101
|
Heng E, Tan LL, Zhang MM, Wong FT. CRISPR-Cas strategies for natural product discovery and engineering in actinomycetes. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
102
|
In-situ generation of large numbers of genetic combinations for metabolic reprogramming via CRISPR-guided base editing. Nat Commun 2021; 12:678. [PMID: 33514753 PMCID: PMC7846839 DOI: 10.1038/s41467-021-21003-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 01/07/2021] [Indexed: 11/09/2022] Open
Abstract
Reprogramming complex cellular metabolism requires simultaneous regulation of multigene expression. Ex-situ cloning-based methods are commonly used, but the target gene number and combinatorial library size are severely limited by cloning and transformation efficiencies. In-situ methods such as multiplex automated genome engineering (MAGE) depends on high-efficiency transformation and incorporation of heterologous DNA donors, which are limited to few microorganisms. Here, we describe a Base Editor-Targeted and Template-free Expression Regulation (BETTER) method for simultaneously diversifying multigene expression. BETTER repurposes CRISPR-guided base editors and in-situ generates large numbers of genetic combinations of diverse ribosome binding sites, 5’ untranslated regions, or promoters, without library construction, transformation, and incorporation of DNA donors. We apply BETTER to simultaneously regulate expression of up to ten genes in industrial and model microorganisms Corynebacterium glutamicum and Bacillus subtilis. Variants with improved xylose catabolism, glycerol catabolism, or lycopene biosynthesis are respectively obtained. This technology will be useful for large-scale fine-tuning of multigene expression in both genetically tractable and intractable microorganisms. To obtain optimal yield and productivity in bioproduction, expression of pathway genes must be appropriately coordinated. Here, the authors report repurposing of base editors for simultaneous regulation of multiple gene expression and demonstrate its application in industrially important and model microorganisms.
Collapse
|
103
|
Abstract
Agrobacterium spp. are important plant pathogens that are the causative agents of crown gall or hairy root disease. Their unique infection strategy depends on the delivery of part of their DNA to plant cells. Thanks to this capacity, these phytopathogens became a powerful and indispensable tool for plant genetic engineering and agricultural biotechnology. Although Agrobacterium spp. are standard tools for plant molecular biologists, current laboratory strains have remained unchanged for decades and functional gene analysis of Agrobacterium has been hampered by time-consuming mutation strategies. Here, we developed clustered regularly interspaced short palindromic repeats (CRISPR)-mediated base editing to enable the efficient introduction of targeted point mutations into the genomes of both Agrobacterium tumefaciens and Agrobacterium rhizogenes As an example, we generated EHA105 strains with loss-of-function mutations in recA, which were fully functional for maize (Zea mays) transformation and confirmed the importance of RolB and RolC for hairy root development by A. rhizogenes K599. Our method is highly effective in 9 of 10 colonies after transformation, with edits in at least 80% of the cells. The genomes of EHA105 and K599 were resequenced, and genome-wide off-target analysis was applied to investigate the edited strains after curing of the base editor plasmid. The off-targets present were characteristic of Cas9-independent off-targeting and point to TC motifs as activity hotspots of the cytidine deaminase used. We anticipate that CRISPR-mediated base editing is the start of "engineering the engineer," leading to improved Agrobacterium strains for more efficient plant transformation and gene editing.
Collapse
|
104
|
Nishida K, Kondo A. CRISPR-derived genome editing technologies for metabolic engineering. Metab Eng 2020; 63:141-147. [PMID: 33307189 DOI: 10.1016/j.ymben.2020.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/26/2022]
Abstract
In metabolic engineering, genome editing tools make it much easier to discover and evaluate relevant genes and pathways and construct strains. Clustered regularly interspaced palindromic repeats (CRISPR)-associated (Cas) systems now have become the first choice for genome engineering in many organisms includingindustrially relevant ones. Targeted DNA cleavage by CRISPR-Cas provides variousgenome engineering modes such as indels, replacements, large deletions, knock-in and chromosomal rearrangements, while host-dependent differences in repair pathways need to be considered. The versatility of the CRISPR system has given rise to derivative technologies that complement nuclease-based editing, which causes cytotoxicity especially in microorganisms. Deaminase-mediated base editing installs targeted point mutations with much less toxicity. CRISPRi and CRISPRa can temporarily control gene expression without changing the genomic sequence. Multiplex, combinatorial and large scale editing are made possible by streamlined design and construction of gRNA libraries to further accelerates comprehensive discovery, evaluation and building of metabolic pathways. This review summarizes the technical basis and recent advances in CRISPR-related genome editing tools applied for metabolic engineering purposes, with representative examples of industrially relevant eukaryotic and prokaryotic organisms.
Collapse
Affiliation(s)
- Keiji Nishida
- Engineering Biology Research Center, Kobe University, Japan; Graduate School of Science, Technology and Innovation, Kobe University, Japan
| | - Akihiko Kondo
- Engineering Biology Research Center, Kobe University, Japan; Graduate School of Science, Technology and Innovation, Kobe University, Japan.
| |
Collapse
|
105
|
Todor H, Silvis MR, Osadnik H, Gross CA. Bacterial CRISPR screens for gene function. Curr Opin Microbiol 2020; 59:102-109. [PMID: 33285498 DOI: 10.1016/j.mib.2020.11.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/16/2022]
Abstract
In this review we describe the application of CRISPR tools for functional genomics screens in bacteria, with a focus on the use of interference (CRISPRi) approaches. We review recent developments in CRISPRi titration, which has enabled essential gene functional screens, and genome-scale pooled CRISPRi screens. We summarize progress toward enabling CRISPRi screens in non-model and pathogenic bacteria, including the development of new dCas9 variants. Taking into account the current state of the field, we provide a forward-looking analysis of CRISPRi strategies for determining gene function in bacteria.
Collapse
Affiliation(s)
- Horia Todor
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Melanie R Silvis
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Hendrik Osadnik
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Carol A Gross
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute of Quantitative Biology, University of California, San Francisco, San Francisco 94158 CA, USA.
| |
Collapse
|
106
|
Abdullah, Jiang Z, Hong X, Zhang S, Yao R, Xiao Y. CRISPR base editing and prime editing: DSB and template-free editing systems for bacteria and plants. Synth Syst Biotechnol 2020; 5:277-292. [PMID: 32954022 PMCID: PMC7481536 DOI: 10.1016/j.synbio.2020.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/14/2020] [Accepted: 08/25/2020] [Indexed: 12/20/2022] Open
Abstract
CRISPR-Cas (Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR associated) has been extensively exploited as a genetic tool for genome editing. The RNA guided Cas nucleases generate DNA double-strand break (DSB), triggering cellular repair systems mainly Non-homologous end-joining (NHEJ, imprecise repair) or Homology-directed repair (HDR, precise repair). However, DSB typically leads to unexpected DNA changes and lethality in some organisms. The establishment of bacteria and plants into major bio-production platforms require efficient and precise editing tools. Hence, in this review, we focus on the non-DSB and template-free genome editing, i.e., base editing (BE) and prime editing (PE) in bacteria and plants. We first highlight the development of base and prime editors and summarize their studies in bacteria and plants. We then discuss current and future applications of BE/PE in synthetic biology, crop improvement, evolutionary engineering, and metabolic engineering. Lastly, we critically consider the challenges and prospects of BE/PE in PAM specificity, editing efficiency, off-targeting, sequence specification, and editing window.
Collapse
Affiliation(s)
- Abdullah
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhengzheng Jiang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xulin Hong
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shun Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ruilian Yao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yi Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
107
|
Tong Y. Natural products research in the modern age. Synth Syst Biotechnol 2020; 5:314-315. [PMID: 32935063 PMCID: PMC7483083 DOI: 10.1016/j.synbio.2020.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Yaojun Tong
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark
| |
Collapse
|
108
|
Sreedurgalakshmi K, Srikar R, Rajkumari R. CRISPR-Cas deployment in non-small cell lung cancer for target screening, validations, and discoveries. Cancer Gene Ther 2020; 28:566-580. [PMID: 33191402 DOI: 10.1038/s41417-020-00256-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/14/2020] [Accepted: 10/29/2020] [Indexed: 12/24/2022]
Abstract
Continued advancements in CRISPR-Cas systems have accelerated genome research. Use of CRISPR-Cas in cancer research has been of great interest that is resulting in development of orthogonal methods for drug target validations and discovery of new therapeutic targets through genome-wide screens of cancer cells. CRISPR-based screens have also revealed several new cancer drivers through alterations in tumor suppressor genes (TSGs) and oncogenes inducing resistance to targeted therapies via activation of alternate signaling pathways. Given such dynamic status of cancer, we review the application of CRISPR-Cas in non-small cell lung cancer (NSCLC) for development of mutant models, drug screening, target validation, novel target discoveries, and other emerging potential applications. In addition, CRISPR-based approach for development of novel anticancer combination therapies is also discussed in this review.
Collapse
Affiliation(s)
- K Sreedurgalakshmi
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamilnadu, India.,Division of Biosimilars and Gene Therapy, R&D, Levim Biotech LLP, Chennai, Tamilnadu, India
| | - R Srikar
- Division of Biosimilars and Gene Therapy, R&D, Levim Biotech LLP, Chennai, Tamilnadu, India.
| | - Reena Rajkumari
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamilnadu, India.
| |
Collapse
|
109
|
Zhang Y, Zhao G, Ahmed FYH, Yi T, Hu S, Cai T, Liao Q. In silico Method in CRISPR/Cas System: An Expedite and Powerful Booster. Front Oncol 2020; 10:584404. [PMID: 33123486 PMCID: PMC7567020 DOI: 10.3389/fonc.2020.584404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022] Open
Abstract
The CRISPR/Cas system has stood in the center of attention in the last few years as a revolutionary gene editing tool with a wide application to investigate gene functions. However, the labor-intensive workflow requires a sophisticated pre-experimental and post-experimental analysis, thus becoming one of the hindrances for the further popularization of practical applications. Recently, the increasing emergence and advancement of the in silico methods play a formidable role to support and boost experimental work. However, various tools based on distinctive design principles and frameworks harbor unique characteristics that are likely to confuse users about how to choose the most appropriate one for their purpose. In this review, we will present a comprehensive overview and comparisons on the in silico methods from the aspects of CRISPR/Cas system identification, guide RNA design, and post-experimental assistance. Furthermore, we establish the hypotheses in light of the new trends around the technical optimization and hope to provide significant clues for future tools development.
Collapse
Affiliation(s)
- Yuwei Zhang
- Hwa Mei Hospital, University of Chinese Academy of Science, Ningbo, China.,Zhejiang Key Laboratory of Pathophysiology, Department of Preventative Medicine, Medical School of Ningbo University, Ningbo, China.,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | - Guofang Zhao
- Hwa Mei Hospital, University of Chinese Academy of Science, Ningbo, China.,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | - Fatma Yislam Hadi Ahmed
- Zhejiang Key Laboratory of Pathophysiology, Department of Preventative Medicine, Medical School of Ningbo University, Ningbo, China
| | - Tianfei Yi
- Zhejiang Key Laboratory of Pathophysiology, Department of Preventative Medicine, Medical School of Ningbo University, Ningbo, China
| | - Shiyun Hu
- Zhejiang Key Laboratory of Pathophysiology, Department of Preventative Medicine, Medical School of Ningbo University, Ningbo, China
| | - Ting Cai
- Hwa Mei Hospital, University of Chinese Academy of Science, Ningbo, China.,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | - Qi Liao
- Hwa Mei Hospital, University of Chinese Academy of Science, Ningbo, China.,Zhejiang Key Laboratory of Pathophysiology, Department of Preventative Medicine, Medical School of Ningbo University, Ningbo, China.,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| |
Collapse
|
110
|
Cao Z, Yu J, Wang W, Lu H, Xia X, Xu H, Yang X, Bao L, Zhang Q, Wang H, Zhang S, Zhang L. Multi-scale data-driven engineering for biosynthetic titer improvement. Curr Opin Biotechnol 2020; 65:205-212. [DOI: 10.1016/j.copbio.2020.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/18/2020] [Accepted: 04/17/2020] [Indexed: 11/29/2022]
|
111
|
Rousset F, Bikard D. CRISPR screens in the era of microbiomes. Curr Opin Microbiol 2020; 57:70-77. [PMID: 32858412 DOI: 10.1016/j.mib.2020.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023]
Abstract
Recent advances in genomics have uncovered the tremendous diversity and richness of microbial ecosystems. New functional genomics methods are now needed to probe gene function in high-throughput and provide mechanistic insights. Here, we review how the CRISPR toolbox can be used to inactivate, repress or overexpress genes in a sequence-specific manner and how this offers diverse attractive solutions to identify gene function in high-throughput. Developed both in eukaryotes and prokaryotes, CRISPR screening technologies have already provided meaningful insights in microbiology and host-pathogen interactions. In the era of microbiomes, the versatility and the functional diversity of CRISPR-derived tools has the potential to significantly improve our understanding of microbial communities and their interaction with the host.
Collapse
Affiliation(s)
- François Rousset
- Synthetic Biology Group, Microbiology Department, Institut Pasteur, Paris, France; Sorbonne Université, Collège Doctoral, F-75005 Paris, France
| | - David Bikard
- Synthetic Biology Group, Microbiology Department, Institut Pasteur, Paris, France.
| |
Collapse
|
112
|
Xia PF, Casini I, Schulz S, Klask CM, Angenent LT, Molitor B. Reprogramming Acetogenic Bacteria with CRISPR-Targeted Base Editing via Deamination. ACS Synth Biol 2020; 9:2162-2171. [PMID: 32610012 DOI: 10.1021/acssynbio.0c00226] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Acetogenic bacteria are rising in popularity as chassis microbes for biotechnology due to their capability of converting inorganic one-carbon (C1) gases to organic chemicals. To fully uncover the potential of acetogenic bacteria, synthetic biology tools are imperative to either engineer designed functions or to interrogate the physiology. Here, we report a genome-editing tool at a one-nucleotide resolution, namely base editing, for acetogenic bacteria based on CRISPR-targeted deamination. This tool combines nuclease deactivated Cas9 with activation-induced cytidine deaminase to enable cytosine-to-thymine substitution without DNA cleavage, homology-directed repair, and donor DNA, which are generally the bottlenecks for applying conventional CRISPR-Cas systems in bacteria. We designed and validated a modularized base-editing tool in the model acetogenic bacterium Clostridium ljungdahlii. The editing principles were investigated, and an in-silico analysis revealed the capability of base editing across the genome and the potential for off-target events. Moreover, genes related to acetate and ethanol production were disrupted individually by installing premature STOP codons to reprogram carbon flux toward improved acetate production. This resulted in engineered C. ljungdahlii strains with the desired phenotypes and stable genotypes. Our base-editing tool promotes the application and research in acetogenic bacteria and provides a blueprint to upgrade CRISPR-Cas-based genome editing in bacteria in general.
Collapse
Affiliation(s)
- Peng-Fei Xia
- Environmental Biotechnology Group, Center for Applied Geosciences, University of Tübingen, 72074 Tübingen, Germany
| | - Isabella Casini
- Environmental Biotechnology Group, Center for Applied Geosciences, University of Tübingen, 72074 Tübingen, Germany
| | - Sarah Schulz
- Environmental Biotechnology Group, Center for Applied Geosciences, University of Tübingen, 72074 Tübingen, Germany
| | - Christian-Marco Klask
- Environmental Biotechnology Group, Center for Applied Geosciences, University of Tübingen, 72074 Tübingen, Germany
| | - Largus T. Angenent
- Environmental Biotechnology Group, Center for Applied Geosciences, University of Tübingen, 72074 Tübingen, Germany
- AG Angenent, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Bastian Molitor
- Environmental Biotechnology Group, Center for Applied Geosciences, University of Tübingen, 72074 Tübingen, Germany
| |
Collapse
|
113
|
Mitousis L, Thoma Y, Musiol-Kroll EM. An Update on Molecular Tools for Genetic Engineering of Actinomycetes-The Source of Important Antibiotics and Other Valuable Compounds. Antibiotics (Basel) 2020; 9:E494. [PMID: 32784409 PMCID: PMC7460540 DOI: 10.3390/antibiotics9080494] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023] Open
Abstract
The first antibiotic-producing actinomycete (Streptomyces antibioticus) was described by Waksman and Woodruff in 1940. This discovery initiated the "actinomycetes era", in which several species were identified and demonstrated to be a great source of bioactive compounds. However, the remarkable group of microorganisms and their potential for the production of bioactive agents were only partially exploited. This is caused by the fact that the growth of many actinomycetes cannot be reproduced on artificial media at laboratory conditions. In addition, sequencing, genome mining and bioactivity screening disclosed that numerous biosynthetic gene clusters (BGCs), encoded in actinomycetes genomes are not expressed and thus, the respective potential products remain uncharacterized. Therefore, a lot of effort was put into the development of technologies that facilitate the access to actinomycetes genomes and activation of their biosynthetic pathways. In this review, we mainly focus on molecular tools and methods for genetic engineering of actinomycetes that have emerged in the field in the past five years (2015-2020). In addition, we highlight examples of successful application of the recently developed technologies in genetic engineering of actinomycetes for activation and/or improvement of the biosynthesis of secondary metabolites.
Collapse
Affiliation(s)
| | | | - Ewa M. Musiol-Kroll
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Microbiology/Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany; (L.M.); (Y.T.)
| |
Collapse
|
114
|
Challenges of in vitro genome editing with CRISPR/Cas9 and possible solutions: A review. Gene 2020; 753:144813. [DOI: 10.1016/j.gene.2020.144813] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 04/26/2020] [Accepted: 05/23/2020] [Indexed: 12/20/2022]
|
115
|
Zhang Y, Yang M, Ng DM, Haleem M, Yi T, Hu S, Zhu H, Zhao G, Liao Q. Multi-omics Data Analyses Construct TME and Identify the Immune-Related Prognosis Signatures in Human LUAD. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:860-873. [PMID: 32805489 PMCID: PMC7452010 DOI: 10.1016/j.omtn.2020.07.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/15/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
Abstract
Lung cancer has been the focus of attention for many researchers in recent years for the leading contribution to cancer-related death worldwide, in which lung adenocarcinoma (LUAD) is the most common histological type. However, the potential mechanism behind LUAD initiation and progression remains unclear. Aiming to dissect the tumor microenvironment of LUAD and to discover more informative prognosis signatures, we investigated the immune-related differences in three types of genetic or epigenetic characteristics (expression status, somatic mutation, and DNA methylation) and considered the potential roles that these alterations have in the immune response and both the immune-related metabolic and neural systems by analyzing the multi-omics data from The Cancer Genome Atlas (TCGA) portal. Additionally, a four-step strategy based on lasso regression and Cox regression was used to construct the prognostic prediction model. For the prognostic predictions on the independent test set, the performance of the trained models (average concordance index [C-index] = 0.839) is satisfied, with average 1-year, 3-year, and 5-year areas under the curve (AUCs) equal to 0.796, 0.786, and 0.777. Finally, the overall model was constructed based on all samples, which comprised 27 variables and achieved a high degree of accuracy on the 1-year (AUC = 0.861), 3-year (AUC = 0.850), and 5-year (AUC = 0.916) survival predictions.
Collapse
Affiliation(s)
- Yuwei Zhang
- Hwa Mei Hospital, University of Chinese Academy of Science, Ningbo, Zhejiang, China; Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathophysiology Technology, Medical School of Ningbo University, Ningbo, China; Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences
| | - Minglei Yang
- Hwa Mei Hospital, University of Chinese Academy of Science, Ningbo, Zhejiang, China; Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences
| | - Derry Minyao Ng
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathophysiology Technology, Medical School of Ningbo University, Ningbo, China
| | - Maria Haleem
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathophysiology Technology, Medical School of Ningbo University, Ningbo, China
| | - Tianfei Yi
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathophysiology Technology, Medical School of Ningbo University, Ningbo, China
| | - Shiyun Hu
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathophysiology Technology, Medical School of Ningbo University, Ningbo, China
| | - Huangkai Zhu
- Hwa Mei Hospital, University of Chinese Academy of Science, Ningbo, Zhejiang, China; Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences
| | - Guofang Zhao
- Hwa Mei Hospital, University of Chinese Academy of Science, Ningbo, Zhejiang, China; Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences.
| | - Qi Liao
- Hwa Mei Hospital, University of Chinese Academy of Science, Ningbo, Zhejiang, China; Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathophysiology Technology, Medical School of Ningbo University, Ningbo, China; Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences.
| |
Collapse
|
116
|
Wang Y, Liu Y, Zheng P, Sun J, Wang M. Microbial Base Editing: A Powerful Emerging Technology for Microbial Genome Engineering. Trends Biotechnol 2020; 39:165-180. [PMID: 32680590 DOI: 10.1016/j.tibtech.2020.06.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 02/08/2023]
Abstract
Genome engineering is crucial for answering fundamental questions about, and exploring practical applications of, microorganisms. Various microbial genome-engineering tools, including CRISPR/Cas-enhanced homologous recombination (HR), have been developed, with ever-improving simplicity, efficiency, and applicability. Recently, a powerful emerging technology based on CRISPR/Cas-nucleobase deaminase fusions, known as base editing, opened new avenues for microbial genome engineering. Base editing enables nucleotide transition without inducing lethal double-stranded (ds)DNA cleavage, adding foreign donor DNA, or depending on inefficient HR. Here, we review ongoing efforts to develop and apply base editing to engineer industrially and clinically relevant microorganisms. We also summarize bioinformatics tools that would greatly facilitate guide (g)RNA design and sequencing data analysis and discuss the future challenges and prospects associated with this technology.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Ye Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Ping Zheng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jibin Sun
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Meng Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| |
Collapse
|
117
|
CRISPR–Cas9, CRISPRi and CRISPR-BEST-mediated genetic manipulation in streptomycetes. Nat Protoc 2020; 15:2470-2502. [DOI: 10.1038/s41596-020-0339-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/17/2020] [Indexed: 01/06/2023]
|
118
|
Ding W, Zhang Y, Shi S. Development and Application of CRISPR/Cas in Microbial Biotechnology. Front Bioeng Biotechnol 2020; 8:711. [PMID: 32695770 PMCID: PMC7338305 DOI: 10.3389/fbioe.2020.00711] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas) system has been rapidly developed as versatile genomic engineering tools with high efficiency, accuracy and flexibility, and has revolutionized traditional methods for applications in microbial biotechnology. Here, key points of building reliable CRISPR/Cas system for genome engineering are discussed, including the Cas protein, the guide RNA and the donor DNA. Following an overview of various CRISPR/Cas tools for genome engineering, including gene activation, gene interference, orthogonal CRISPR systems and precise single base editing, we highlighted the application of CRISPR/Cas toolbox for multiplexed engineering and high throughput screening. We then summarize recent applications of CRISPR/Cas systems in metabolic engineering toward production of chemicals and natural compounds, and end with perspectives of future advancements.
Collapse
Affiliation(s)
- Wentao Ding
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China.,Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yang Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
119
|
Prudence SMM, Addington E, Castaño-Espriu L, Mark DR, Pintor-Escobar L, Russell AH, McLean TC. Advances in actinomycete research: an ActinoBase review of 2019. MICROBIOLOGY-SGM 2020; 166:683-694. [PMID: 32558638 PMCID: PMC7641383 DOI: 10.1099/mic.0.000944] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The actinomycetes are Gram-positive bacteria belonging to the order Actinomycetales within the phylum Actinobacteria. They include members with significant economic and medical importance, for example filamentous actinomycetes such as Streptomyces species, which have a propensity to produce a plethora of bioactive secondary metabolites and form symbioses with higher organisms, such as plants and insects. Studying these bacteria is challenging, but also fascinating and very rewarding. As a Microbiology Society initiative, members of the actinomycete research community have been developing a Wikipedia-style resource, called ActinoBase, the purpose of which is to aid in the study of these filamentous bacteria. This review will highlight 10 publications from 2019 that have been of special interest to the ActinoBase community, covering 4 major components of actinomycete research: (i) development and regulation; (ii) specialized metabolites; (iii) ecology and host interactions; and (iv) technology and methodology.
Collapse
Affiliation(s)
- Samuel M M Prudence
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| | - Emily Addington
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Laia Castaño-Espriu
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - David R Mark
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | | | - Alicia H Russell
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Thomas C McLean
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| |
Collapse
|
120
|
Blin K, Shaw S, Tong Y, Weber T. Designing sgRNAs for CRISPR-BEST base editing applications with CRISPy-web 2.0. Synth Syst Biotechnol 2020; 5:99-102. [PMID: 32596519 PMCID: PMC7301206 DOI: 10.1016/j.synbio.2020.05.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 11/30/2022] Open
Abstract
CRISPR/Cas9 systems are an established tool in genome engineering. As double strand breaks caused by the standard Cas9-based knock-out techniques can be problematic in some organisms, new systems were developed that can efficiently create knock-outs without causing double strand breaks to elegantly sidestep these issues. The recently published CRISPR-BEST base editor system for actinobacteria is built around a C to T or A to G base exchange. These base editing systems however require additional constraints to be considered for designing the sgRNAs. Here, we present an updated version of the interactive CRISPy-web single guide RNA design tool https://crispy.secondarymetabolites.org/that was built to support “classical” CRISPR and now also CRISPR-BEST workflows.
Collapse
Affiliation(s)
- Kai Blin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Simon Shaw
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Yaojun Tong
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
121
|
Abstract
Natural products (NPs), a nature's reservoir possessing enormous structural and functional diversity far beyond the current ability of chemical synthesis, are now proving themselves as most wonderful gifts from mother nature for human beings. Many of them have been used successfully as medicines, as well as the most important sources of drug leads, food additives, and many industry relevant products for millennia. Most notably, more than half of the antibiotics and anti-cancer drugs currently in use are, or derived from, natural products. However, the speed and outputs of NP-based drug discovery has been slowing down dramatically after the fruitful harvest of the "low-hanging fruit" during the golden age of 1950s-1960s. With recent scientific advances combining metabolic sciences and technology, multi-omics, big data, combinatorial biosynthesis, synthetic biology, genome editing technology (such as CRISPR), artificial intelligence (AI), and 3D printing, the "high-hanging fruit" is becoming more and more accessible with reduced costs. We are now more and more confident that a new age of natural products discovery is dawning.
Collapse
Affiliation(s)
- Yaojun Tong
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
122
|
Cheng L, Min D, He R, Cheng Z, Liu D, Yu H. Developing a base‐editing system to expand the carbon source utilization spectra of
Shewanella oneidensis
MR‐1 for enhanced pollutant degradation. Biotechnol Bioeng 2020; 117:2389-2400. [DOI: 10.1002/bit.27368] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/25/2020] [Accepted: 04/29/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Lei Cheng
- School of Life Sciences, University of Science and Technology of China Hefei China
| | - Di Min
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and EngineeringUniversity of Science and Technology of China Hefei China
| | - Ru‐Li He
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and EngineeringUniversity of Science and Technology of China Hefei China
| | - Zhou‐Hua Cheng
- School of Life Sciences, University of Science and Technology of China Hefei China
| | - Dong‐Feng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and EngineeringUniversity of Science and Technology of China Hefei China
| | - Han‐Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and EngineeringUniversity of Science and Technology of China Hefei China
| |
Collapse
|
123
|
Challenges and Advances in Genome Editing Technologies in Streptomyces. Biomolecules 2020; 10:biom10050734. [PMID: 32397082 PMCID: PMC7278167 DOI: 10.3390/biom10050734] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/21/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022] Open
Abstract
The genome of Streptomyces encodes a high number of natural product (NP) biosynthetic gene clusters (BGCs). Most of these BGCs are not expressed or are poorly expressed (commonly called silent BGCs) under traditional laboratory experimental conditions. These NP BGCs represent an unexplored rich reservoir of natural compounds, which can be used to discover novel chemical compounds. To activate silent BGCs for NP discovery, two main strategies, including the induction of BGCs expression in native hosts and heterologous expression of BGCs in surrogate Streptomyces hosts, have been adopted, which normally requires genetic manipulation. So far, various genome editing technologies have been developed, which has markedly facilitated the activation of BGCs and NP overproduction in their native hosts, as well as in heterologous Streptomyces hosts. In this review, we summarize the challenges and recent advances in genome editing tools for Streptomyces genetic manipulation with a focus on editing tools based on clustered regularly interspaced short palindrome repeat (CRISPR)/CRISPR-associated protein (Cas) systems. Additionally, we discuss the future research focus, especially the development of endogenous CRISPR/Cas-based genome editing technologies in Streptomyces.
Collapse
|
124
|
Ye S, Enghiad B, Zhao H, Takano E. Fine-tuning the regulation of Cas9 expression levels for efficient CRISPR-Cas9 mediated recombination in Streptomyces. J Ind Microbiol Biotechnol 2020; 47:413-423. [PMID: 32367443 PMCID: PMC7244461 DOI: 10.1007/s10295-020-02277-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022]
Abstract
CRISPR-Cas9 has proven as a very powerful gene editing tool for Actinomyces, allowing scarless and precise genome editing in selected strains of these biotechnologically relevant microorganisms. However, its general application in actinomycetes has been limited due to its inefficacy when applying the system in an untested strain. Here, we provide evidence of how Cas9 levels are toxic for the model actinomycetes Streptomyces coelicolor M145 and Streptomyces lividans TK24, which show delayed or absence of growth. We overcame this toxicity by lowering Cas9 levels and have generated a set of plasmids in which Cas9 expression is either controlled by theophylline-inducible or constitutive promoters. We validated the targeting of these CRISPR-Cas9 system using the glycerol uptake operon and the actinorhodin biosynthesis gene cluster. Our results highlight the importance of adjusting Cas9 expression levels specifically in strains to gain optimum and efficient gene editing in Actinomyces.
Collapse
Affiliation(s)
- Suhui Ye
- Department of Chemistry, School of Natural Sciences, Faculty of Science and Engineering, Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.,Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, IUOPA (Instituto Universitario de Oncología del Principado de Asturias), ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), Universidad de Oviedo, Avenida Julián Clavería S/N, 33006, Oviedo, Principality of Asturias, Spain
| | - Behnam Enghiad
- Department of Chemical and Biomolecular Engineering, and Carl R. Woese Institute for Genomic Biology, University of Illinois At Urbana-Champaign, Urbana, IL, 61801, USA
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, and Carl R. Woese Institute for Genomic Biology, University of Illinois At Urbana-Champaign, Urbana, IL, 61801, USA
| | - Eriko Takano
- Department of Chemistry, School of Natural Sciences, Faculty of Science and Engineering, Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|
125
|
Luo Y, Ge M, Wang B, Sun C, Wang J, Dong Y, Xi JJ. CRISPR/Cas9-deaminase enables robust base editing in Rhodobacter sphaeroides 2.4.1. Microb Cell Fact 2020; 19:93. [PMID: 32334589 PMCID: PMC7183636 DOI: 10.1186/s12934-020-01345-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/02/2020] [Indexed: 12/17/2022] Open
Abstract
Background CRISPR/Cas9 systems have been repurposed as canonical genome editing tools in a variety of species, but no application for the model strain Rhodobacter sphaeroides 2.4.1 was unveiled. Results Here we showed two kinds of programmable base editing systems, cytosine base editors (CBEs) and adenine base editors (ABEs), generated by fusing endonuclease Cas9 variant to cytosine deaminase PmCDA1 or heterodimer adenine deaminase TadA–TadA*, respectively. Using CBEs, we were able to obtain C-to-T mutation of single and double targets following the first induction step, with the efficiency of up to 97% and 43%; while the second induction step was needed in the case of triple target, with the screening rate of 47%. Using ABEs, we were only able to gain A-to-G mutation of single target after the second induction step, with the screening rate of 30%. Additionally, we performed a knockout analysis to identify the genes responsible for coenzyme Q10 biosynthesis and found that ubiF, ubiA, ubiG, and ubiX to be the most crucial ones. Conclusions Together, CBEs and ABEs serve as alternative methods for genetic manipulation in Rhodobacter sphaeroides and will shed light on the fundamental research of other bacteria that are hard to be directly edited by Cas9-sgRNA.
Collapse
Affiliation(s)
- Yufeng Luo
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Mei Ge
- Shanghai Laiyi Center for Biopharmaceutical R&D, 800 Dongchuan Road, Shanghai, 200240, China
| | - Bolun Wang
- Department of Biomedical Engineering, State Key Laboratory of Natural and Biomimetic Drugs, College of Engineering, Peking University, Beijing, 100871, China
| | - Changhong Sun
- Beijing Viewsolid Biotech Co. Ltd, Beijing, 100071, China
| | - Junyi Wang
- Department of Biomedical Engineering, State Key Laboratory of Natural and Biomimetic Drugs, College of Engineering, Peking University, Beijing, 100871, China
| | - Yuyang Dong
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive NW, Atlanta, GA, 30332, USA
| | - Jianzhong Jeff Xi
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Molecular Medicine, Peking University, Beijing, 100871, China. .,Department of Biomedical Engineering, State Key Laboratory of Natural and Biomimetic Drugs, College of Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
126
|
Nguyen CT, Dhakal D, Pham VTT, Nguyen HT, Sohng JK. Recent Advances in Strategies for Activation and Discovery/Characterization of Cryptic Biosynthetic Gene Clusters in Streptomyces. Microorganisms 2020; 8:E616. [PMID: 32344564 PMCID: PMC7232178 DOI: 10.3390/microorganisms8040616] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022] Open
Abstract
Streptomyces spp. are prolific sources of valuable natural products (NPs) that are of great interest in pharmaceutical industries such as antibiotics, anticancer chemotherapeutics, immunosuppressants, etc. Approximately two-thirds of all known antibiotics are produced by actinomycetes, most predominantly by Streptomyces. Nevertheless, in recent years, the chances of the discovery of novel and bioactive compounds from Streptomyces have significantly declined. The major hindrance for obtaining such bioactive compounds from Streptomyces is that most of the compounds are not produced in significant titers, or the biosynthetic gene clusters (BGCs) are cryptic. The rapid development of genome sequencing has provided access to a tremendous number of NP-BGCs embedded in the microbial genomes. In addition, the studies of metabolomics provide a portfolio of entire metabolites produced from the strain of interest. Therefore, through the integrated approaches of different-omics techniques, the connection between gene expression and metabolism can be established. Hence, in this review we summarized recent advancements in strategies for activating cryptic BGCs in Streptomyces by utilizing diverse state-of-the-art techniques.
Collapse
Affiliation(s)
- Chung Thanh Nguyen
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, Korea; (C.T.N.); (D.D.); (V.T.T.P.); (H.T.N.)
| | - Dipesh Dhakal
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, Korea; (C.T.N.); (D.D.); (V.T.T.P.); (H.T.N.)
| | - Van Thuy Thi Pham
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, Korea; (C.T.N.); (D.D.); (V.T.T.P.); (H.T.N.)
| | - Hue Thi Nguyen
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, Korea; (C.T.N.); (D.D.); (V.T.T.P.); (H.T.N.)
| | - Jae-Kyung Sohng
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, Korea; (C.T.N.); (D.D.); (V.T.T.P.); (H.T.N.)
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, Korea
| |
Collapse
|
127
|
Zhang Y, Zhang H, Wang Z, Wu Z, Wang Y, Tang N, Xu X, Zhao S, Chen W, Ji Q. Programmable adenine deamination in bacteria using a Cas9-adenine-deaminase fusion. Chem Sci 2020; 11:1657-1664. [PMID: 32206285 PMCID: PMC7069399 DOI: 10.1039/c9sc03784e] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 01/06/2020] [Indexed: 12/26/2022] Open
Abstract
Precise genetic manipulation is vital to studying bacterial physiology, but is difficult to achieve in some bacterial species due to the weak intrinsic homologous recombination (HR) capacity and lack of a compatible exogenous HR system. Here we report the establishment of a rapid and efficient method for directly converting adenine to guanine in bacterial genomes using the fusion of an adenine deaminase and a Cas9 nickase. The method achieves the conversion of adenine to guanine via an enzymatic deamination reaction and a subsequent DNA replication process rather than HR, which is utilized in conventional bacterial genetic manipulation methods, thereby substantially simplifying the genome editing process. A systematic screening targeting the possibly editable adenine sites of cntBC, the importer of the staphylopine/metal complex in Staphylococcus aureus, pinpoints key residues for metal importation, demonstrating that application of the system would greatly facilitate the genomic engineering of bacteria.
Collapse
Affiliation(s)
- Ya Zhang
- School of Physical Science and Technology , ShanghaiTech University , Shanghai 201210 , China . ;
- University of Chinese Academy of Sciences , Beijing , 100049 , China
| | - Hongyuan Zhang
- School of Physical Science and Technology , ShanghaiTech University , Shanghai 201210 , China . ;
- University of Chinese Academy of Sciences , Beijing , 100049 , China
| | - Zhipeng Wang
- School of Physical Science and Technology , ShanghaiTech University , Shanghai 201210 , China . ;
- University of Chinese Academy of Sciences , Beijing , 100049 , China
| | - Zhaowei Wu
- School of Physical Science and Technology , ShanghaiTech University , Shanghai 201210 , China . ;
| | - Yu Wang
- College of Life Science and Engineering , Jiangxi Agricultural University , Nanchang 330045 , China
| | - Na Tang
- School of Physical Science and Technology , ShanghaiTech University , Shanghai 201210 , China . ;
- University of Chinese Academy of Sciences , Beijing , 100049 , China
| | - Xuexia Xu
- iHuman Institute , ShanghaiTech University , Shanghai 201210 , China
- School of Life Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| | - Suwen Zhao
- iHuman Institute , ShanghaiTech University , Shanghai 201210 , China
- School of Life Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| | - Weizhong Chen
- School of Physical Science and Technology , ShanghaiTech University , Shanghai 201210 , China . ;
| | - Quanjiang Ji
- School of Physical Science and Technology , ShanghaiTech University , Shanghai 201210 , China . ;
| |
Collapse
|
128
|
Ko YS, Kim JW, Lee JA, Han T, Kim GB, Park JE, Lee SY. Tools and strategies of systems metabolic engineering for the development of microbial cell factories for chemical production. Chem Soc Rev 2020; 49:4615-4636. [DOI: 10.1039/d0cs00155d] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This tutorial review covers tools, strategies, and procedures of systems metabolic engineering facilitating the development of microbial cell factories efficiently producing chemicals and materials.
Collapse
Affiliation(s)
- Yoo-Sung Ko
- Metabolic and Biomolecular Engineering National Research Laboratory
- Systems Metabolic Engineering and Systems Healthcare (SMESH) Cross-Generation Collaborative Laboratory
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program)
- Institute for the BioCentury
- Korea Advanced Institute of Science and Technology (KAIST)
| | - Je Woong Kim
- Metabolic and Biomolecular Engineering National Research Laboratory
- Systems Metabolic Engineering and Systems Healthcare (SMESH) Cross-Generation Collaborative Laboratory
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program)
- Institute for the BioCentury
- Korea Advanced Institute of Science and Technology (KAIST)
| | - Jong An Lee
- Metabolic and Biomolecular Engineering National Research Laboratory
- Systems Metabolic Engineering and Systems Healthcare (SMESH) Cross-Generation Collaborative Laboratory
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program)
- Institute for the BioCentury
- Korea Advanced Institute of Science and Technology (KAIST)
| | - Taehee Han
- Metabolic and Biomolecular Engineering National Research Laboratory
- Systems Metabolic Engineering and Systems Healthcare (SMESH) Cross-Generation Collaborative Laboratory
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program)
- Institute for the BioCentury
- Korea Advanced Institute of Science and Technology (KAIST)
| | - Gi Bae Kim
- Metabolic and Biomolecular Engineering National Research Laboratory
- Systems Metabolic Engineering and Systems Healthcare (SMESH) Cross-Generation Collaborative Laboratory
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program)
- Institute for the BioCentury
- Korea Advanced Institute of Science and Technology (KAIST)
| | - Jeong Eum Park
- Metabolic and Biomolecular Engineering National Research Laboratory
- Systems Metabolic Engineering and Systems Healthcare (SMESH) Cross-Generation Collaborative Laboratory
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program)
- Institute for the BioCentury
- Korea Advanced Institute of Science and Technology (KAIST)
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory
- Systems Metabolic Engineering and Systems Healthcare (SMESH) Cross-Generation Collaborative Laboratory
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program)
- Institute for the BioCentury
- Korea Advanced Institute of Science and Technology (KAIST)
| |
Collapse
|
129
|
Xu W, Klumbys E, Ang EL, Zhao H. Emerging molecular biology tools and strategies for engineering natural product biosynthesis. Metab Eng Commun 2019; 10:e00108. [PMID: 32547925 PMCID: PMC7283510 DOI: 10.1016/j.mec.2019.e00108] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/05/2019] [Accepted: 11/05/2019] [Indexed: 02/08/2023] Open
Abstract
Natural products and their related derivatives play a significant role in drug discovery and have been the inspiration for the design of numerous synthetic bioactive compounds. With recent advances in molecular biology, numerous engineering tools and strategies were established to accelerate natural product synthesis in both academic and industrial settings. However, many obstacles in natural product biosynthesis still exist. For example, the native pathways are not appropriate for research or production; the key enzymes do not have enough activity; the native hosts are not suitable for high-level production. Emerging molecular biology tools and strategies have been developed to not only improve natural product titers but also generate novel bioactive compounds. In this review, we will discuss these emerging molecular biology tools and strategies at three main levels: enzyme level, pathway level, and genome level, and highlight their applications in natural product discovery and development.
Collapse
Affiliation(s)
- Wei Xu
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology, and Research, Singapore
| | - Evaldas Klumbys
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology, and Research, Singapore
| | - Ee Lui Ang
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology, and Research, Singapore
| | - Huimin Zhao
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology, and Research, Singapore.,Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
130
|
Highly efficient DSB-free base editing for streptomycetes with CRISPR-BEST. Proc Natl Acad Sci U S A 2019; 116:20366-20375. [PMID: 31548381 PMCID: PMC6789908 DOI: 10.1073/pnas.1913493116] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although CRISPR-Cas9 tools dramatically simplified the genetic manipulation of actinomycetes, significant concerns of genome instability caused by the DNA double-strand breaks (DSBs) and common off-target effects remain. To address these concerns, we developed CRISPR-BEST, a DSB-free and high-fidelity single-nucleotide–resolution base editing system for streptomycetes and validated its use by determining editing properties and genome-wide off-target effects. Furthermore, our CRISPR-BEST toolkit supports Csy4-based multiplexing to target multiple genes of interest in parallel. We believe that our CRISPR-BEST approach is a significant improvement over existing genetic manipulation methods to engineer streptomycetes, especially for those strains that cannot be genome-edited using normal DSB-based genome editing systems, such as CRISPR-Cas9. Streptomycetes serve as major producers of various pharmacologically and industrially important natural products. Although CRISPR-Cas9 systems have been developed for more robust genetic manipulations, concerns of genome instability caused by the DNA double-strand breaks (DSBs) and the toxicity of Cas9 remain. To overcome these limitations, here we report development of the DSB-free, single-nucleotide–resolution genome editing system CRISPR-BEST (CRISPR-Base Editing SysTem), which comprises a cytidine (CRISPR-cBEST) and an adenosine (CRISPR-aBEST) deaminase-based base editor. Specifically targeted by an sgRNA, CRISPR-cBEST can efficiently convert a C:G base pair to a T:A base pair and CRISPR-aBEST can convert an A:T base pair to a G:C base pair within a window of approximately 7 and 6 nucleotides, respectively. CRISPR-BEST was validated and successfully used in different Streptomyces species. Particularly in nonmodel actinomycete Streptomyces collinus Tü365, CRISPR-cBEST efficiently inactivated the 2 copies of kirN gene that are in the duplicated kirromycin biosynthetic pathways simultaneously by STOP codon introduction. Generating such a knockout mutant repeatedly failed using the conventional DSB-based CRISPR-Cas9. An unbiased, genome-wide off-target evaluation indicates the high fidelity and applicability of CRISPR-BEST. Furthermore, the system supports multiplexed editing with a single plasmid by providing a Csy4-based sgRNA processing machinery. To simplify the protospacer identification process, we also updated the CRISPy-web (https://crispy.secondarymetabolites.org), and now it allows designing sgRNAs specifically for CRISPR-BEST applications.
Collapse
|