101
|
Spahr H, Pfäffle C, Burhan S, Kutzner L, Hilge F, Hüttmann G, Hillmann D. Phase-sensitive interferometry of decorrelated speckle patterns. Sci Rep 2019; 9:11748. [PMID: 31409819 PMCID: PMC6692410 DOI: 10.1038/s41598-019-47979-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/19/2019] [Indexed: 12/03/2022] Open
Abstract
Phase-sensitive coherent imaging exploits changes in the phases of backscattered light to observe tiny alterations of scattering structures or variations of the refractive index. But moving scatterers or a fluctuating refractive index decorrelate the phases and speckle patterns in the images. It is generally believed that once the speckle pattern has changed, the phases are scrambled and any meaningful phase difference to the original pattern is removed. As a consequence, diffusion and tissue motion that cannot be resolved, prevent phase-sensitive imaging of biological specimens. Here, we show that a phase comparison between decorrelated speckle patterns is still possible by utilizing a series of images acquired during decorrelation. The resulting evaluation scheme is mathematically equivalent to methods for astronomic imaging through the turbulent sky by speckle interferometry. We thus adopt the idea of speckle interferometry to phase-sensitive imaging in biological tissues and demonstrate its efficacy for simulated data and imaging of photoreceptor activity with phase-sensitive optical coherence tomography. We believe the described methods can be applied to many imaging modalities that use phase values for interferometry.
Collapse
Affiliation(s)
- Hendrik Spahr
- Institute of Biomedical Optics, University of Lübeck, Peter-Monnik-Weg 4, 23562, Lübeck, Germany
- Medical Laser Centre Lübeck GmbH, Peter-Monnik-Weg 4, 23562, Lübeck, Germany
| | - Clara Pfäffle
- Institute of Biomedical Optics, University of Lübeck, Peter-Monnik-Weg 4, 23562, Lübeck, Germany
- Medical Laser Centre Lübeck GmbH, Peter-Monnik-Weg 4, 23562, Lübeck, Germany
| | - Sazan Burhan
- Institute of Biomedical Optics, University of Lübeck, Peter-Monnik-Weg 4, 23562, Lübeck, Germany
| | - Lisa Kutzner
- Institute of Biomedical Optics, University of Lübeck, Peter-Monnik-Weg 4, 23562, Lübeck, Germany
- Medical Laser Centre Lübeck GmbH, Peter-Monnik-Weg 4, 23562, Lübeck, Germany
| | - Felix Hilge
- Institute of Biomedical Optics, University of Lübeck, Peter-Monnik-Weg 4, 23562, Lübeck, Germany
- Medical Laser Centre Lübeck GmbH, Peter-Monnik-Weg 4, 23562, Lübeck, Germany
| | - Gereon Hüttmann
- Institute of Biomedical Optics, University of Lübeck, Peter-Monnik-Weg 4, 23562, Lübeck, Germany
- Medical Laser Centre Lübeck GmbH, Peter-Monnik-Weg 4, 23562, Lübeck, Germany
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), 22927 Großhansdorf, Germany
| | - Dierck Hillmann
- Institute of Biomedical Optics, University of Lübeck, Peter-Monnik-Weg 4, 23562, Lübeck, Germany.
- Thorlabs GmbH, Maria-Goeppert-Straße 9, 23562, Lübeck, Germany.
| |
Collapse
|
102
|
Sajdak BS, Salmon AE, Cava JA, Allen KP, Freling S, Ramamirtham R, Norton TT, Roorda A, Carroll J. Noninvasive imaging of the tree shrew eye: Wavefront analysis and retinal imaging with correlative histology. Exp Eye Res 2019; 185:107683. [PMID: 31158381 PMCID: PMC6698412 DOI: 10.1016/j.exer.2019.05.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/21/2019] [Accepted: 05/28/2019] [Indexed: 02/08/2023]
Abstract
Tree shrews are small mammals with excellent vision and are closely related to primates. They have been used extensively as a model for studying refractive development, myopia, and central visual processing and are becoming an important model for vision research. Their cone dominant retina (∼95% cones) provides a potential avenue to create new damage/disease models of human macular pathology and to monitor progression or treatment response. To continue the development of the tree shrew as an animal model, we provide here the first measurements of higher order aberrations along with adaptive optics scanning light ophthalmoscopy (AOSLO) images of the photoreceptor mosaic in the tree shrew retina. To compare intra-animal in vivo and ex vivo cone density measurements, the AOSLO images were matched to whole-mount immunofluorescence microscopy. Analysis of the tree shrew wavefront indicated that the optics are well-matched to the sampling of the cone mosaic and is consistent with the suggestion that juvenile tree shrews are nearly emmetropic (slightly hyperopic). Compared with in vivo measurements, consistently higher cone density was measured ex vivo, likely due to tissue shrinkage during histological processing. Tree shrews also possess massive mitochondria ("megamitochondria") in their cone inner segments, providing a natural model to assess how mitochondrial size affects in vivo retinal imagery. Intra-animal in vivo and ex vivo axial distance measurements were made in the outer retina with optical coherence tomography (OCT) and transmission electron microscopy (TEM), respectively, to determine the origin of sub-cellular cone reflectivity seen on OCT. These results demonstrate that these megamitochondria create an additional hyper-reflective outer retinal reflective band in OCT images. The ability to use noninvasive retinal imaging in tree shrews supports development of this species as a model of cone disorders.
Collapse
Affiliation(s)
- Benjamin S Sajdak
- Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States; Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, United States; Morgridge Institute for Research, Madison, WI, United States
| | - Alexander E Salmon
- Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jenna A Cava
- Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Kenneth P Allen
- Biomedical Resource Center, Medical College of Wisconsin, Milwaukee, WI, United States; Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Susan Freling
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, United States
| | - Ramkumar Ramamirtham
- Ophthalmology, Boston Children's Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Thomas T Norton
- Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Austin Roorda
- School of Optometry and Vision Science Graduate Group, University of California Berkeley, Berkeley, CA, United States
| | - Joseph Carroll
- Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States; Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, United States.
| |
Collapse
|
103
|
Liu Z, Kurokawa K, Hammer DX, Miller DT. In vivo measurement of organelle motility in human retinal pigment epithelial cells. BIOMEDICAL OPTICS EXPRESS 2019; 10:4142-4158. [PMID: 31453000 PMCID: PMC6701538 DOI: 10.1364/boe.10.004142] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/24/2019] [Accepted: 06/24/2019] [Indexed: 05/18/2023]
Abstract
Retinal pigment epithelial (RPE) cells are well known to play a central role in the progression of numerous retinal diseases. Changes in the structure and function of these cells thus may serve as sensitive biomarkers of disease onset. While in vivo studies have focused on structural changes, functional ones may better capture cell health owing to their more direct connection to cell physiology. In this study, we developed a method based on adaptive optics optical coherence tomography (AO-OCT) and speckle field dynamics for characterizing organelle motility in individual RPE cells. We quantified the dynamics in terms of an exponential decay time constant, the time required for the speckle field to decorrelate. Using seven normal subjects, we found the RPE speckle field to decorrelate in about 5 s. This result has two fundamental implications for future clinical use. First, it establishes a path for generating a normative baseline to which motility of diseased RPE cells can be compared. Second, it predicts an AO-OCT image acquisition time that is 36 times faster than used in our earlier report for individuating RPE cells, thus a major improvement in clinical efficacy.
Collapse
Affiliation(s)
- Zhuolin Liu
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - Kazuhiro Kurokawa
- School of Optometry, Indiana University, 800 East Atwater Avenue, Bloomington, IN 47405, USA
| | - Daniel X. Hammer
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - Donald T. Miller
- School of Optometry, Indiana University, 800 East Atwater Avenue, Bloomington, IN 47405, USA
| |
Collapse
|