554/elife.28932] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 10/11/2017] [Indexed: 12/14/2022] Open
Abstract
Recent studies posit a role for non-coding RNAs in epithelial ovarian cancer (EOC). Combining small RNA sequencing from 179 human serum samples with a neural network analysis produced a miRNA algorithm for diagnosis of EOC (AUC 0.90; 95% CI: 0.81–0.99). The model significantly outperformed CA125 and functioned well regardless of patient age, histology, or stage. Among 454 patients with various diagnoses, the miRNA neural network had 100% specificity for ovarian cancer. After using 325 samples to adapt the neural network to qPCR measurements, the model was validated using 51 independent clinical samples, with a positive predictive value of 91.3% (95% CI: 73.3–97.6%) and negative predictive value of 78.6% (95% CI: 64.2–88.2%). Finally, biologic relevance was tested using in situ hybridization on 30 pre-metastatic lesions, showing intratumoral concentration of relevant miRNAs. These data suggest circulating miRNAs have potential to develop a non-invasive diagnostic test for ovarian cancer. Ovarian cancer is a major cause of cancer death among women. A woman’s survival often hinges on doctors detecting the tumor before it has spread beyond the ovary. Unfortunately, most women with ovarian cancer are not diagnosed until they have symptoms – such as pelvic pain, bloating, swelling of the abdomen or appetite loss. By then, the disease has usually spread and is difficult to treat. There is currently no reliable test to diagnose ovarian cancer before symptoms emerge. Some tests measure proteins in the blood or use ultrasound images to identify ovary tumors. These tests usually still identify the disease too late. Sometimes they produce “false positive” results, which may cause women without cancer to undergo unnecessary surgery. Many ovarian cancers have defects in small pieces of genetic information called microRNAs. These microRNAs impact the tumor in multiple ways, and cells release microRNAs into the blood. Testing a seemingly healthy women’s blood for the same pattern of altered microRNAs found in women with ovarian cancer might be one way to detect the disease earlier. Now, Elias et al. have identified a pattern of seven microRNAs in the blood that appears to predict ovarian cancer. In the experiments, a computer program searched for microRNA patterns in women with ovarian cancer. The program sifted through the microRNAs in blood from women with and without ovarian cancer. Over time, the computer program “learned” to identify a pattern of microRNAs found only in women with ovarian cancer. It then created a formula for identifying ovarian cancer based on seven of the microRNAs. Elias et al. then verified that the formula accurately detected ovarian cancer by testing it on blood samples from more women with and without cancer. They also found the seven microRNAs in tiny ovarian cancer tumors collected from women. This suggests the formula might be able to detect even the smallest tumors. More studies are needed to determine when this cancer-linked pattern first emerges and confirm that this ovarian cancer-detection formula works. If the test is validated, it might be used to screen women who are at high risk for ovarian cancer because of mutations in the BRCA1 and BRCA2 genes.
Collapse
Affiliation(s)
- Kevin M Elias
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Boston, United States.,Harvard Medical School, Boston, United States.,Surgical ICU Translational Research Center, Brigham and Women's Hospital, Boston, United States
| | - Wojciech Fendler
- Harvard Medical School, Boston, United States.,Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland.,Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, United States
| | - Konrad Stawiski
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Stephen J Fiascone
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Boston, United States.,Harvard Medical School, Boston, United States
| | - Allison F Vitonis
- Harvard Medical School, Boston, United States.,Obstetrics and Gynecology Epidemiology Center, Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Boston, United States.,Department of Epidemiology, Harvard School of Public Health, Boston, United States
| | - Ross S Berkowitz
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Boston, United States.,Harvard Medical School, Boston, United States
| | - Gyorgy Frendl
- Harvard Medical School, Boston, United States.,Surgical ICU Translational Research Center, Brigham and Women's Hospital, Boston, United States.,Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, United States
| | - Panagiotis Konstantinopoulos
- Harvard Medical School, Boston, United States.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States
| | - Christopher P Crum
- Harvard Medical School, Boston, United States.,Division of Women's and Perinatal Pathology, Department of Pathology, Brigham and Women's Hospital, Boston, United States
| | | | - Daniel W Cramer
- Harvard Medical School, Boston, United States.,Obstetrics and Gynecology Epidemiology Center, Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Boston, United States.,Department of Epidemiology, Harvard School of Public Health, Boston, United States
| | - Dipanjan Chowdhury
- Harvard Medical School, Boston, United States.,Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, United States
| |
Collapse
|
102
|
Ragusa M, Barbagallo C, Cirnigliaro M, Battaglia R, Brex D, Caponnetto A, Barbagallo D, Di Pietro C, Purrello M. Asymmetric RNA Distribution among Cells and Their Secreted Exosomes: Biomedical Meaning and Considerations on Diagnostic Applications. Front Mol Biosci 2017; 4:66. [PMID: 29046875 PMCID: PMC5632685 DOI: 10.3389/fmolb.2017.00066] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 09/20/2017] [Indexed: 12/17/2022] Open
Abstract
Over the past few years, exosomes and their RNA cargo have been extensively studied because of the fascinating biological roles they play in cell-to-cell communication, including the signal exchange among cancer, stromal, and immune cells, leading to modifications of tumor microenvironment. RNAs, especially miRNAs, stored within exosomes, seem to be among the main determinants of such signaling: their sorting into exosomes appears to be cell-specific and related to cellular physiopathology. Accordingly, the identification of exosomal miRNAs in body fluids from pathological patients has become one of the most promising activity in the field of biomarker discovery. Several analyses on the qualitative and quantitative distribution of RNAs between cells and their secreted exosomes have given rise to questions on whether and how accurately exosomal RNAs would represent the transcriptomic snapshot of the physiological and pathological status of secreting cells. Although the exact molecular mechanisms of sorting remain quite elusive, many papers have reported an evident asymmetric quantitative distribution of RNAs between source cells and their exosomes. This phenomenon could depend both on passive and active sorting mechanisms related to: (a) RNA turnover; (b) maintaining the cytoplasmic miRNA:target equilibrium; (c) removal of RNAs not critical or even detrimental for normal or diseased cells. These observations represent very critical issues in the exploitation of exosomal miRNAs as cancer biomarkers. In this review, we will discuss how much the exosomal and corresponding donor cell transcriptomes match each other, to better understand the actual reliability of exosomal RNA molecules as pathological biomarkers reflecting a diseased status of the cells.
Collapse
Affiliation(s)
- Marco Ragusa
- BioMolecular, Genome and Complex Systems BioMedicine Unit, Section of Biology and Genetics G Sichel, Department of BioMedical Sciences and Biotechnology, University of Catania, Catania, Italy.,IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| | - Cristina Barbagallo
- BioMolecular, Genome and Complex Systems BioMedicine Unit, Section of Biology and Genetics G Sichel, Department of BioMedical Sciences and Biotechnology, University of Catania, Catania, Italy
| | - Matilde Cirnigliaro
- BioMolecular, Genome and Complex Systems BioMedicine Unit, Section of Biology and Genetics G Sichel, Department of BioMedical Sciences and Biotechnology, University of Catania, Catania, Italy
| | - Rosalia Battaglia
- BioMolecular, Genome and Complex Systems BioMedicine Unit, Section of Biology and Genetics G Sichel, Department of BioMedical Sciences and Biotechnology, University of Catania, Catania, Italy
| | - Duilia Brex
- BioMolecular, Genome and Complex Systems BioMedicine Unit, Section of Biology and Genetics G Sichel, Department of BioMedical Sciences and Biotechnology, University of Catania, Catania, Italy
| | - Angela Caponnetto
- BioMolecular, Genome and Complex Systems BioMedicine Unit, Section of Biology and Genetics G Sichel, Department of BioMedical Sciences and Biotechnology, University of Catania, Catania, Italy
| | - Davide Barbagallo
- BioMolecular, Genome and Complex Systems BioMedicine Unit, Section of Biology and Genetics G Sichel, Department of BioMedical Sciences and Biotechnology, University of Catania, Catania, Italy
| | - Cinzia Di Pietro
- BioMolecular, Genome and Complex Systems BioMedicine Unit, Section of Biology and Genetics G Sichel, Department of BioMedical Sciences and Biotechnology, University of Catania, Catania, Italy
| | - Michele Purrello
- BioMolecular, Genome and Complex Systems BioMedicine Unit, Section of Biology and Genetics G Sichel, Department of BioMedical Sciences and Biotechnology, University of Catania, Catania, Italy
| |
Collapse
|
103
|
Massillo C, Dalton GN, Farré PL, De Luca P, De Siervi A. Implications of microRNA dysregulation in the development of prostate cancer. Reproduction 2017; 154:R81-R97. [DOI: 10.1530/rep-17-0322] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 06/25/2017] [Accepted: 07/10/2017] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are non-coding small RNAs that target mRNA to reduce protein expression. They play fundamental roles in several diseases, including prostate cancer (PCa). A single miRNA can target hundreds of mRNAs and coordinately regulate them, which implicates them in nearly every biological pathway. Hence, miRNAs modulate proliferation, cell cycle, apoptosis, adhesion, migration, invasion and metastasis, most of them constituting crucial hallmarks of cancer. Due to these properties, miRNAs emerged as promising tools for diagnostic, prognosis and management of cancer patients. Moreover, they come out as potential targets for cancer treatment, and several efforts are being made to progress in the field of miRNA-based cancer therapy. In this review, we will summarize the recent information about miRNAs in PCa. We will recapitulate all the miRNAs involved in the androgen pathway and the biology of PCa, focusing in PCa initiation and progression. In particular, we will describe the miRNAs associated with cell proliferation, cell cycle and apoptosis in PCa, as well as invasion, adhesion and metastatic miRNAs. We will revise the recent progress made understanding the role of circulating miRNAs identified in PCa that might be useful for PCa patient stratification. Another key aspect to be discussed in this review is miRNAs’ role in PCa therapy, including the miRNAs delivery.
Collapse
|
104
|
Kumar S, Vijayan M, Reddy PH. MicroRNA-455-3p as a potential peripheral biomarker for Alzheimer's disease. Hum Mol Genet 2017; 26:3808-3822. [PMID: 28934394 PMCID: PMC6075184 DOI: 10.1093/hmg/ddx267] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/30/2017] [Accepted: 07/04/2017] [Indexed: 01/15/2023] Open
Abstract
The purpose of our study was to identify microRNAs (miRNAs) as early detectable peripheral biomarkers in Alzheimer's disease (AD). To achieve our objective, we assessed miRNAs in serum samples from AD patients and Mild cognitive impairment (MCI) subjects relative to healthy controls. We used Affymetrix microarray analysis and validated differentially expressed miRNAs using qRT-PCR. We further validated miRNA data using AD postmortem brains, amyloid precursor protein transgenic mice and AD cell lines. We identified a gradual upregulation of four miRNAs: miR-455-3p, miR-4668-5p, miR-3613-3p and miR-4674. A fifth miRNA, mir-6722, was down-regulated in persons with AD and mild cognitive impairment compared with controls. Validation analysis by qRT-PCR showed significant upregulation of only miR-455-3p (P = 0.007) and miR-4668-5p (P = 0.016) in AD patients compared with healthy controls. Furthermore, qRT-PCR analysis of the AD postmortem brains with different Braak stages also showed upregulation of miR-455-3p (P = 0.016). However, receiver operating characteristic curves (ROC) curve analysis revealed a significant area under curve (AUC) value only for miR-455-3p in the serum (AUROC = 0.79; P = 0.015) and brains (AUROC = 0.86; P = 0.016) of AD patients. Expression analysis of amyloid precursor protein transgenic mice also revealed high level of mmu-miR-455-3p (P = 0.004) in the cerebral cortex (AD-affected) region of brain and low in the non-affected area, i.e. cerebellum. Furthermore, human and mouse neuroblastoma cells treated with the amyloid-β(1-42) peptide also showed a similarly higher expression of miR-455-3p. Functional analysis of differentially expressed miRNAs via the miR-path indicated that miR-455-3p was associated in the regulation of several biological pathways. Genes associated with these pathways were found to have a crucial role in AD pathogenesis. An increase in miR-455-3p expression found in AD patients and Aβ pathologies unveiled its biomarker characteristics and a precise role in AD pathogenesis.
Collapse
Affiliation(s)
| | | | - P. Hemachandra Reddy
- Biomarker Unit, Garrison Institute on Aging
- Department of Cell Biology & Biochemistry
- Department of Pharmacology & Neuroscience
- Department of Neurology
- Department of Speech, Language and Hearing Sciences
- Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
105
|
Zhou YJ, Yang HQ, Xia W, Cui L, Xu RF, Lu H, Xue Z, Zhang B, Tian ZN, Cao YJ, Xing ZY, Yin S, He XZ. Down-regulation of miR-605 promotes the proliferation and invasion of prostate cancer cells by up-regulating EN2. Life Sci 2017; 190:7-14. [PMID: 28943214 DOI: 10.1016/j.lfs.2017.09.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/13/2017] [Accepted: 09/21/2017] [Indexed: 12/13/2022]
Abstract
AIMS MicroRNA served as inhibitor for gene expression in various cancers. This study aimed to investigate the role of miR-605 and EN2 in prostate cancer (PCa). MATERIALS AND METHODS In this research, the expression of miR-605 and EN2 protein in PCa tissues and cells were determined by qRT-PCR and western blot, respectively. The cell proliferation was measured by Cell Counting Kit-8 (CCK-8) and the tumor cell invasion assay was accomplished with transwell system. Flow cytometry was used to analyze the cell cycle. The endogenous expression of miR-605 and EN2 was modulated by recombinant plasmids and cell transfection. Dual luciferase reporter assay was performed to determine the interaction between miR-605 and EN2 in PCa cells. KEY FINDINGS The expression of miR-605 was lower in PCa tissue and cells than that in normal tissues and cells, while the expression of EN2 was just the opposite. Down-regulation of the EN2 by siRNA inhibited the proliferation and invasion of PC3 cells, and the cell cycle was arrested in G0/G1 phase. EN2 regulated the expression of E-cadherin and Vimentin through Snail and EN2 regulated the cell cycle and cell proliferation via PI3K/AKT pathway. MiR-605 inhibited the proliferation and invasion of PCa cells through targeting EN2. SIGNIFICANCE EN2 is negatively regulated by miR-605, and down-regulation of miR-605 promotes the proliferation and invasion of PCa cells by up-regulating EN2, which leads to PCa development and progression.
Collapse
Affiliation(s)
- Yao-Jun Zhou
- Department of Surgical Urology, the Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Hong-Qiong Yang
- Department of Geriatric Medicine, the Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Wei Xia
- Department of Surgical Urology, the Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Li Cui
- Department of Surgical Urology, the Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Ren-Fang Xu
- Department of Surgical Urology, the Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Hao Lu
- Department of Surgical Urology, the Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Zhong Xue
- Department of Surgical Urology, the Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Bo Zhang
- Department of Surgical Urology, the Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Zi-Nong Tian
- Department of Surgical Urology, the Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Yun-Jie Cao
- Department of Surgical Urology, the Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Zhao-Yu Xing
- Department of Surgical Urology, the Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Shuai Yin
- Department of Surgical Urology, the Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Xiao-Zhou He
- Department of Surgical Urology, the Third Affiliated Hospital of Soochow University, Changzhou 213003, China.
| |
Collapse
|
106
|
Huang YQ, Ling XH, Yuan RQ, Chen ZY, Yang SB, Huang HX, Zhong WD, Qiu SP. miR‑30c suppresses prostate cancer survival by targeting the ASF/SF2 splicing factor oncoprotein. Mol Med Rep 2017; 16:2431-2438. [PMID: 28677791 PMCID: PMC5548014 DOI: 10.3892/mmr.2017.6910] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 04/13/2017] [Indexed: 12/29/2022] Open
Abstract
Our previous study revealed that microRNA (miR) −30c represents a potential tumor suppressor gene, the expression of which is associated with decreased oncogenic potential in prostate cancer (PCa) cell lines. However, the functional role and underlying mechanisms of miR-30c in PCa remain to be fully elucidated. Reverse transcription-quantitative polymerase chain reaction and immunohistochemical analysis were used to detect the expression levels of alternative splicing factor/splicing factor 2 (ASF/SF2) in PCa tissues. A luciferase reporter assay was used to investigate whether ASF/SF2 may be a direct target gene of miR-30c. In addition, the effects of miR-30c on the proliferation and apoptosis of PCa cell lines were examined, following transfection with miR-30c mimics. Furthermore, correlation analysis was performed to investigate the relationship between the expression of miR-30c and ASF/SF2 and various clinicopathological parameters of patients with PCa. The present results demonstrated that PCa tissues exhibited higher levels of alternative splicing factor/splicing factor 2 (ASF/SF2), compared with normal tissues. In addition, miR-30c was revealed to targete the 3′-untranslated region of the ASF/SF2 gene, causing a decrease in the mRNA and protein levels of ASF/SF2. Furthermore, miR-30c was reported to decrease cell proliferation, increase the percentage of cells in the G1 cell cycle phase, and promote apoptosis through the inhibition of ASF/SF2. Following correlation analysis using patient samples, the expression of ASF/SF2 was revealed to be tightly correlated with the pathological stage of PCa and biochemical recurrence (BCR). In addition, patients with PCa exhibiting low expression levels of miR-30c and high expression of ASF/SF2 had significantly lower rates of BCR-free survival. In conclusion, the present study suggested that the tumor suppressor miR-30c may be involved in PCa tumorigenesis, possibly via targeting ASF/SF2. The combined analysis of the expression of ASF/SF2 and miR-30c may be a valuable tool for early prediction of BCR in patients with PCa following radical prostatectomy.
Collapse
Affiliation(s)
- Ya-Qiang Huang
- Department of Urology, Zhongshan Hospital of Sun Yat‑sen University, Zhongshan, Guangdong 528400, P.R. China
| | - Xiao-Hui Ling
- Reproductive Medicine Centre, Huizhou Municipal Central People's Hospital, Huizhou, Guangdong 516001, P.R. China
| | - Run-Qiang Yuan
- Department of Urology, Zhongshan Hospital of Sun Yat‑sen University, Zhongshan, Guangdong 528400, P.R. China
| | - Zhi-Yun Chen
- Reproductive Medicine Centre, Huizhou Municipal Central People's Hospital, Huizhou, Guangdong 516001, P.R. China
| | - Sheng-Bang Yang
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Hong-Xing Huang
- Department of Urology, Zhongshan Hospital of Sun Yat‑sen University, Zhongshan, Guangdong 528400, P.R. China
| | - Wei-De Zhong
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Shao-Peng Qiu
- Department of Urology, First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
107
|
Zhang X, Sun Y, Wang P, Yang C, Li S. Exploration of the molecular mechanism of prostate cancer based on mRNA and miRNA expression profiles. Onco Targets Ther 2017; 10:3225-3232. [PMID: 28721073 PMCID: PMC5499856 DOI: 10.2147/ott.s135764] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Prostate cancer, the second most common cancer in men, has been rarely explored by integrating mRNA and miRNA expression profiles. In this study, we combined two mRNA expression datasets and six documented miRNAs to uncover the comprehensive molecular mechanism of prostate cancer. Results showed that a total of 30 genes were significantly differentially expressed in 49 tumor samples by comparing with 22 normal samples. Importantly, all samples from the two datasets can be clearly classified into two groups, tumor group and normal group, based on the selected differentially expressed genes (DEGs). The miRNA–mRNA regulation network indicated that 4 out of 30 DEGs can be regulated by three miRNAs. In addition, prognostic performance validation using in silico databases showed that the DEGs can significantly differentiate between low-risk and high-risk prostate cancer. In summary, multiple biological processes are probably involved in the development and progression of prostate cancer. First, dysregulation of SV2 can regulate transporter and transmembrane transporter activity and then provide the necessary nutrients for tumor cell proliferation. Second, HOXD10 can induce cell proliferation via TCF-4. Finally, dysregulation of CACNA1D can further suppress tumor apoptosis in prostate cancer. The identification of critical genes and valuable biological processes can be useful for the understanding of the molecular mechanism of prostate cancer.
Collapse
Affiliation(s)
| | | | | | | | - Shengwei Li
- Surgery of Chinese Medicine, Yangzhou TCM Hospital, Nanjing University of Chinese Medicine, Yangzhou, People's Republic of China
| |
Collapse
|
108
|
Kumar A, Rimando AM, Levenson AS. Resveratrol and pterostilbene as a microRNA-mediated chemopreventive and therapeutic strategy in prostate cancer. Ann N Y Acad Sci 2017; 1403:15-26. [PMID: 28662290 DOI: 10.1111/nyas.13372] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/07/2017] [Accepted: 04/10/2017] [Indexed: 12/23/2022]
Abstract
Growing evidence indicates that deregulation of the epigenetic machinery comprising the microRNA (miRNA) network is a critical factor in the progression of various diseases, including cancer. Concurrently, dietary phytochemicals are being intensively studied for their miRNA-mediated health-beneficial properties, such as anti-inflammatory, cardioprotective, antioxidative, and anticancer properties. Available experimental data have suggested that dietary polyphenols may be effective miRNA-modulating chemopreventive and therapeutic agents. Moreover, noninvasive detection of changes in miRNA expression in liquid biopsies opens enormous possibilities for their clinical utilization as novel prognostic and predictive biomarkers. In our published studies, we identified resveratrol-regulated miRNA profiles in prostate cancer. Resveratrol downregulated the phosphatase and tensin homolog (PTEN)-targeting members of the oncogenic miR-17 family of miRNAs, which are overexpressed in prostate cancer. We have functionally validated the miRNA-mediated ability of resveratrol and its potent analog pterostilbene to rescue the tumor suppressor activity of PTEN in vitro and in vivo. Taken together, our findings implicate the use of resveratrol and its analogs as an attractive miRNA-mediated chemopreventive and therapeutic strategy in prostate cancer and the use of circulating miRNAs as potential predictive biomarkers for clinical development.
Collapse
Affiliation(s)
- Avinash Kumar
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, New York
| | - Agnes M Rimando
- United States Department of Agriculture, Agricultural Research Service, Natural Products Utilization Research Unit, Oxford, Mississippi
| | - Anait S Levenson
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, New York
| |
Collapse
|
109
|
Chen L, Cao Y, Rong D, Wang Y, Cao Y. MicroRNA-605 functions as a tumor suppressor by targeting INPP4B in melanoma. Oncol Rep 2017; 38:1276-1286. [PMID: 28656250 DOI: 10.3892/or.2017.5740] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 05/10/2017] [Indexed: 11/05/2022] Open
Abstract
MicroRNAs (miRNAs) play crucial roles in the initiation and progression of various cancers, including melanoma. Recently, the genetic variants and deregulation of miR-605 have been reported to participate in carcinogenesis. However, the expression status of the miR-605 in melanoma tissues and its role in melanoma progression remain unknown. In this study, we found that miR-605 was significantly downregulated in melanoma cell lines and clinical specimens. Further function studies demonstrated that miR-605 suppressed melanoma cell growth both in vitro and in vivo. Moreover, INPP4B gene was identified as a target of miR-605 through bioinformatics analysis and luciferase reporter assays. Further analysis demonstrated that the inhibition of INPP4B mediated SGK3 activation was required for the suppressive role of miR-605 on melanomas cell growth. Collectively, our data suggest that miR-605 functions as a tumor suppressor by negatively regulating INPP4B mediated SGK3 activation in melanoma and may present a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Lan Chen
- Department of Dermatology, The Affiliated Hospital of Guiyang Medical University, Yunyan, Guiyang, Guizhou 550004, P.R. China
| | - Yaxuan Cao
- Department of Dermatology, The Affiliated Hospital of Guiyang Medical University, Yunyan, Guiyang, Guizhou 550004, P.R. China
| | - Dongyun Rong
- Department of Dermatology, The Affiliated Hospital of Guiyang Medical University, Yunyan, Guiyang, Guizhou 550004, P.R. China
| | - Ye Wang
- Department of Dermatology, The Affiliated Hospital of Guiyang Medical University, Yunyan, Guiyang, Guizhou 550004, P.R. China
| | - Yu Cao
- Department of Dermatology, The Affiliated Hospital of Guiyang Medical University, Yunyan, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
110
|
Rodgers L, Peer CJ, Figg WD. Diagnosis, staging, and risk stratification in prostate cancer: Utilizing diagnostic tools to avoid unnecessary therapies and side effects. Cancer Biol Ther 2017; 18:470-472. [PMID: 28475407 DOI: 10.1080/15384047.2017.1323600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
A lack of appropriate diagnostic tools for prostate cancer has led to overdiagnosis and over treatment. In a recent publication in the New England Journal of Medicine, Hamdy et al showed no difference in the outcomes of patients that had undergone either radical prostatectomy, radiotherapy, or active monitoring. In an effort to enhance clinical stratification, the development of improved, more accurate diagnostic tools is actively being pursued. Herein, we explore recent advances in prostate cancer screening, including biomarker assays, genetic testing, and specialized fields, such as mathematical oncology. These newly developed, highly sensitive diagnostic assays may potentially aid clinicians in selecting appropriate therapies for patients in the very near future.
Collapse
Affiliation(s)
- Louis Rodgers
- a Clinical Pharmacology Program , Office of the Clinical Director, National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| | - Cody J Peer
- a Clinical Pharmacology Program , Office of the Clinical Director, National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| | - William D Figg
- a Clinical Pharmacology Program , Office of the Clinical Director, National Cancer Institute, National Institutes of Health , Bethesda , MD , USA.,b Molecular Pharmacology Section , Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
111
|
Kumar S, Vijayan M, Bhatti JS, Reddy PH. MicroRNAs as Peripheral Biomarkers in Aging and Age-Related Diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 146:47-94. [PMID: 28253991 DOI: 10.1016/bs.pmbts.2016.12.013] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are found in the circulatory biofluids considering the important molecules for biomarker study in aging and age-related diseases. Blood or blood components (serum/plasma) are primary sources of circulatory miRNAs and can release these in cell-free form either bound with some protein components or encapsulated with microvesicle particles, called exosomes. miRNAs are quite stable in the peripheral circulation and can be detected by high-throughput techniques like qRT-PCR, microarray, and sequencing. Intracellular miRNAs could modulate mRNA activity through target-specific binding and play a crucial role in intercellular communications. At a pathological level, changes in cellular homeostasis lead to the modulation of molecular function of cells; as a result, miRNA expression is deregulated. Deregulated miRNAs came out from cells and frequently circulate in extracellular body fluids as part of various human diseases. Most common aging-associated diseases are cardiovascular disease, cancer, arthritis, dementia, cataract, osteoporosis, diabetes, hypertension, and neurodegenerative diseases such as Alzheimer's disease, Huntington's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Variation in the miRNA signature in a diseased peripheral circulatory system opens up a new avenue in the field of biomarker discovery. Here, we measure the biomarker potential of circulatory miRNAs in aging and various aging-related pathologies. However, further more confirmatory researches are needed to elaborate these findings at the translation level.
Collapse
Affiliation(s)
- S Kumar
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States.
| | - M Vijayan
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - J S Bhatti
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States; Department of Biotechnology, Sri Guru Gobind Singh College, Chandigarh, India
| | - P H Reddy
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States; Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
112
|
|