101
|
Czarna M, Mathy G, Mac'Cord A, Dobson R, Jarmuszkiewicz W, Sluse-Goffart CM, Leprince P, De Pauw E, Sluse FE. Dynamics of the Dictyostelium discoideum mitochondrial proteome during vegetative growth, starvation and early stages of development. Proteomics 2010; 10:6-22. [PMID: 20013782 DOI: 10.1002/pmic.200900352] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this study, a quantitative comparative proteomics approach has been used to analyze the Dictyostelium discoideum mitochondrial proteome variations during vegetative growth, starvation and the early stages of development. Application of 2-D DIGE technology allowed the detection of around 2000 protein spots on each 2-D gel with 180 proteins exhibiting significant changes in their expression level. In total, 96 proteins (51 unique and 45 redundant) were unambiguously identified. We show that the D. discoideum mitochondrial proteome adaptations mainly affect energy metabolism enzymes (the Krebs cycle, anaplerotic pathways, the oxidative phosphorylation system and energy dissipation), proteins involved in developmental and signaling processes as well as in protein biosynthesis and fate. The most striking observations were the opposite regulation of expression of citrate synthase and aconitase and the very large variation in the expression of the alternative oxidase that highlighted the importance of citrate and alternative oxidase in the physiology of the development of D. discoideum. Mitochondrial energy states measured in vivo with MitoTracker Orange CM Ros showed an increase in mitochondrial membrane polarization during D. discoideum starvation and starvation-induced development.
Collapse
Affiliation(s)
- Malgorzata Czarna
- Laboratory of Bioenergetics and Cellular Physiology, University of Liege, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Kane LA, Youngman MJ, Jensen RE, Van Eyk JE. Phosphorylation of the F(1)F(o) ATP synthase beta subunit: functional and structural consequences assessed in a model system. Circ Res 2009; 106:504-13. [PMID: 20035080 DOI: 10.1161/circresaha.109.214155] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
RATIONALE We previously discovered several phosphorylations to the beta subunit of the mitochondrial F(1)F(o) ATP synthase complex in isolated rabbit myocytes on adenosine treatment, an agent that induces cardioprotection. The role of these phosphorylations is unknown. OBJECTIVE The present study focuses on the functional consequences of phosphorylation of the ATP synthase complex beta subunit by generating nonphosphorylatable and phosphomimetic analogs in a model system, Saccharomyces cerevisiae. METHODS AND RESULTS The 4 amino acid residues with homology in yeast (T58, S213, T262, and T318) were studied with respect to growth, complex and supercomplex formation, and enzymatic activity (ATPase rate). The most striking mutant was the T262 site, for which the phosphomimetic (T262E) abolished activity, whereas the nonphosphorylatable strain (T262A) had an ATPase rate equivalent to wild type. Although T262E, like all of the beta subunit mutants, was able to form the intact complex (F(1)F(o)), this strain lacked a free F(1) component found in wild-type and had a corresponding increase of lower-molecular-weight forms of the protein, indicating an assembly/stability defect. In addition, the ATPase activity was reduced but not abolished with the phosphomimetic mutation at T58, a site that altered the formation/maintenance of dimers of the F(1)F(o) ATP synthase complex. CONCLUSIONS Taken together, these data show that pseudophosphorylation of specific amino acid residues can have separate and distinctive effects on the F(1)F(o) ATP synthase complex, suggesting the possibility that several of the phosphorylations observed in the rabbit heart can have structural and functional consequences to the F(1)F(o) ATP synthase complex.
Collapse
Affiliation(s)
- Lesley A Kane
- Department of Biological Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | | | | | | |
Collapse
|
103
|
Abstract
Gene and genome duplications create novel genetic material on which evolution can work and have therefore been recognized as a major source of innovation for many eukaryotic lineages. Following duplication, the most likely fate is gene loss; however, a considerable fraction of duplicated genes survive. Not all genes have the same probability of survival, but it is not fully understood what evolutionary forces determine the pattern of gene retention. Here, we use genome sequence data as well as large-scale phosphoproteomics data from the baker's yeast Saccharomyces cerevisiae, which underwent a whole-genome duplication approximately 100 mya, and show that the number of phosphorylation sites on the proteins they encode is a major determinant of gene retention. Protein phosphorylation motifs are short amino acid sequences that are usually embedded within unstructured and rapidly evolving protein regions. Reciprocal loss of those ancestral sites and the gain of new ones are major drivers in the retention of the two surviving duplicates and in their acquisition of distinct functions. This way, small changes in the sequences of unstructured regions in proteins can contribute to the rapid rewiring and adaptation of regulatory networks.
Collapse
|
104
|
Ito J, Taylor NL, Castleden I, Weckwerth W, Millar AH, Heazlewood JL. A survey of the Arabidopsis thaliana mitochondrial phosphoproteome. Proteomics 2009; 9:4229-40. [PMID: 19688752 DOI: 10.1002/pmic.200900064] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Plant mitochondria play central roles in cellular energy production, metabolism and stress responses. Recent phosphoproteomic studies in mammalian and yeast mitochondria have presented evidence indicating that protein phosphorylation is a likely regulatory mechanism across a broad range of important mitochondrial processes. This study investigated protein phosphorylation in purified mitochondria from cell suspensions of the model plant Arabidopsis thaliana using affinity enrichment and proteomic tools. Eighteen putative phosphoproteins consisting of mitochondrial metabolic enzymes, HSPs, a protease and several proteins of unknown function were detected on 2-DE separations of Arabidopsis mitochondrial proteins and affinity-enriched phosphoproteins using the Pro-Q Diamond phospho-specific in-gel dye. Comparisons with mitochondrial phosphoproteomes of yeast and mouse indicate that these three species share few validated phosphoproteins. Phosphorylation sites for seven of the eighteen mitochondrial proteins were characterized by titanium dioxide enrichment and MS/MS. In the process, 71 phosphopeptides from Arabidopsis proteins which are not present in mitochondria but found as contaminants in various types of mitochondrial preparations were also identified, indicating the low level of phosphorylation of mitochondrial components compared with other cellular components in Arabidopsis. Information gained from this study provides a better understanding of protein phosphorylation at both the subcellular and the cellular level in Arabidopsis.
Collapse
Affiliation(s)
- Jun Ito
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | | | | | | | | | | |
Collapse
|
105
|
Boja ES, Phillips D, French SA, Harris RA, Balaban RS. Quantitative mitochondrial phosphoproteomics using iTRAQ on an LTQ-Orbitrap with high energy collision dissociation. J Proteome Res 2009; 8:4665-75. [PMID: 19694452 PMCID: PMC2768122 DOI: 10.1021/pr900387b] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
With the use of iTRAQ labeling and mass spectrometry on an LTQ-Orbitrap with HCD capability, we assessed relative changes in protein phosphorylation in the mitochondria upon physiological perturbation. As a reference reaction, we monitored the well-characterized regulation of pyruvate dehydrogenase (PDH) activity via phosphorylation/dephosphorylation by pyruvate dehydrogenase kinase/pyruvate dehydrogenase phosphatase in response to dichloroacetate, de-energization and Ca2+. Relative quantification of phosphopeptides of PDH-E1alpha subunit from porcine heart revealed dephosphorylation at three serine sites (Ser231, Ser292 and Ser299). Dephosphorylation at Ser292 (i.e., the inhibitory site) with DCA correlated with an activation of PDH activity as previously reported, consistent with our de-energization data. Calcium also dephosphorylated (i.e., activated) PDH, thus, confirming calcium activation of PDP. With this approach, we successfully monitored other phosphorylation sites of mitochondrial proteins including adenine nucleotide translocase, malate dehydrogenase and mitochondrial creatine kinase. Among them, four proteins exhibited phosphorylation changes with these physiological stimuli: (1) BCKDH-E1alpha subunit increased phosphorylation at Ser337 with DCA and de-energization; (2) apoptosis-inducing factor phosphorylation was elevated at Ser345 with calcium; (3) ATP synthase F1 complex alpha subunit and (4) mitofilin dephosphorylated at Ser65 and Ser264 upon de-energization. This screening validated the iTRAQ/HCD technology as a method for functional quantitation of mitochondrial protein phosphorylation as well as providing insight into the regulation of mitochondria via phosphorylation.
Collapse
Affiliation(s)
- Emily S. Boja
- Proteomics Core Facility, National Heart Lung and Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892
| | - Darci Phillips
- Laboratory of Cardiac Energetics, National Heart Lung and Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892
| | - Stephanie A. French
- Laboratory of Cardiac Energetics, National Heart Lung and Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892
| | - Robert A. Harris
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, 46202-2111
| | - Robert S. Balaban
- Laboratory of Cardiac Energetics, National Heart Lung and Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892
| |
Collapse
|
106
|
Premsler T, Zahedi RP, Lewandrowski U, Sickmann A. Recent advances in yeast organelle and membrane proteomics. Proteomics 2009; 9:4731-43. [DOI: 10.1002/pmic.200900201] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
107
|
Massoni A, Moes S, Perrot M, Jenoe P, Boucherie H. Exploring the dynamics of the yeast proteome by means of 2-DE. Proteomics 2009; 9:4674-85. [DOI: 10.1002/pmic.200800965] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
108
|
Foster DB, Van Eyk JE, Marbán E, O'Rourke B. Redox signaling and protein phosphorylation in mitochondria: progress and prospects. J Bioenerg Biomembr 2009; 41:159-68. [PMID: 19440831 DOI: 10.1007/s10863-009-9217-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
As we learn more about the factors that govern cardiac mitochondrial bioenergetics, fission and fusion, as well as the triggers of apoptotic and necrotic cell death, there is growing appreciation that these dynamic processes are finely-tuned by equally dynamic post-translational modification of proteins in and around the mitochondrion. In this minireview, we discuss the evidence that S-nitrosylation, glutathionylation and phosphorylation of mitochondrial proteins have important bioenergetic consequences. A full accounting of these targets, and the functional impact of their modifications, will be necessary to determine the extent to which these processes underlie ischemia/reperfusion injury, cardioprotection by pre/post-conditioning, and the pathogenesis of heart failure.
Collapse
Affiliation(s)
- D Brian Foster
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Ross Research Building, Room 847, 720 Rutland Avenue, Baltimore, MD 21205, USA.
| | | | | | | |
Collapse
|
109
|
Yeast prion [PSI+] lowers the levels of mitochondrial prohibitins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1703-9. [PMID: 19695293 DOI: 10.1016/j.bbamcr.2009.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 08/07/2009] [Accepted: 08/07/2009] [Indexed: 12/11/2022]
Abstract
We report proteomic analyses that establish the effect of cytoplasmic prion [PSI(+)] on the protein complement of yeast mitochondria. A set of 44 yeast mitochondrial proteins whose levels were affected by [PSI(+)] was identified by two methods of gel-free and label-free differential proteomics. From this set we focused on prohibitins, Phb1 and Phb2, and the mitochondrially synthesized Cox2 subunit of cytochrome oxidase. By immunoblotting we confirmed the decreased level of Cox2 and reduced mitochondrial localization of the prohibitins in [PSI(+)] cells, which both became partially restored by [PSI(+)] curing. The presence of the [PSI(+)] prion also caused premature fragmentation of mitochondria, a phenomenon linked to prohibitin depletion in mammalian cells. By fractionation of cellular extracts we demonstrated a [PSI(+)]-dependent increase of the proportion of prohibitins in the high molecular weight fraction of aggregated proteins. We propose that the presence of the yeast prion causes newly synthesized prohibitins to aggregate in the cytosol, and therefore reduces their levels in mitochondria, which in turn reduces the stability of Cox2 and possibly of other proteins, not investigated here in detail.
Collapse
|
110
|
Polzien L, Baljuls A, Rennefahrt UEE, Fischer A, Schmitz W, Zahedi RP, Sickmann A, Metz R, Albert S, Benz R, Hekman M, Rapp UR. Identification of novel in vivo phosphorylation sites of the human proapoptotic protein BAD: pore-forming activity of BAD is regulated by phosphorylation. J Biol Chem 2009; 284:28004-28020. [PMID: 19667065 DOI: 10.1074/jbc.m109.010702] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BAD is a proapoptotic member of the Bcl-2 protein family that is regulated by phosphorylation in response to survival factors. Although much attention has been devoted to the identification of phosphorylation sites in murine BAD, little data are available with respect to phosphorylation of human BAD protein. Using mass spectrometry, we identified here besides the established phosphorylation sites at serines 75, 99, and 118 several novel in vivo phosphorylation sites within human BAD (serines 25, 32/34, 97, and 124). Furthermore, we investigated the quantitative contribution of BAD targeting kinases in phosphorylating serine residues 75, 99, and 118. Our results indicate that RAF kinases represent, besides protein kinase A, PAK, and Akt/protein kinase B, in vivo BAD-phosphorylating kinases. RAF-induced phosphorylation of BAD was reduced to control levels using the RAF inhibitor BAY 43-9006. This phosphorylation was not prevented by MEK inhibitors. Consistently, expression of constitutively active RAF suppressed apoptosis induced by BAD and the inhibition of colony formation caused by BAD could be prevented by RAF. In addition, using the surface plasmon resonance technique, we analyzed the direct consequences of BAD phosphorylation by RAF with respect to association with 14-3-3 and Bcl-2/Bcl-X(L) proteins. Phosphorylation of BAD by active RAF promotes 14-3-3 protein association, in which the phosphoserine 99 represented the major binding site. Finally, we show here that BAD forms channels in planar bilayer membranes in vitro. This pore-forming capacity was dependent on phosphorylation status and interaction with 14-3-3 proteins. Collectively, our findings provide new insights into the regulation of BAD function by phosphorylation.
Collapse
Affiliation(s)
- Lisa Polzien
- Institute for Medical Radiation and Cell Research, University of Wuerzburg, 97078 Wuerzburg
| | - Angela Baljuls
- Institute for Medical Radiation and Cell Research, University of Wuerzburg, 97078 Wuerzburg
| | - Ulrike E E Rennefahrt
- Institute for Medical Radiation and Cell Research, University of Wuerzburg, 97078 Wuerzburg
| | - Andreas Fischer
- Institute for Medical Radiation and Cell Research, University of Wuerzburg, 97078 Wuerzburg
| | - Werner Schmitz
- Institute of Physiological Chemistry, University of Wuerzburg, 97078 Wuerzburg
| | - Rene P Zahedi
- Institute for Analytical Sciences, Department of Bioanalytics, 44139 Dortmund
| | - Albert Sickmann
- Institute for Analytical Sciences, Department of Bioanalytics, 44139 Dortmund; Medical Proteome Center, Ruhr University of Bochum, 44801 Bochum, Germany
| | - Renate Metz
- Institute for Medical Radiation and Cell Research, University of Wuerzburg, 97078 Wuerzburg
| | - Stefan Albert
- Julius-von-Sachs Institute for Biosciences, University of Wuerzburg, 97078 Wuerzburg
| | - Roland Benz
- Institute of Biotechnology, University of Wuerzburg, 97078 Wuerzburg
| | - Mirko Hekman
- Institute for Medical Radiation and Cell Research, University of Wuerzburg, 97078 Wuerzburg
| | - Ulf R Rapp
- Institute for Medical Radiation and Cell Research, University of Wuerzburg, 97078 Wuerzburg.
| |
Collapse
|
111
|
Voss K, Stahl S, Hogan BM, Reinders J, Schleider E, Schulte-Merker S, Felbor U. Functional analyses of human and zebrafish 18-amino acid in-frame deletion pave the way for domain mapping of the cerebral cavernous malformation 3 protein. Hum Mutat 2009; 30:1003-11. [PMID: 19370760 DOI: 10.1002/humu.20996] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Katrin Voss
- Department of Human Genetics, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
112
|
Aponte AM, Phillips D, Hopper RK, Johnson DT, Harris RA, Blinova K, Boja ES, French S, Balaban RS. Use of (32)P to study dynamics of the mitochondrial phosphoproteome. J Proteome Res 2009; 8:2679-95. [PMID: 19351177 PMCID: PMC3177856 DOI: 10.1021/pr800913j] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Protein phosphorylation is a well-characterized regulatory mechanism in the cytosol, but remains poorly defined in the mitochondrion. In this study, we characterized the use of (32)P-labeling to monitor the turnover of protein phosphorylation in the heart and liver mitochondria matrix. The (32)P labeling technique was compared and contrasted to Phos-tag protein phosphorylation fluorescent stain and 2D isoelectric focusing. Of the 64 proteins identified by MS spectroscopy in the Phos-Tag gels, over 20 proteins were correlated with (32)P labeling. The high sensitivity of (32)P incorporation detected proteins well below the mass spectrometry and even 2D gel protein detection limits. Phosphate-chase experiments revealed both turnover and phosphate associated protein pool size alterations dependent on initial incubation conditions. Extensive weak phosphate/phosphate metabolite interactions were observed using nondisruptive native gels, providing a novel approach to screen for potential allosteric interactions of phosphate metabolites with matrix proteins. We confirmed the phosphate associations in Complexes V and I due to their critical role in oxidative phosphorylation and to validate the 2D methods. These complexes were isolated by immunocapture, after (32)P labeling in the intact mitochondria, and revealed (32)P-incorporation for the alpha, beta, gamma, OSCP, and d subunits in Complex V and the 75, 51, 42, 23, and 13a kDa subunits in Complex I. These results demonstrate that a dynamic and extensive mitochondrial matrix phosphoproteome exists in heart and liver.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Robert S. Balaban
- To whom correspondence should be addressed: Laboratory of Cardiac Energetics, National Heart, Lung and Blood Institute, National Institutes of Health, 10 Center Dr., Room B1D416, Bethesda, MD 20892-1061. Telephone: (301) 496-3658. Fax: (301) 402-2389.
| |
Collapse
|
113
|
Paiva S, Vieira N, Nondier I, Haguenauer-Tsapis R, Casal M, Urban-Grimal D. Glucose-induced ubiquitylation and endocytosis of the yeast Jen1 transporter: role of lysine 63-linked ubiquitin chains. J Biol Chem 2009; 284:19228-36. [PMID: 19433580 DOI: 10.1074/jbc.m109.008318] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein ubiquitylation is essential for many events linked to intracellular protein trafficking. Despite the significance of this process, the molecular mechanisms that govern the regulation of ubiquitylation remain largely unknown. Plasma membrane transporters are subjected to tightly regulated endocytosis, and ubiquitylation is a key signal at several stages of the endocytic pathway. The yeast monocarboxylate transporter Jen1 displays glucose-regulated endocytosis. We show here that casein kinase 1-dependent phosphorylation and HECT-ubiquitin ligase Rsp5-dependent ubiquitylation are required for Jen1 endocytosis. Ubiquitylation and endocytosis of Jen1 are induced within minutes in response to glucose addition. Jen1 is modified at the cell surface by oligo-ubiquitylation with ubiquitin-Lys(63) linked chain(s), and Jen1-Lys(338) is one of the target residues. Ubiquitin-Lys(63)-linked chain(s) are also required directly or indirectly to sort Jen1 into multivesicular bodies. Jen1 is one of the few examples for which ubiquitin-Lys(63)-linked chain(s) was shown to be required for correct trafficking at two stages of endocytosis: endocytic internalization and sorting at multivesicular bodies.
Collapse
Affiliation(s)
- Sandra Paiva
- Department of Biology, Molecular and Environmental Biology Centre, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | | | | | | | | | | |
Collapse
|
114
|
Kadenbach B, Ramzan R, Wen L, Vogt S. New extension of the Mitchell Theory for oxidative phosphorylation in mitochondria of living organisms. Biochim Biophys Acta Gen Subj 2009; 1800:205-12. [PMID: 19409964 DOI: 10.1016/j.bbagen.2009.04.019] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 04/22/2009] [Accepted: 04/27/2009] [Indexed: 01/04/2023]
Abstract
The Mitchell Theory implies the proton motive force Deltap across the inner mitochondrial membrane as the energy-rich intermediate of oxidative phosphorylation. Deltap is composed mainly of an electrical (DeltaPsi(m)) and a chemical part (DeltapH) and generated by the respiratory chain complexes I, III and IV. It is consumed mostly by the ATP synthase (complex V) to produce ATP. The free energy of electron transport within the proton pumps is sufficient to generate Deltap of about 240 mV. The proton permeability of biological membranes, however, increases exponentially above 130 mV leading to a waste of energy at high values (DeltaPsi(m)>140 mV). In addition, at DeltaPsi(m)>140 mV, the production of the superoxide radical anion O(2)(-) at complexes I, II and III increases exponentially with increasing DeltaPsi(m). O(2)(-) and its neutral product H(2)O(2) (=ROS, reactive oxygen species) induce oxidative stress which participates in aging and in the generation of degenerative diseases. Here we describe a new mechanism which acts independently of the Mitchell Theory and keeps DeltaPsi(m) at low values through feedback inhibition of complex IV (cytochrome c oxidase) at high ATP/ADP ratios, thus preventing the formation of ROS and maintaining high efficiency of oxidative phosphorylation.
Collapse
Affiliation(s)
- Bernhard Kadenbach
- Fachbereich Chemie, Cardiovascular Laboratory, Philipps-University, D-35032 Marburg, Germany
| | | | | | | |
Collapse
|
115
|
Lippe G, Bisetto E, Comelli M, Contessi S, Di Pancrazio F, Mavelli I. Mitochondrial and cell-surface F0F1ATPsynthase in innate and acquired cardioprotection. J Bioenerg Biomembr 2009; 41:151-7. [PMID: 19387805 DOI: 10.1007/s10863-009-9208-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Mitochondria are central to heart function and dysfunction, and the pathways activated by different cardioprotective interventions mostly converge on mitochondria. In a context of perspectives in innate and acquired cardioprotection, we review some recent advances in F(0)F(1)ATPsynthase structure/function and regulation in cardiac cells. We focus on three topics regarding the mitochondrial F(0)F(1)ATPsynthase and the plasma membrane enzyme, i.e.: i) the crucial role of cardiac mitochondrial F(0)F(1)ATPsynthase regulation by the inhibitory protein IF(1) in heart preconditioning strategies; ii) the structure and function of mitochondrial F(0)F(1)ATPsynthase oligomers in mammalian myocardium as possible endogenous factors of mitochondria resistance to ischemic insult; iii) the external location and characterization of plasma membrane F(0)F(1) ATP synthase in search for possible actors of its regulation, such as IF(1) and calmodulin, at cell surface.
Collapse
Affiliation(s)
- Giovanna Lippe
- Department of Biomedical Sciences and Technologies and M.A.T.I. Centre of Excellence, University of Udine, P.le Kolbe 4, 33100, Udine, Italy
| | | | | | | | | | | |
Collapse
|
116
|
Current World Literature. Curr Opin Lipidol 2009; 20:135-42. [PMID: 19276892 DOI: 10.1097/mol.0b013e32832a7e09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
117
|
Liu W, Vives-Bauza C, Acín-Peréz- R, Yamamoto A, Tan Y, Li Y, Magrané J, Stavarache MA, Shaffer S, Chang S, Kaplitt MG, Huang XY, Beal MF, Manfredi G, Li C. PINK1 defect causes mitochondrial dysfunction, proteasomal deficit and alpha-synuclein aggregation in cell culture models of Parkinson's disease. PLoS One 2009; 4:e4597. [PMID: 19242547 PMCID: PMC2644779 DOI: 10.1371/journal.pone.0004597] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Accepted: 01/20/2009] [Indexed: 12/21/2022] Open
Abstract
Mutations in PTEN induced kinase 1 (PINK1), a mitochondrial Ser/Thr kinase, cause an autosomal recessive form of Parkinson's disease (PD), PARK6. Here, we report that PINK1 exists as a dimer in mitochondrial protein complexes that co-migrate with respiratory chain complexes in sucrose gradients. PARK6 related mutations do not affect this dimerization and its associated complexes. Using in vitro cell culture systems, we found that mutant PINK1 or PINK1 knock-down caused deficits in mitochondrial respiration and ATP synthesis. Furthermore, proteasome function is impaired with a loss of PINK1. Importantly, these deficits are accompanied by increased alpha-synclein aggregation. Our results indicate that it will be important to delineate the relationship between mitochondrial functional deficits, proteasome dysfunction and alpha-synclein aggregation.
Collapse
Affiliation(s)
- Wencheng Liu
- Department of Neurology and Neurosciences, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Cristofol Vives-Bauza
- Department of Neurology and Neurosciences, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Rebeca Acín-Peréz-
- Department of Neurology and Neurosciences, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Ai Yamamoto
- Judith P. Sulzberger M.D. Columbia Genome Center and Department of Physiology and Cellular Biophysics, Columbia University, New York, New York, United States of America
| | - Yingcai Tan
- Department of Physiology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Yanping Li
- Department of Neurology and Neurosciences, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Jordi Magrané
- Department of Neurology and Neurosciences, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Mihaela A. Stavarache
- Department of Neurological Surgery, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Sebastian Shaffer
- Department of Neurology and Neurosciences, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Simon Chang
- Department of Neurology and Neurosciences, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Michael G. Kaplitt
- Department of Neurological Surgery, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Xin-Yun Huang
- Department of Physiology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - M. Flint Beal
- Department of Neurology and Neurosciences, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Giovanni Manfredi
- Department of Neurology and Neurosciences, Weill Medical College of Cornell University, New York, New York, United States of America
- * E-mail: (GM); (CL)
| | - Chenjian Li
- Department of Neurology and Neurosciences, Weill Medical College of Cornell University, New York, New York, United States of America
- * E-mail: (GM); (CL)
| |
Collapse
|
118
|
Young MJ, Court DA. Effects of the S288c genetic background and common auxotrophic markers on mitochondrial DNA function in Saccharomyces cerevisiae. Yeast 2009; 25:903-12. [PMID: 19160453 DOI: 10.1002/yea.1644] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Saccharomyces cerevisiae is a valuable model organism for the study of eukaryotic processes. Throughout its development as a research tool, several strain backgrounds have been utilized and different combinations of auxotrophic marker genes have been introduced into them, creating a useful but non-homogeneous set of strains. The ade2 allele was used as an auxotrophic marker, and for 'red-white' screening for respiratory competence. his3 alleles that influence the expression of MRM1 have been used as selectable markers, and the MIP1[S] allele, found in the commonly used S228c strain, is associated with mitochondrial DNA defects. The focus of the current work was to examine the effects of these alleles, singly and in combination, on the maintenance of mitochondrial function. The combination of the ade2 and MIP1[S] alleles is associated with a slight increase in point mutations in mitochondrial DNA. The deletion in the his3Delta200 allele, which removes the promoter for MRM1, is associated with loss of respiratory competence at 37 degrees C in the presence of either MIP1 allele. Thus, multiple factors can contribute to the maintenance of mitochondrial function, reinforcing the concept that strain background is an important consideration in both designing experiments and comparing results obtained by different research groups.
Collapse
Affiliation(s)
- M J Young
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | |
Collapse
|
119
|
Foster DB, O'Rourke B, Van Eyk JE. What can mitochondrial proteomics tell us about cardioprotection afforded by preconditioning? Expert Rev Proteomics 2009; 5:633-6. [PMID: 18937553 DOI: 10.1586/14789450.5.5.633] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- D Brian Foster
- Institute of Molecular Cardiobiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
120
|
Daniel JH. A fitness-based interferential genetics approach using hypertoxic/inactive gene alleles as references. Mol Genet Genomics 2009; 281:437-45. [PMID: 19152005 DOI: 10.1007/s00438-008-0416-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2008] [Accepted: 12/16/2008] [Indexed: 01/22/2023]
Abstract
Genetics, genomics, and biochemistry have all been of immense help in characterizing macromolecular cell entities and their interactions. Still, obtaining an overall picture of the functioning of even a simple unicellular species has remained a challenging task. One possible way to obtain a comprehensive picture has been described: by capitalizing on the observation that the overexpression on a multicopy plasmid of apparently any wild-type gene in yeast can lead to some negative effect on cell fitness (referring to the concept of "gene toxicity"), the FIG (fitness-based interferential genetics) approach was devised for selecting normal genes that are in antagonistic (and potentially also agonistic) relationship with a particular gene used as a reference. Herein, we take a complementary approach to FIG, by first selecting a "hypertoxic" allele of the reference gene--which easily provides the general possibility of obtaining gene products with the remarkable property of being inactive without altering their macromolecular interactivity--and then looking for the genes that interact functionally with this reference. Thus, FIG and the present approach (Trap-FIG), both taking advantage of the negative effects on cell fitness induced by various quantitative modulations in cellular networks, could potentially pave the way for the emergence of efficient in situ biochemistry.
Collapse
Affiliation(s)
- Jacques H Daniel
- Centre de Génétique Moléculaire, Centre National de la Recherche Scientifique, rue de la Terrasse, 91198, Gif-sur-Yvette, France.
| |
Collapse
|
121
|
Distler AM, Kerner J, Hoppel CL. Proteomics of mitochondrial inner and outer membranes. Proteomics 2009; 8:4066-82. [PMID: 18763707 DOI: 10.1002/pmic.200800102] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
For the proteomic study of mitochondrial membranes, documented high quality mitochondrial preparations are a necessity to ensure proper localization. Despite the state-of-the-art technologies currently in use, there is no single technique that can be used for all studies of mitochondrial membrane proteins. Herein, we use examples to highlight solubilization techniques, different chromatographic methods, and developments in gel electrophoresis for proteomic analysis of mitochondrial membrane proteins. Blue-native gel electrophoresis has been successful not only for dissection of the inner membrane oxidative phosphorylation system, but also for the components of the outer membrane such as those involved in protein import. Identification of PTMs such as phosphorylation, acetylation, and nitration of mitochondrial membrane proteins has been greatly improved by the use of affinity techniques. However, understanding of the biological effect of these modifications is an area for further exploration. The rapid development of proteomic methods for both identification and quantitation, especially for modifications, will greatly impact the understanding of the mitochondrial membrane proteome.
Collapse
Affiliation(s)
- Anne M Distler
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
122
|
Ruiz-Romero C, Blanco FJ. Mitochondrial proteomics and its application in biomedical research. MOLECULAR BIOSYSTEMS 2009; 5:1130-42. [DOI: 10.1039/b906296n] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
123
|
Pocsfalvi G. Chapter 5 Selective Enrichment in Phosphopeptides for the Identification of Phosphorylated Mitochondrial Proteins. Methods Enzymol 2009; 457:81-96. [DOI: 10.1016/s0076-6879(09)05005-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
124
|
Tauche A, Krause-Buchholz U, Rödel G. Ubiquinone biosynthesis inSaccharomyces cerevisiae: the molecular organization ofO-methylase Coq3p depends on Abc1p/Coq8p. FEMS Yeast Res 2008; 8:1263-75. [DOI: 10.1111/j.1567-1364.2008.00436.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
125
|
Dai S, Jia Y, Wu SL, Isenberg JS, Ridnour LA, Bandle RW, Wink DA, Roberts DD, Karger BL. Comprehensive characterization of heat shock protein 27 phosphorylation in human endothelial cells stimulated by the microbial dithiole thiolutin. J Proteome Res 2008; 7:4384-95. [PMID: 18720982 DOI: 10.1021/pr800376w] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Thiolutin is a sulfur-based microbial compound with known activity as an angiogenesis inhibitor. Relative to previously studied angiogenesis inhibitors, thiolutin is a remarkably potent inducer of heat shock protein 27 (Hsp27) phosphorylation. This phosphorylation requires p38 kinase but is independent of increased p38 phosphorylation. To elucidate how thiolutin regulates Hsp27 phosphorylation and ultimately angiogenesis, Hsp27 was immunoprecipitated using nonphosphorylated and phospho-Ser78 specific antibodies from lysates of thiolutin treated and untreated human umbilical vein endothelial cells and analyzed by LC-MS. Separate LC-MS analyses of Lys-C, Lys-C plus trypsin, and Lys-C plus Glu-C digests provided 100% sequence coverage, including the identification of a very large 13 kDa Lys-C fragment using a special sample handling procedure (4 M guanidine HCl) prior to the LC-MS analysis to improve the large peptide recovery. The analysis revealed a novel post-translational modification of Hsp27 involving truncation of the N-terminal Met and acetylation of the penultimate Thr. Analysis of a Glu-C fragment containing two phosphorylation sites, Ser78 and Ser82, and a tryptic fragment containing the other phosphorylation site, Ser15, enabled quantitative stoichiometry of Hsp27 phosphorylation by LC-MS. The strategy revealed details of Hsp27 phosphorylation, including significant di-phosphorylation at both Ser78 and Ser82, that would be difficult to obtain by traditional approaches because oligomerization of the hydrophobic N-terminal region of the molecule prevents efficient enzymatic cleavage. The combination of Western blotting, immunoprecipation, and LC-MS provides a quantitative analysis of thiolutin-stimulated Hsp27 phosphorylation and further defines the role of Hsp27 in the antiangiogenic activities of thiolutin and related dithiolethiones.
Collapse
Affiliation(s)
- Shujia Dai
- Barnett Institute, Northeastern University, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
126
|
|
127
|
Baljuls A, Schmitz W, Mueller T, Zahedi RP, Sickmann A, Hekman M, Rapp UR. Positive regulation of A-RAF by phosphorylation of isoform-specific hinge segment and identification of novel phosphorylation sites. J Biol Chem 2008; 283:27239-54. [PMID: 18662992 DOI: 10.1074/jbc.m801782200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In mammals the RAF family of serine/threonine kinases consists of three members, A-, B-, and C-RAF. Activation of RAF kinases involves a complex series of phosphorylations. Although the most prominent phosphorylation sites of B- and C-RAF are well characterized, little is known about regulatory phosphorylation of A-RAF. Using mass spectrometry, we identified here a number of novel in vivo phosphorylation sites in A-RAF. In particular, we found that Ser-432 participates in MEK binding and is indispensable for A-RAF signaling. On the other hand, phosphorylation within the activation segment does not contribute to epidermal growth factor-mediated activation. Furthermore, we show that the potential 14-3-3 binding domains in A-RAF are phosphorylated independently of its activation status. Of importance, we identified a novel regulatory domain in A-RAF (referred to as IH-segment) positioned between amino acids 248 and 267 that contains seven putative phosphorylation sites. Three of these sites, serines 257, 262, and 264, regulate A-RAF activation in a stimulatory manner. The spatial model of the A-RAF fragment, including residues between Ser-246 and Glu-277, revealed a switch of charge at the molecular surface of the IH-region upon phosphorylation, suggesting a mechanism in which the high accumulation of negative charges may lead to an electrostatic destabilization of protein-membrane interaction resulting in depletion of A-RAF from the plasma membrane. Together, we provide here for the first time a detailed analysis of in vivo A-RAF phosphorylation status and demonstrate that regulation of A-RAF by phosphorylation exhibits unique features compared with B- and C-RAF.
Collapse
Affiliation(s)
- Angela Baljuls
- Institute for Medical Radiation and Cell Research, University of Wuerzburg, 97078 Wuerzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
128
|
Soubannier V, McBride HM. Positioning mitochondrial plasticity within cellular signaling cascades. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:154-70. [PMID: 18694785 DOI: 10.1016/j.bbamcr.2008.07.008] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 07/08/2008] [Accepted: 07/10/2008] [Indexed: 01/06/2023]
Abstract
Mitochondria evolved from alpha-proteobacteria captured within a host between two and three billion years ago. This origin resulted in the formation of a double-layered organelle resulting in four distinct sub-compartments: the outer membrane, the intermembrane space, the inner membrane and the matrix. The inner membrane is organized in cristae, harboring the respiratory chain and ATP synthase complexes responsible of the oxidative phosphorylation, the main energy-generating system of the cell. It is generally considered that the ultrastructure of the inner membrane provides a large variety of morphologies that facilitate metabolic output. This classical view of mitochondria as bean-shaped organelles was static until in the last decade when new imaging studies and genetic screens provided a more accurate description of a dynamic mitochondrial reticulum that fuse and divide continuously. Since then significant findings have been made in the study of machineries responsible for fusion, fission and motility, however the mechanisms and signals that regulate mitochondrial dynamics are only beginning to emerge. A growing body of evidence indicates that metabolic and cellular signals influence mitochondrial dynamics, leading to a new understanding of how changes in mitochondrial shape can have a profound impact on the functional output of the organelle. The mechanisms that regulate mitochondrial morphology are incompletely understood, but evidence to date suggests that the morphology machinery is modulated through the use of post-translational modifications, including nucleotide-binding proteins, phosphorylation, ubiquitination, SUMOylation, and changes in the lipid environment. This review focuses on the molecular switches that control mitochondrial dynamics and the integration of mitochondrial morphology within cellular signaling cascades.
Collapse
Affiliation(s)
- Vincent Soubannier
- University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON, Canada K1Y 4W7
| | | |
Collapse
|
129
|
Eukaryotic complex I: functional diversity and experimental systems to unravel the assembly process. Mol Genet Genomics 2008; 280:93-110. [DOI: 10.1007/s00438-008-0350-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2008] [Accepted: 05/01/2008] [Indexed: 10/21/2022]
|
130
|
Vaupotic T, Veranic P, Jenoe P, Plemenitas A. Mitochondrial mediation of environmental osmolytes discrimination during osmoadaptation in the extremely halotolerant black yeast Hortaea werneckii. Fungal Genet Biol 2008; 45:994-1007. [DOI: 10.1016/j.fgb.2008.01.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 01/26/2008] [Accepted: 01/28/2008] [Indexed: 11/28/2022]
|
131
|
Mills RD, Sim CH, Mok SS, Mulhern TD, Culvenor JG, Cheng HC. Biochemical aspects of the neuroprotective mechanism of PTEN-induced kinase-1 (PINK1). J Neurochem 2008; 105:18-33. [DOI: 10.1111/j.1471-4159.2008.05249.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
132
|
Lewandrowski U, Sickmann A, Cesaro L, Brunati AM, Toninello A, Salvi M. Identification of new tyrosine phosphorylated proteins in rat brain mitochondria. FEBS Lett 2008; 582:1104-10. [DOI: 10.1016/j.febslet.2008.02.077] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 02/12/2008] [Accepted: 02/29/2008] [Indexed: 01/12/2023]
|
133
|
Gey U, Czupalla C, Hoflack B, Rödel G, Krause-Buchholz U. Yeast pyruvate dehydrogenase complex is regulated by a concerted activity of two kinases and two phosphatases. J Biol Chem 2008; 283:9759-67. [PMID: 18180296 DOI: 10.1074/jbc.m708779200] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The activity of yeast pyruvate dehydrogenase complex is regulated by reversible phosphorylation. Recently we identified two enzymes that are involved in the phosphorylation (Pkp1p) and dephosphorylation (Ppp1p) of Pda1p, the alpha-subunit of the pyruvate dehydrogenase complex. Here we provide evidence that two additional mitochondrial proteins, Pkp2p (Ygl059wp) and Ppp2p (Ycr079wp), are engaged in the regulation of this complex by affecting the phosphorylation state of Pda1p. Our data indicate complementary activities of the kinases and a redundant function for the phosphatases. Both proteins are associated with the complex. We propose a model for the role of the regulatory enzymes and the phosphorylation state of Pda1p in the assembly process of the pyruvate dehydrogenase complex.
Collapse
Affiliation(s)
- Uta Gey
- Institute of Genetics, Dresden University of Technology, 01062 Dresden, Germany
| | | | | | | | | |
Collapse
|
134
|
Devenish RJ, Prescott M, Rodgers AJW. The structure and function of mitochondrial F1F0-ATP synthases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 267:1-58. [PMID: 18544496 DOI: 10.1016/s1937-6448(08)00601-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We review recent advances in understanding of the structure of the F(1)F(0)-ATP synthase of the mitochondrial inner membrane (mtATPase). A significant achievement has been the determination of the structure of the principal peripheral or stator stalk components bringing us closer to achieving the Holy Grail of a complete 3D structure for the complex. A major focus of the field in recent years has been to understand the physiological significance of dimers or other oligomer forms of mtATPase recoverable from membranes and their relationship to the structure of the cristae of the inner mitochondrial membrane. In addition, the association of mtATPase with other membrane proteins has been described and suggests that further levels of functional organization need to be considered. Many reports in recent years have concerned the location and function of ATP synthase complexes or its component subunits on the external surface of the plasma membrane. We consider whether the evidence supports complete complexes being located on the cell surface, the biogenesis of such complexes, and aspects of function especially related to the structure of mtATPase.
Collapse
Affiliation(s)
- Rodney J Devenish
- Department of Biochemistry and Molecular Biology, and ARC Centre of Excellence in Microbial Structural and Functional Genomics, Monash University, Clayton Campus, Victoria, 3800, Australia
| | | | | |
Collapse
|