101
|
Andersen IS, Østrup O, Lindeman LC, Aanes H, Reiner AH, Mathavan S, Aleström P, Collas P. Epigenetic complexity during the zebrafish mid-blastula transition. Biochem Biophys Res Commun 2012; 417:1139-44. [DOI: 10.1016/j.bbrc.2011.12.077] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 12/15/2011] [Indexed: 12/18/2022]
|
102
|
McGraw HF, Drerup CM, Culbertson MD, Linbo T, Raible DW, Nechiporuk AV. Lef1 is required for progenitor cell identity in the zebrafish lateral line primordium. Development 2011; 138:3921-30. [PMID: 21862556 DOI: 10.1242/dev.062554] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The zebrafish posterior lateral line (pLL) is a sensory system that comprises clusters of mechanosensory organs called neuromasts (NMs) that are stereotypically positioned along the surface of the trunk. The NMs are deposited by a migrating pLL primordium, which is organized into polarized rosettes (proto-NMs). During migration, mature proto-NMs are deposited from the trailing part of the primordium, while progenitor cells in the leading part give rise to new proto-NMs. Wnt signaling is active in the leading zone of the primordium and global Wnt inactivation leads to dramatic disorganization of the primordium and a loss of proto-NM formation. However, the exact cellular events that are regulated by the Wnt pathway are not known. We identified a mutant strain, lef1(nl2), that contains a lesion in the Wnt effector gene lef1. lef1(nl2) mutants lack posterior NMs and live imaging reveals that rosette renewal fails during later stages of migration. Surprisingly, the overall primordium patterning, as assayed by the expression of various markers, appears unaltered in lef1(nl2) mutants. Lineage tracing and mosaic analyses revealed that the leading cells (presumptive progenitors) move out of the primordium and are incorporated into NMs; this results in a decrease in the number of proliferating progenitor cells and eventual primordium disorganization. We concluded that Lef1 function is not required for initial primordium organization or migration, but is necessary for proto-NM renewal during later stages of pLL formation. These findings revealed a novel role for the Wnt signaling pathway during mechanosensory organ formation in zebrafish.
Collapse
Affiliation(s)
- Hillary F McGraw
- Department of Cell and Developmental Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | | | | | | | | | | |
Collapse
|
103
|
Montes de Oca R, Andreassen PR, Wilson KL. Barrier-to-Autointegration Factor influences specific histone modifications. Nucleus 2011; 2:580-90. [PMID: 22127260 DOI: 10.4161/nucl.2.6.17960] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Defects in the nuclear envelope or nuclear 'lamina' networks cause disease and can perturb histone posttranslational (epigenetic) regulation. Barrier-to-Autointegration Factor (BAF) is an essential but enigmatic lamina component that binds lamins, LEM-domain proteins, DNA and histone H3 directly. We report that BAF copurified with nuclease-digested mononucleosomes and associated with modified histones in vivo. BAF overexpression significantly reduced global histone H3 acetylation by 18%. In cells that stably overexpressed BAF 3-fold, silencing mark H3-K27-Me1/3 and active marks H4-K16-Ac and H4-Ac5 decreased significantly. Significant increases were also seen for silencing mark H3-K9-Me3, active marks H3-K4-Me2, H3-K9/K14-Ac and H4-K5-Ac and a mark (H3-K79-Me2) associated with both active and silent chromatin. Other increases (H3-S10-P, H3-S28-P and silencing mark H3-K9-Me2) did not reach statistical significance. BAF overexpression also significantly influenced cell cycle distribution. Moreover, BAF associated in vivo with SET/I2PP2A (protein phosphatase 2A inhibitor; blocks H3 dephosphorylation) and G9a (H3-K9 methyltransferase), but showed no detectable association with HDAC1 or HATs. These findings reveal BAF as a novel epigenetic regulator and are discussed in relation to BAF deficiency phenotypes, which include a hereditary progeria syndrome and loss of pluripotency in embryonic stem cells.
Collapse
Affiliation(s)
- Rocío Montes de Oca
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | |
Collapse
|
104
|
Mudbhary R, Sadler KC. Epigenetics, development, and cancer: zebrafish make their mark.. ACTA ACUST UNITED AC 2011; 93:194-203. [PMID: 21671358 DOI: 10.1002/bdrc.20207] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Zebrafish embryos are an exceptional system for studying vertebrate development. Historically, studies using zebrafish to uncover key players in developmentally regulated gene expression have entailed detailed analysis of transcription factors. It is now apparent that epigenetic modifications of both DNA and histone tails are equally important in the regulation of gene expression during development. As such, blocking the function of key epigenetic modifiers impairs development, albeit with surprising tissue specificity. For instance, DNA methylation is an important epigenetic mark that is depleted in embryos lacking dnmt1 and uhrf1. These embryos display developmental defects in the eye, liver, pancreas, and larval lethality. Interestingly, human tumors derived from these same organs have aberrant changes in DNA methylation and altered expression of genes that are thought to contribute to formation of these cancers. These observations have provided a mechanistic basis for treating cancer with drugs that block the enzymes that facilitate DNA and histone modifications. Thus, it is important to understand the consequences of targeting these factors in a whole animal. We review the use of zebrafish for probing the genetic, cellular, and physiological response to alterations in the epigenome and highlight exciting data illustrating that epigenetic studies using zebrafish can inform and impact cancer biology.
Collapse
Affiliation(s)
- Raksha Mudbhary
- Division of Liver Diseases, Department of Medicine, Mount Sinai School of Medicine, New York, New York, USA
| | | |
Collapse
|
105
|
Goll MG, Halpern ME. DNA methylation in zebrafish. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 101:193-218. [PMID: 21507352 DOI: 10.1016/b978-0-12-387685-0.00005-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
DNA methylation is crucial for normal development and cellular differentiation in many large-genome eukaryotes. The small tropical freshwater fish Danio rerio (zebrafish) has recently emerged as a powerful system for the study of DNA methylation, especially in the context of development. This review summarizes our current knowledge of DNA methylation in zebrafish and provides evidence for the general conservation of this system with mammals. In addition, emerging strategies are highlighted that use the fish model to address some of the key unanswered questions in DNA methylation research.
Collapse
Affiliation(s)
- Mary G Goll
- Developmental Biology Program, Sloan-Kettering Institute, New York, USA
| | | |
Collapse
|
106
|
Eom GH, Kim KB, Kim JH, Kim JY, Kim JR, Kee HJ, Kim DW, Choe N, Park HJ, Son HJ, Choi SY, Kook H, Seo SB. Histone methyltransferase SETD3 regulates muscle differentiation. J Biol Chem 2011; 286:34733-42. [PMID: 21832073 DOI: 10.1074/jbc.m110.203307] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Histone lysine methylation, as one of the most important factors in transcriptional regulation, is associated with a various physiological conditions. Using a bioinformatics search, we identified and subsequently cloned mouse SET domain containing 3 (SETD3) with SET (Su(var)3-9, Enhancer-of-zeste and Trithorax) and Rubis-subs-bind domains. SETD3 is a novel histone H3K4 and H3K36 methyltransferase with transcriptional activation activity. SETD3 is expressed abundantly in muscular tissues and, when overexpressed, activates transcription of muscle-related genes, myogenin, muscle creatine kinase (MCK), and myogenic factor 6 (Myf6), thereby inducing muscle cell differentiation. Conversely, knockdown of SETD3 by shRNA significantly retards muscle cell differentiation. In this study, SETD3 was recruited to the myogenin gene promoter along with MyoD where it activated transcription. Together, these data indicate that SETD3 is a H3K4/K36 methyltransferase and plays an important role in the transcriptional regulation of muscle cell differentiation.
Collapse
Affiliation(s)
- Gwang Hyeon Eom
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 156-756, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Díaz de León-Guerrero S, Pedraza-Alva G, Pérez-Martínez L. In sickness and in health: the role of methyl-CpG binding protein 2 in the central nervous system. Eur J Neurosci 2011; 33:1563-74. [PMID: 21453447 PMCID: PMC3110863 DOI: 10.1111/j.1460-9568.2011.07658.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The array of specialized neuronal and glial cell types that characterize the adult central nervous system originates from neuroepithelial proliferating precursor cells. The transition from proliferating neuroepithelial precursor cells to neuronal lineages is accompanied by rapid global changes in gene expression in coordination with epigenetic modifications at the level of the chromatin structure. A number of genetic studies have begun to reveal how epigenetic deregulation results in neurodevelopmental disorders such as mental retardation, autism, Rubinstein-Taybi syndrome and Rett syndrome. In this review we focus on the role of the methyl-CpG binding protein 2 (MeCP2) during development of the central nervous system and its involvement in Rett syndrome. First, we present recent findings that indicate a previously unconsidered role of glial cells in the development of Rett syndrome. Next, we discuss evidence of how MeCP2 deficiency or loss of function results in aberrant gene expression leading to Rett syndrome. We also discuss MeCP2's function as a repressor and activator of gene expression and the role of its different target genes, including microRNAs, during neuronal development. Finally, we address different signaling pathways that regulate MeCP2 expression at both the post-transcriptional and post-translational level, and discuss how mutations in MeCP2 may result in lack of responsiveness to environmental signals.
Collapse
Affiliation(s)
- Sol Díaz de León-Guerrero
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, A.P. 510-3, Cuernavaca, Morelos 62271, México.
| | | | | |
Collapse
|
108
|
Smith THL, Collins TM, McGowan RA. Expression of the dnmt3 genes in zebrafish development: similarity to Dnmt3a and Dnmt3b. Dev Genes Evol 2011; 220:347-53. [PMID: 21258815 DOI: 10.1007/s00427-010-0347-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 12/08/2010] [Indexed: 12/11/2022]
Abstract
The zebrafish differs from mammals in that they have six dnmt3 genes as opposed to the two that can produce a catalytically active protein in mammals. Zebrafish also do not show evidence of genomic imprinting and lack the Dnmt3l gene necessary to that process in mammals. As such, they offer a unique opportunity to compare the two genetic situations in order to define the roles of the multiple genes in developmental gene methylation. To this end, we have analyzed the developmental expression of the six dnmt3 genes in zebrafish and find that they fall into two distinct patterns. The expression patterns of the dnmt6 and dnmt8 genes, which more closely resemble the mammalian Dnmt3a gene in sequence, also show an expression pattern that is more similar to the expression of Dnmt3a rather than Dnmt3b. Conversely, the other four dnmt3 genes in zebrafish (dnmt3, dnmt4, dnmt5, and dnmt7) show an expression pattern that is more similar to Dnmt3b. The dnmt6 and dnmt8 genes are also expressed in the adult zebrafish and in the brain in particular. In situ expression analyses show that the dnmt6 and/or dnmt8 genes also show tissue-specific differences in expression with those two genes being more ubiquitously expressed in the developing zebrafish than the other dnmt3 genes. Although differences in dnmt3 function may exist between mammals and fish, our results showing similar expression patterns between the genes in fish and mammals suggest that the six dnmt3 genes in the zebrafish may be analogous to the two Dnmt3 genes in mammals.
Collapse
Affiliation(s)
- Tamara H L Smith
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| | | | | |
Collapse
|
109
|
Wu SF, Zhang H, Hammoud SS, Potok M, Nix DA, Jones DA, Cairns BR. DNA methylation profiling in zebrafish. Methods Cell Biol 2011; 104:327-39. [PMID: 21924171 DOI: 10.1016/b978-0-12-374814-0.00018-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
DNA methylation on cytosine in vertebrates such as zebrafish serves to silence gene expression by interfering with the binding of certain transcription factors and through the recruitment of repressive chromatin machinery. Cytosine DNA methylation is chemically stable and heritable through the germline - but also reversible through many modes, making it a useful and dynamic epigenetic modification. Virtually all of the enzymes and factors involved in the deposition, binding, and removal of cytosine methylation are conserved in zebrafish, and therefore the organism an excellent model for understanding the use of DNA methylation in the control of gene regulation and other processes. Here, we discuss the main approaches to quantifying DNA methylation levels genome-wide in zebrafish: one is an established method for revealing regional methylation (methylated DNA immunoprecipitation (MeDIP)), and the other is an emerging method that reveals DNA methylation at base-pair resolution (shotgun bisulphite sequencing). We also introduce some of the analytical methods that are useful for identifying regions of hypo- or hyper-methylation, and ways to identify differentially methylated regions.
Collapse
Affiliation(s)
- Shan-Fu Wu
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
110
|
Abstract
The generation of complex organisms requires that an initial population of cells with identical gene expression profiles can adopt different cell fates during development by progressively diverging transcriptional programs. These programs depend on the binding of transcritional regulators to specific genomic sites, which in turn is controlled by modifications of the chromatin. Chromatin modifications may occur directly upon DNA by methylation of specific nucleotides, or may involve post-translational modification of histones. Local regulation of histone post-translational modifications regionalizes the genome into euchromatic regions, which are more accessible to DNA-binding factors, and condensed heterochromatic regions, inhibiting the binding of such factors. In addition, these modifications may be required in a genome-wide fashion for processes such as DNA replication or chromosome condensation. From an embryologist's point of view chromatin modifications are intensively studied in the context of imprinting and have more recently received increasing attention in understanding the basis of pluripotency and cellular differentiation. Here, we describe recently uncovered roles of chromatin modifications in zebrafish development and regeneration, as well as available resources and commonly used techniques. We provide a general introduction into chromatin modifications and their respective functions with a focus on gene transcription, as well as key aspects of their roles in the early zebrafish embryo, neural development, formation of the digestive system and tissue regeneration.
Collapse
Affiliation(s)
- Jordi Cayuso Mas
- MRC National Institute for Medical Research, The Ridgeway, London, NW7 1AA, UK
| | | | | |
Collapse
|
111
|
Murr R. Interplay between different epigenetic modifications and mechanisms. ADVANCES IN GENETICS 2010; 70:101-41. [PMID: 20920747 DOI: 10.1016/b978-0-12-380866-0.60005-8] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cellular functions including transcription regulation, DNA repair, and DNA replication need to be tightly regulated. DNA sequence can contribute to the regulation of these mechanisms. This is exemplified by the consensus sequences that allow the binding of specific transcription factors, thus regulating transcription rates. Another layer of regulation resides in modifications that do not affect the DNA sequence itself but still results in the modification of chromatin structure and properties, thus affecting the readout of the underlying DNA sequence. These modifications are dubbed as "epigenetic modifications" and include, among others, histone modifications, DNA methylation, and small RNAs. While these events can independently regulate cellular mechanisms, recent studies indicate that joint activities of different epigenetic modifications could result in a common outcome. In this chapter, I will attempt to recapitulate the best known examples of collaborative activities between epigenetic modifications. I will emphasize mostly on the effect of crosstalks between epigenetic modifications on transcription regulation, simply because it is the most exposed and studied aspect of epigenetic interactions. I will also summarize the effect of epigenetic interactions on DNA damage response and DNA repair. The involvement of epigenetic crosstalks in cancer formation, progression, and treatment will be emphasized throughout the manuscript. Due to space restrictions, additional aspects involving histone replacements [Park, Y. J., and Luger, K. (2008). Histone chaperones in nucleosome eviction and histone exchange. Curr. Opin. Struct. Biol.18, 282-289.], histone variants [Boulard, M., Bouvet, P., Kundu, T. K., and Dimitrov, S. (2007). Histone variant nucleosomes: Structure, function and implication in disease. Subcell. Biochem. 41, 71-89; Talbert, P. B., and Henikoff, S. (2010). Histone variants-Ancient wrap artists of the epigenome. Nat. Rev. Mol. Cell Biol.11, 264-275.], and histone modification readers [de la Cruz, X., Lois, S., Sanchez-Molina, S., and Martinez-Balbas, M. A. (2005). Do protein motifs read the histone code? Bioessays27, 164-175; Grewal, S. I., and Jia, S. (2007). Heterochromatin revisited. Nat. Rev. Genet.8, 35-46.] will not be addressed in depth in this chapter, and the reader is referred to the reviews cited here.
Collapse
Affiliation(s)
- Rabih Murr
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66,4058 Basel, Switzerland
| |
Collapse
|
112
|
Cvekl A, Mitton KP. Epigenetic regulatory mechanisms in vertebrate eye development and disease. Heredity (Edinb) 2010; 105:135-51. [PMID: 20179734 PMCID: PMC4228956 DOI: 10.1038/hdy.2010.16] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 01/14/2010] [Accepted: 01/18/2010] [Indexed: 12/27/2022] Open
Abstract
Eukaryotic DNA is organized as a nucleoprotein polymer termed chromatin with nucleosomes serving as its repetitive architectural units. Cellular differentiation is a dynamic process driven by activation and repression of specific sets of genes, partitioning the genome into transcriptionally active and inactive chromatin domains. Chromatin architecture at individual genes/loci may remain stable through cell divisions, from a single mother cell to its progeny during mitosis, and represents an example of epigenetic phenomena. Epigenetics refers to heritable changes caused by mechanisms distinct from the primary DNA sequence. Recent studies have shown a number of links between chromatin structure, gene expression, extracellular signaling, and cellular differentiation during eye development. This review summarizes recent advances in this field, and the relationship between sequence-specific DNA-binding transcription factors and their roles in recruitment of chromatin remodeling enzymes. In addition, lens and retinal differentiation is accompanied by specific changes in the nucleolar organization, expression of non-coding RNAs, and DNA methylation. Epigenetic regulatory mechanisms in ocular tissues represent exciting areas of research that have opened new avenues for understanding normal eye development, inherited eye diseases and eye diseases related to aging and the environment.
Collapse
Affiliation(s)
- A Cvekl
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - KP Mitton
- Eye Research Institute, and the Center for Biomedical Research, Oakland University, Rochester, MI, USA
| |
Collapse
|