101
|
Schopfer FJ, Cipollina C, Freeman BA. Formation and signaling actions of electrophilic lipids. Chem Rev 2011; 111:5997-6021. [PMID: 21928855 PMCID: PMC3294277 DOI: 10.1021/cr200131e] [Citation(s) in RCA: 255] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Francisco J. Schopfer
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States
| | - Chiara Cipollina
- Fondazione Ri.MED, Piazza Sett’Angeli 10, 90134 Palermo, Italy
- Institute of Biomedicine and Molecular Immunology, Italian National Research Council, Via U. La Malfa 153, 90146 Palermo, Italy
| | - Bruce A. Freeman
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
102
|
Wu J, Stevens JF, Maier CS. Mass spectrometry-based quantification of myocardial protein adducts with acrolein in an in vivo model of oxidative stress. Mol Nutr Food Res 2011; 55:1401-10. [PMID: 21809440 PMCID: PMC3517132 DOI: 10.1002/mnfr.201100255] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 06/20/2011] [Accepted: 06/29/2011] [Indexed: 01/06/2023]
Abstract
Acrolein (ACR) exposure leads to the formation of protein-ACR adducts. Protein modification by ACR has been associated with various chronic diseases including cardiovascular and neurodegenerative diseases. Here, we report an analytical strategy that enables the quantification of Michael-type protein adducts of ACR in mitochondrial proteome samples using liquid chromatography in combination with tandem mass spectrometry and selected ion monitoring (LC-MS/MS SRM) analysis. Our approach combines site-specific identification and relative quantification at the peptide level of protein-ACR adducts in relation to the unmodified protein thiol pool. Treatment of 3-month-old rats with CCl(4) , an established in vivo model of acute oxidative stress, resulted in significant increases in the ratios of distinct ACR-adducted peptides to the corresponding unmodified thiol-peptides obtained from proteins that were isolated from cardiac mitochondria. The mitochondrial proteins that were found adducted by ACR were malate dehydrogenase, NADH dehydrogenase [ubiquinone] flavoprotein 1, cytochrome c oxidase subunit VIb isoform 1, ATP synthase d chain, and ADP/ATP translocase 1. The findings indicate that protein modification by ACR has potential value as an index of mitochondrial oxidative stress.
Collapse
Affiliation(s)
- Jianyong Wu
- Department of Chemistry, Oregon State University, Corvallis OR, 97330
| | - Jan F. Stevens
- Department of Pharmaceutical Sciences and Linus Pauling Institute, Oregon State University, Corvallis OR, 97330
| | - Claudia S. Maier
- Department of Chemistry, Oregon State University, Corvallis OR, 97330
| |
Collapse
|
103
|
Fritz KS, Petersen DR. Exploring the biology of lipid peroxidation-derived protein carbonylation. Chem Res Toxicol 2011; 24:1411-9. [PMID: 21812433 DOI: 10.1021/tx200169n] [Citation(s) in RCA: 279] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The sustained overproduction of reactive oxygen and nitrogen species results in an imbalance of cellular prooxidant-antioxidant systems and is implicated in numerous disease states, including alcoholic liver disease, cancer, neurological disorders, inflammation, and cardiovascular disease. The accumulation of reactive aldehydes resulting from sustained oxidative stress and lipid peroxidation is an underlying factor in the development of these pathologies. Determining the biochemical factors that elicit cellular responses resulting from protein carbonylation remains a key element to developing therapeutic approaches and ameliorating disease pathologies. This review details our current understanding of the generation of reactive aldehydes via lipid peroxidation resulting in protein carbonylation, focusing on pathophysiologic factors associated with 4-hydroxynonenal-protein modification. Additionally, an overview of in vitro and in vivo model systems used to study the physiologic impact of protein carbonylation is presented. Finally, an update of the methods commonly used in characterizing protein modification by reactive aldehydes provides an overview of isolation techniques, mass spectrometry, and computational biology. It is apparent that research in this area employing state-of-the-art proteomics, mass spectrometry, and computational biology is rapidly evolving, yielding foundational knowledge concerning the molecular mechanisms of protein carbonylation and its relation to a spectrum of diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Kristofer S Fritz
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | | |
Collapse
|
104
|
Mammalian metallothionein in toxicology, cancer, and cancer chemotherapy. J Biol Inorg Chem 2011; 16:1087-101. [PMID: 21822976 DOI: 10.1007/s00775-011-0823-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 07/20/2011] [Indexed: 12/16/2022]
Abstract
The present paper centers on mammalian metallothionein 1 and 2 in relationship to cell and tissue injury beginning with its reaction with Cd²⁺ and then considering its role in the toxicology and chemotherapy of both metals and non-metal electrophiles and oxidants. Intertwined is a consideration of MTs role in tumor cell Zn²⁺ metabolism. The paper updates and expands on our recent review by Petering et al. (Met Ions Life Sci 5:353-398, 2009).
Collapse
|
105
|
Guo J, Prokai L. To tag or not to tag: a comparative evaluation of immunoaffinity-labeling and tandem mass spectrometry for the identification and localization of posttranslational protein carbonylation by 4-hydroxy-2-nonenal, an end-product of lipid peroxidation. J Proteomics 2011; 74:2360-9. [PMID: 21835276 DOI: 10.1016/j.jprot.2011.07.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 06/02/2011] [Accepted: 07/13/2011] [Indexed: 01/26/2023]
Abstract
Posttranslational carbonylation of proteins by the covalent attachment of the lipid peroxidation product 4-hydroxy-2-nonenal (HNE) is a biomarker of oxidative stress. Tandem mass spectrometry (MS/MS) has become an essential tool for characterization of this modification. Chemical tagging methods have been used to facilitate the immunoaffinity-based enrichment or even quantification of HNE-modified peptides and proteins. With MS/MS spectra of the untagged modified peptides considered as references, a comparative evaluation is presented focusing on the impact of affinity-tagging with four carbonyl-specific reagents (2,4-dinitrophenyl hydrazine, biotin hydrazide, biotinamidohexanoic acid hydrazide and N'-aminooxymethylcarbonyl-hydrazino D-biotin) on collision-induced dissociation of the tagged HNE-carbonylated peptides. Our study has shown that chemical labeling may not be carried out successfully for all the peptides and with all the reagents. The attachment of a tag usually cannot circumvent the occurrence of strong neutral losses observed with untagged species and, in addition, fragmentation of the introduced tag may also happen. Chemical tagging of certain peptides may, nevertheless, afford more sequence ions upon MS/MS than the untagged carbonylated peptide, especially when Michael addition of the lipid peroxidation product occurs on cysteine residues. Therefore, tagging may increase the confidence of identifications of HNE-modified peptides by database searches.
Collapse
Affiliation(s)
- Jia Guo
- Department of Molecular Biology & Immunology, University of North Texas Health Science Center, Fort Worth, USA
| | | |
Collapse
|
106
|
Connor RE, Marnett LJ, Liebler DC. Protein-selective capture to analyze electrophile adduction of hsp90 by 4-hydroxynonenal. Chem Res Toxicol 2011; 24:1275-82. [PMID: 21749116 PMCID: PMC3155980 DOI: 10.1021/tx200157t] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
The analysis of protein modification by electrophiles is a challenging problem. Most reported protein–electrophile adducts have been characterized from in vitro reactions or through affinity capture of the adduct moiety, which enables global analyses but is poorly suited to targeted studies of specific proteins. We employed a targeted molecular probe approach to study modifications of the molecular chaperone heat shock protein 90 (Hsp90), which regulates diverse client proteins. Noncovalent affinity capture with a biotinyl–geldanamycin probe isolated both isoforms of the native protein (Hsp90α and Hsp90β) from human RKO colorectal cancer cells. Geldanamycin–biotin capture afforded higher purity Hsp90 than did immunoprecipitation and enabled detection of endogenously phosphorylated protein by liquid chromatography–tandem mass spectrometry (LC-MS/MS). We applied this approach to map and quantify adducts formed on Hsp90 by 4-hydroxynonenal (HNE) in RKO cells. LC-MS/MS analyses of tryptic digests by identified His450 and His490 of Hsp90α as having a 158 Da modification, corresponding to NaBH4-reduced HNE adducts. Five histidine residues were also adducted on Hsp90β: His171, His442, His458, His625, and His632. The rates of adduction at these sites were determined with Hsp90 protein in vitro and with Hsp90 in HNE-treated cells with a LC-MS/MS-based, label-free relative quantitation method. During in vitro and cell treatment with HNE, residues on Hsp90α and Hsp90β displayed adduction rates ranging from 3.0 × 10–5 h–1 to 1.08 ± 0.17 h–1. Within the middle client-binding domain of Hsp90α, residue His450 demonstrated the most rapid adduction with kobs of 1.08 ± 0.17 h–1 in HNE-treated cells. The homologous residue on Hsp90β, His442, was adducted more rapidly than the N-terminal residue, His171, despite very similar predicted pKa values of both residues. The Hsp90 middle client-binding domain thus may play a signicant role in HNE-mediated disruption of Hsp90–client protein interactions. The results illustrate the utility of a protein-selective affinity capture approach for targeted analysis of electrophile adducts and their biological effects.
Collapse
Affiliation(s)
- Rebecca E Connor
- Department of Biochemistry, Vanderbilt Institute of Chemical Biology and Center in Molecular Toxicology, Vanderbilt University School of Medicine , U1213 MRBIII, 465 21st Avenue South, Nashville, Tennessee 37232-6350, United States
| | | | | |
Collapse
|
107
|
Zhang B, Shi Z, Duncan DT, Prodduturi N, Marnett LJ, Liebler DC. Relating protein adduction to gene expression changes: a systems approach. MOLECULAR BIOSYSTEMS 2011; 7:2118-27. [PMID: 21594272 PMCID: PMC3659419 DOI: 10.1039/c1mb05014a] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Modification of proteins by reactive electrophiles such as the 4-hydroxy-2-nonenal (HNE) plays a critical role in oxidant-associated human diseases. However, little is known about protein adduction and the mechanism by which protein damage elicits adaptive effects and toxicity. We developed a systems approach for relating protein adduction to gene expression changes through the integration of protein adduction, gene expression, protein-DNA interaction, and protein-protein interaction data. Using a random walk strategy, we expanded a list of responsive transcription factors inferred from gene expression studies to upstream signaling networks, which in turn allowed overlaying protein adduction data on the network for the prediction of stress sensors and their associated regulatory mechanisms. We demonstrated the general applicability of transcription factor-based signaling network inference using 103 known pathways. Applying our workflow on gene expression and protein adduction data from HNE-treatment not only rediscovered known mechanisms of electrophile stress but also generated novel hypotheses regarding protein damage sensors. Although developed for analyzing protein adduction data, the framework can be easily adapted for phosphoproteomics and other types of protein modification data.
Collapse
Affiliation(s)
- Bing Zhang
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | | | | | | | | | | |
Collapse
|
108
|
Shearn CT, Fritz KS, Thompson JA. Protein damage from electrophiles and oxidants in lungs of mice chronically exposed to the tumor promoter butylated hydroxytoluene. Chem Biol Interact 2011; 192:278-86. [PMID: 21536018 DOI: 10.1016/j.cbi.2011.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 04/15/2011] [Accepted: 04/16/2011] [Indexed: 11/16/2022]
Abstract
The food additive butylated hydroxytoluene (BHT) promotes tumorigenesis in mouse lung. Chronic BHT exposure is accompanied by pulmonary inflammation and several studies indicate that elevated levels of reactive oxygen species (ROS) are involved in its promoting activity. The link between BHT and elevated ROS involves formation of quinone methide (QM) metabolites; these electrophiles form adducts with a variety of lung proteins including several enzymes that protect cells from oxidative stress. Studies in vitro demonstrated that QM alkylation of cytoprotective enzymes is accompanied by inactivation, so an objective of the present investigation was to determine if inactivation also occurs in vivo. Two groups of mice were exposed to BHT by intraperitoneal injection, one for 10 days and the other for 24 days, and proteins from lung cytosols were examined for damage. Analysis by Western blotting demonstrated that BHT treatment caused substantial increases in protein carbonylation, nitration and adduction by 4-hydroxynonenal, confirming the occurrence of sustained oxidative and nitrosative stress over the treatment period required for tumor promotion. Effects of BHT on the activities and/or levels of a representative group of antioxidant/protective enzymes in mouse lung also were assessed; NAD(P)H:quinone reductase and glutathione reductase were unaffected, however carbonyl reductase activity decreased 50-60%. Superoxide dismutase and glutathione peroxidase activities increased 2- and 1.5-fold, respectively, and glutamate-cysteine ligase catalytic subunit expression increased 32-39% relative to untreated mice. Glutathione S-transferase (GST) activity decreased 50-60% but concentrations of the predominant isoforms, GSTM1 and P1, were not affected. GSTP1 was substantially more susceptible than M1 to adduction and inhibition by treatment with BHT-QM in vitro, suggesting that lower GST activity in mice after BHT treatment is due to adduction of the P1 isoform. The results of this study provide additional insight into mechanisms of BHT-induced oxidative damage and further support a link between inflammation and tumor promotion in mouse lung.
Collapse
Affiliation(s)
- Colin T Shearn
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 E. Montview Blvd., Aurora, CO 80045, USA
| | | | | |
Collapse
|
109
|
Shearn CT, Fritz KS, Reigan P, Petersen DR. Modification of Akt2 by 4-Hydroxynonenal Inhibits Insulin-Dependent Akt Signaling in HepG2 Cells. Biochemistry 2011; 50:3984-96. [DOI: 10.1021/bi200029w] [Citation(s) in RCA: 247] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- C. T. Shearn
- Department of Pharmaceutical Sciences, University of Colorado—Denver, Aurora, Colorado 80045, United States
| | - K. S. Fritz
- Department of Pharmaceutical Sciences, University of Colorado—Denver, Aurora, Colorado 80045, United States
| | - P. Reigan
- Department of Pharmaceutical Sciences, University of Colorado—Denver, Aurora, Colorado 80045, United States
| | - Dennis R. Petersen
- Department of Pharmaceutical Sciences, University of Colorado—Denver, Aurora, Colorado 80045, United States
| |
Collapse
|
110
|
Balogh LM, Atkins WM. Interactions of glutathione transferases with 4-hydroxynonenal. Drug Metab Rev 2011; 43:165-78. [PMID: 21401344 DOI: 10.3109/03602532.2011.558092] [Citation(s) in RCA: 269] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Electrophilic products of lipid peroxidation are important contributors to the progression of several pathological states. The prototypical α,β-unsaturated aldehyde, 4-hydroxynonenal (HNE), triggers cellular events associated with oxidative stress, which can be curtailed by the glutathione-dependent elimination of HNE. The glutathione transferases (GSTs) are a major determinate of the intracellular concentration of HNE and can influence susceptibility to toxic effects, particularly when HNE and GST levels are altered in disease states. In this article, we provide a brief summary of the cellular effects of HNE, followed by a review of its GST-catalyzed detoxification, with an emphasis on the structural attributes that play an important role in the interactions with alpha-class GSTs. Some of the key determining characteristics that impart high alkenal activity reside in the unique C-terminal interactions of the GSTA4-4 enzyme. Studies encompassing both kinetic and structural analyses of related isoforms will be highlighted, with additional attention to stereochemical aspects that demonstrate the capacity of GSTA4-4 to detoxify both enantiomers of the biologically relevant racemic mixture while generating a select set of diastereomeric products with subsequent implications. A summary of the literature that examines the interplay between GSTs and HNE in model systems relevant to oxidative stress will also be discussed to demonstrate the magnitude of importance of GSTs in the overall detoxification scheme.
Collapse
Affiliation(s)
- Larissa M Balogh
- Department of Pharmacokinetics, Dynamics, and Metabolism, Pfizer Global Research and Development, Pfizer Inc., Groton, CT 06340, USA.
| | | |
Collapse
|
111
|
Tang X, Sayre LM, Tochtrop GP. A mass spectrometric analysis of 4-hydroxy-2-(E)-nonenal modification of cytochrome c. JOURNAL OF MASS SPECTROMETRY : JMS 2011; 46:290-7. [PMID: 21394845 PMCID: PMC3903654 DOI: 10.1002/jms.1890] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Cytochrome c is a key mitochondrial respiratory protein that is particularly susceptible to modification during oxidative stress. The nature of this susceptibility is linked to the mitochondrial membrane being rich in esterified linoleic acid, which predisposes this organelle to the formation of lipid peroxidation products such as 4-hydroxy-2-(E)-nonenal (4-HNE). To better understand the nature of cytochrome c modification by 4-HNE, we initiated an in vitro study utilizing a combination of MALDI-TOF mass spectrometry, LC-ESI-MS/MS and isotope labeling to monitor 4-HNE modification of cytochrome c under various conditions. The overwhelming reaction observed is Michael addition by Lys side-chains in addition to the modification of His 33. While the Lys-4-HNE adducts were generally observed to be reversible, the 4-HNE-His 33 was observed to be stable with half of the formed adduct surviving the denaturation and proteolysis protocols used to generate proteolytic peptides for LC-ESI-MS/MS.
Collapse
Affiliation(s)
- Xiaoxia Tang
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106
| | - Lawrence M. Sayre
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106
| | - Gregory P. Tochtrop
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
112
|
|
113
|
Weerapana E, Wang C, Simon GM, Richter F, Khare S, Dillon MBD, Bachovchin DA, Mowen K, Baker D, Cravatt BF. Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature 2010; 468:790-5. [PMID: 21085121 PMCID: PMC3058684 DOI: 10.1038/nature09472] [Citation(s) in RCA: 1250] [Impact Index Per Article: 83.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 09/03/2010] [Indexed: 02/07/2023]
Abstract
Cysteine is the most intrinsically nucleophilic amino acid in proteins, where its reactivity is tuned to perform diverse biochemical functions. The absence of a consensus sequence that defines functional cysteines in proteins has hindered their discovery and characterization. Here we describe a proteomics method to profile quantitatively the intrinsic reactivity of cysteine residues en masse directly in native biological systems. Hyper-reactivity was a rare feature among cysteines and it was found to specify a wide range of activities, including nucleophilic and reductive catalysis and sites of oxidative modification. Hyper-reactive cysteines were identified in several proteins of uncharacterized function, including a residue conserved across eukaryotic phylogeny that we show is required for yeast viability and is involved in iron-sulphur protein biogenesis. We also demonstrate that quantitative reactivity profiling can form the basis for screening and functional assignment of cysteines in computationally designed proteins, where it discriminated catalytically active from inactive cysteine hydrolase designs.
Collapse
Affiliation(s)
- Eranthie Weerapana
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Hardwick RN, Fisher CD, Canet MJ, Lake AD, Cherrington NJ. Diversity in antioxidant response enzymes in progressive stages of human nonalcoholic fatty liver disease. Drug Metab Dispos 2010; 38:2293-301. [PMID: 20805291 PMCID: PMC2993454 DOI: 10.1124/dmd.110.035006] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 08/30/2010] [Indexed: 01/04/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), which occurs in approximately 17 to 40% of Americans, encompasses progressive stages of liver damage ranging from steatosis to nonalcoholic steatohepatitis (NASH). Inflammation and oxidative stress are known characteristics of NAFLD; however, the precise mechanisms occurring during disease progression remain unclear. The purpose of the current study was to determine whether the expression or function of enzymes involved in the antioxidant response, NAD(P)H:quinone oxidoreductase 1 (NQO1), glutathione transferase (GST), and glutamate cysteine ligase, are altered in the progression of human NAFLD. Human livers staged as normal, steatotic, NASH (fatty), and NASH (not fatty) were obtained from the Liver Tissue Cell Distribution System. NQO1 mRNA, protein, and activity tended to increase with disease progression. mRNA levels of the GST isoforms A1, A2, A4, M3, and P1 increased with NAFLD progression. Likewise, GST A and P protein increased with progression; however, GST M protein levels tended to decrease. Of interest, total GST activity toward the substrate 1-chloro-2,4-dinitrobenzene decreased with NAFLD progression. GSH synthesis does not seem to be significantly dysregulated in NAFLD progression; however, the GSH/oxidized glutathione redox ratio seemed to be reduced with disease severity, indicating the presence of oxidative stress and depletion of GSH throughout progression of NAFLD. Malondialdehyde concentrations were significantly increased with disease progression, further indicating the presence of oxidative stress. Nuclear immunohistochemical staining of nuclear factor E2-related factor 2 (Nrf2), an indicator of activation of the transcription factor, was evident in all stages of NAFLD. The current data suggest that Nrf2 activation occurs in response to disease progression followed by induction of specific Nrf2 targets, whereas functionality of specific antioxidant defense enzymes seems to be impaired as NAFLD progresses.
Collapse
Affiliation(s)
- Rhiannon N Hardwick
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona, USA
| | | | | | | | | |
Collapse
|
115
|
Méndez D, Hernáez ML, Diez A, Puyet A, Bautista JM. Combined Proteomic Approaches for the Identification of Specific Amino Acid Residues Modified by 4-Hydroxy-2-Nonenal under Physiological Conditions. J Proteome Res 2010; 9:5770-81. [DOI: 10.1021/pr100555v] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Darío Méndez
- Department of Biochemistry and Molecular Biology IV, Universidad Complutense de Madrid, Facultad de Veterinaria, Ciudad Universitaria, 28040 Madrid, Spain, The Proteomics Unit UCM-Parque Científico de Madrid, 28049 Madrid, Spain, and Instituto de Investigación Hospital 12 de Octubre, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid, Spain
| | - Maria Luisa Hernáez
- Department of Biochemistry and Molecular Biology IV, Universidad Complutense de Madrid, Facultad de Veterinaria, Ciudad Universitaria, 28040 Madrid, Spain, The Proteomics Unit UCM-Parque Científico de Madrid, 28049 Madrid, Spain, and Instituto de Investigación Hospital 12 de Octubre, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid, Spain
| | - Amalia Diez
- Department of Biochemistry and Molecular Biology IV, Universidad Complutense de Madrid, Facultad de Veterinaria, Ciudad Universitaria, 28040 Madrid, Spain, The Proteomics Unit UCM-Parque Científico de Madrid, 28049 Madrid, Spain, and Instituto de Investigación Hospital 12 de Octubre, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid, Spain
| | - Antonio Puyet
- Department of Biochemistry and Molecular Biology IV, Universidad Complutense de Madrid, Facultad de Veterinaria, Ciudad Universitaria, 28040 Madrid, Spain, The Proteomics Unit UCM-Parque Científico de Madrid, 28049 Madrid, Spain, and Instituto de Investigación Hospital 12 de Octubre, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid, Spain
| | - José M. Bautista
- Department of Biochemistry and Molecular Biology IV, Universidad Complutense de Madrid, Facultad de Veterinaria, Ciudad Universitaria, 28040 Madrid, Spain, The Proteomics Unit UCM-Parque Científico de Madrid, 28049 Madrid, Spain, and Instituto de Investigación Hospital 12 de Octubre, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid, Spain
| |
Collapse
|
116
|
Kostyuk VA, Potapovich AI, Cesareo E, Brescia S, Guerra L, Valacchi G, Pecorelli A, Deeva IB, Raskovic D, De Luca C, Pastore S, Korkina LG. Dysfunction of glutathione S-transferase leads to excess 4-hydroxy-2-nonenal and H(2)O(2) and impaired cytokine pattern in cultured keratinocytes and blood of vitiligo patients. Antioxid Redox Signal 2010; 13:607-20. [PMID: 20070240 DOI: 10.1089/ars.2009.2976] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Oxidative stress due to increased epidermal levels of H(2)O(2) with consequent inhibition of catalase activity is generally accepted as a leading cytotoxic mechanism of melanocyte loss in vitiligo. Keratinocyte-derived cytokines are considered key factors in the maintenance of melanocyte structure and functions. We hypothesized that abnormal redox control may lead to impaired cytokine production by keratinocytes, thus causing noncytotoxic defects in melanocyte proliferation and melanogenesis. We found significantly suppressed mRNA and protein expression of glutathione-S-transferase (GST) M1 isoform, and higher-than-normal levels of both 4-hydroxy-2-nonenal (HNE)-protein adducts and H(2)O(2) in the cultures of keratinocytes derived from unaffected and affected skin of vitiligo patients, and in their co-cultures with allogeneic melanocytes. GST and catalase activities, as well as glutathione levels, were dramatically low in erythrocytes, whilst HNE-protein adducts were high in the plasma of vitiligo patients. The broad spectrum of major cytokines, chemokines, and growth factors was dysregulated in both blood plasma and cultured keratinocytes of vitiligo patients, when compared to normal subjects. Exogenous HNE added to normal keratinocytes induced a vitiligo-like cytokine pattern, and H(2)O(2) overproduction accompanied by adaptive upregulation of catalase and GSTM1 genes, and transient inhibition of Erk1/2 and Akt phosphorylation. Based on these results, we suggest a novel GST-HNE-H(2)O(2)-based mechanism of dysregulation of cytokine-mediated keratinocyte-melanocyte interaction in vitiligo.
Collapse
Affiliation(s)
- Vladimir A Kostyuk
- Tissue Engineering and Cutaneous Pathophysiology Laboratory, Dermatology Research Institute (IDI IRCCS), Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Roe MR, McGowan TF, Thompson LV, Griffin TJ. Targeted 18O-labeling for improved proteomic analysis of carbonylated peptides by mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:1190-203. [PMID: 20434358 PMCID: PMC4100935 DOI: 10.1016/j.jasms.2010.03.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 02/03/2010] [Accepted: 02/04/2010] [Indexed: 05/11/2023]
Abstract
Proteomic characterization of carbonylated amino acid sites currently relies on confidently matching tandem mass spectra (MS(2)) to peptides within a sequence database. Although effective to some degree, reliable proteomic characterization of carbonylated peptides using this approach remains a challenge needing new, complementary solutions. To this end, we developed a method based on partial (18)O-labeling of reactive carbonyl modifications, which produces a unique isotope signature in mass spectra of carbonylated peptides and enables their detection without reliance on matching MS(2) spectra to a peptide sequence. Key to our method were optimized measures for eliminating trypsin-catalyzed incorporation of (18)O at peptide C-termini, and for stabilizing the incorporated (18)O within the carbonyl modification to prevent its loss during liquid chromatography separation. Applying our method to a rat skeletal muscle homogenate treated with the carbonyl modification 4-hyroxynonenal (4-HNE), we demonstrated its compatibility with solid-phase hydrazide enrichment of carbonylated peptides from complex mixtures. Additionally, we demonstrated the value of (18)O isotope signatures for confirming HNE-modified peptide sequences matched via sequence database searching, and identifying modified peptides missed by MS(2) and/or sequence database searching. Combining our (18)O-labeling method with a customized automated software script, we systematically evaluated for the first time the efficiency of MS(2) and sequence database searching for identifying HNE-modified peptides. We estimated that less than half of the modified peptides selected for MS(2) were successfully identified. Collectively, our method and software should provide valuable new tools for investigators studying protein carbonylation via mass spectrometry-based proteomics.
Collapse
Affiliation(s)
- Mikel R Roe
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
118
|
Zhu X, Tang X, Zhang J, Tochtrop GP, Anderson VE, Sayre LM. Mass spectrometric evidence for the existence of distinct modifications of different proteins by 2(E),4(E)-decadienal. Chem Res Toxicol 2010; 23:467-73. [PMID: 20070074 DOI: 10.1021/tx900379a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
2(E),4(E)-Decadienal (DDE), a lipid peroxidation product, was found to covalently modify Lys residues of different proteins by different reactions using mass spectrometry (MALDI-TOF-MS and LC-ESI-MS). DDE mainly formed Lys Schiff base adducts with cytochrome c and ribonuclease A at 10 min, but these reversibly formed adducts almost disappeared after 24 h. In contrast, beta-lactoglobulin (beta-LG) was highly modified by DDE after 24 h. In addition to the Lys Schiff base adducts, DDE formed novel Lys pyridinium adducts as well as Cys Michael adducts with beta-LG.
Collapse
Affiliation(s)
- Xiaochun Zhu
- Department of Chemistry and Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | | | | | | | | | |
Collapse
|
119
|
Jacobs AT, Marnett LJ. Systems analysis of protein modification and cellular responses induced by electrophile stress. Acc Chem Res 2010; 43:673-83. [PMID: 20218676 PMCID: PMC2873822 DOI: 10.1021/ar900286y] [Citation(s) in RCA: 182] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Biological electrophiles result from oxidative metabolism of exogenous compounds or endogenous cellular constituents, and they contribute to pathophysiologies such as toxicity and carcinogenicity. The chemical toxicology of electrophiles is dominated by covalent addition to intracellular nucleophiles. Reaction with DNA leads to the production of adducts that block replication or induce mutations. The chemistry and biology of electrophile−DNA reactions have been extensively studied, providing in many cases a detailed understanding of the relation between adduct structure and mutational consequences. By contrast, the linkage between protein modification and cellular response is poorly understood. In this Account, we describe our efforts to define the chemistry of protein modification and its biological consequences using lipid-derived α,β-unsaturated aldehydes as model electrophiles. In our global approach, two large data sets are analyzed: one represents the identity of proteins modified over a wide range of electrophile concentrations, and the second comprises changes in gene expression observed under similar conditions. Informatics tools show theoretical connections based primarily on transcription factors hypothetically shared between the two data sets, downstream of adducted proteins and upstream of affected genes. This method highlights potential electrophile-sensitive signaling pathways and transcriptional processes for further evaluation. Peroxidation of cellular phospholipids generates a complex mixture of both membrane-bound and diffusible electrophiles. The latter include reactive species such as malondialdehyde, 4-oxononenal, and 4-hydroxynonenal (HNE). Enriching HNE-adducted proteins for proteomic analysis was a technical challenge, solved with click chemistry that generated biotin-tagged protein adducts. For this purpose, HNE analogues bearing terminal azide or alkyne functionalities were synthesized. Cellular lysates were first exposed to a single type of HNE analogue (azido- or alkynyl-HNE), and then click reactions were performed against the cognate alkynyl- and azido-biotin derivative. The resulting biotin-labeled proteins were captured and enriched over a streptavidin matrix for subsequent mass spectrometric analysis. We thereby identified a multitude of HNE targets. Simultaneous microarray analysis of changes in gene expression triggered by HNE also produced an abundance of data. Functional analysis of both data sets generated the hypothesis that an important pathway of cellular response derives from electrophile modification of protein chaperones, resulting in the release of transcription factors that are their clients. Informatic analysis of the protein modification and microarray data sets identified several transcription factors as potential mediators of the cellular response to HNE-adducted proteins. Among these, heat shock factor 1 (HSF1) was confirmed as a sensitive and robust effector of HNE-induced changes in gene expression. Activation of HSF1 appears, in part, to be mediated by the electrophilic adduction of Hsp70 and Hsp90, which normally maintain HSF1 in an inactive cytosolic complex. The identification of HSF1 as a mediator of biological effects downstream of HSF1 has provided new opportunities for research, illustrating the potential of our systems-based approach. Accordingly, we characterized HSF1-mediated gene expression in protecting against electrophile-induced toxicity. Among the genes induced by HSF1, Bcl-2- associated athanogene 3 (BAG3) is notable for its actions in promoting cell survival through stabilization of antiapoptotic Bcl-2 proteins, appearing to have a critical role in mediating cellular protection against electrophile-induced death.
Collapse
Affiliation(s)
- Aaron T. Jacobs
- A.B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville Tennessee 37232-0146
| | - Lawrence J. Marnett
- A.B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville Tennessee 37232-0146
| |
Collapse
|
120
|
Doyle K, Fitzpatrick FA. Redox signaling, alkylation (carbonylation) of conserved cysteines inactivates class I histone deacetylases 1, 2, and 3 and antagonizes their transcriptional repressor function. J Biol Chem 2010; 285:17417-24. [PMID: 20385560 DOI: 10.1074/jbc.m109.089250] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cells use redox signaling to adapt to oxidative stress. For instance, certain transcription factors exist in a latent state that may be disrupted by oxidative modifications that activate their transcription potential. We hypothesized that DNA-binding sites (response elements) for redox-sensitive transcription factors may also exist in a latent state, maintained by co-repressor complexes containing class I histone deacetylase (HDAC) enzymes, and that HDAC inactivation by oxidative stress may antagonize deacetylase activity and unmask electrophile-response elements, thus activating transcription. Electrophiles suitable to test this hypothesis include reactive carbonyl species, often derived from peroxidation of arachidonic acid. We report that alpha,beta-unsaturated carbonyl compounds, e.g. the cyclopentenone prostaglandin, 15-deoxy-Delta12,14-PGJ(2) (15d-PGJ(2)), and 4-hydroxy-2-nonenal (4HNE), alkylate (carbonylate), a subset of class I HDACs including HDAC1, -2, and -3, but not HDAC8. Covalent modification at two conserved cysteine residues, corresponding to Cys(261) and Cys(273) in HDAC1, coincided with attenuation of histone deacetylase activity, changes in histone H3 and H4 acetylation patterns, derepression of a LEF1.beta-catenin model system, and transcription of HDAC-repressed genes, e.g. heme oxygenase-1 (HO-1), Gadd45, and HSP70. Identification of particular class I HDACs as components of the redox/electrophile-responsive proteome offers a basis for understanding how cells stratify their responses to varying degrees of pathophysiological oxidative stress associated with inflammation, cancer, and metabolic syndrome.
Collapse
Affiliation(s)
- Kelly Doyle
- Department of Medicinal Chemistry, University of Utah School of Pharmacy, Salt Lake City, Utah 84112, USA
| | | |
Collapse
|
121
|
Sekhar KR, Rachakonda G, Freeman ML. Cysteine-based regulation of the CUL3 adaptor protein Keap1. Toxicol Appl Pharmacol 2010; 244:21-6. [PMID: 19560482 PMCID: PMC2837771 DOI: 10.1016/j.taap.2009.06.016] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 05/15/2009] [Accepted: 06/19/2009] [Indexed: 12/30/2022]
Abstract
Nrf2 (NF-E2-related factor 2) is a master transcription factor containing a powerful acidic transcriptional activation domain. Nrf2-dependent gene expression impacts cancer chemoprevention strategies, inflammatory responses, and progression of neurodegenerative diseases. Under basal conditions, association of Nrf2 with the CUL3 adaptor protein Keap1 results in the rapid Nrf2 ubiquitylation and proteasome-dependent degradation. Inhibition of Keap1 function blocks ubiquitylation of Nrf2, allowing newly synthesized Nrf2 to translocate into the nucleus, bind to ARE sites and direct target gene expression. Site-directed mutagenesis experiments coupled with proteomic analysis support a model in which Keap1 contains at least 2 distinct cysteine motifs. The first is located at Cys 151 in the BTB domain. The second is located in the intervening domain and centers around Cys 273 and 288. Adduction or oxidation at Cys151 has been shown to produce a conformational change in Keap1 that results in dissociation of Keap1 from CUL3, thereby inhibiting Nrf2 ubiquitylation. Thus, adduction captures specific chemical information and translates it into biochemical information via changes in structural conformation.
Collapse
Affiliation(s)
- Konjeti R. Sekhar
- Department of Radiation Oncology and Vanderbilt-Ingram Cancer Center B902 TVC Radiation Oncology Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Girish Rachakonda
- Department of Radiation Oncology and Vanderbilt-Ingram Cancer Center B902 TVC Radiation Oncology Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Michael L. Freeman
- Department of Radiation Oncology and Vanderbilt-Ingram Cancer Center B902 TVC Radiation Oncology Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
122
|
Chavez J, Chung WG, Miranda CL, Singhal M, Stevens JF, Maier CS. Site-specific protein adducts of 4-hydroxy-2(E)-nonenal in human THP-1 monocytic cells: protein carbonylation is diminished by ascorbic acid. Chem Res Toxicol 2010; 23:37-47. [PMID: 20043646 DOI: 10.1021/tx9002462] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The protein targets and sites of modification by 4-hydroxy-2(E)-nonenal (HNE) in human monocytic THP-1 cells after exogenous exposure to HNE were examined using a multipronged proteomic approach involving electrophoretic, immunoblotting, and mass spectrometric methods. Immunoblot analysis using monoclonal anti-HNE antibodies showed several proteins as targets of HNE adduction. Pretreatment of THP-1 cells with ascorbic acid resulted in reduced levels of HNE-protein adducts. Biotinylation of Michael-type HNE adducts using an aldehyde-reactive hydroxylamine-functionalized probe (aldehyde-reactive probe, ARP) and subsequent enrichment facilitated the identification and site-specific assignment of the modifications by LC-MS/MS analysis. Sixteen proteins were unequivocally identified as targets of HNE adduction, and eighteen sites of HNE modification at Cys and His residues were assigned. HNE exposure of THP-1 cells resulted in the modification of proteins involved in cytoskeleton organization and regulation, proteins associated with stress responses, and enzymes of the glycolytic and other metabolic pathways. This study yielded the first evidence of site-specific adduction of HNE to Cys-295 in tubulin alpha-1B chain, Cys-351 and Cys-499 in alpha-actinin-4, Cys-328 in vimentin, Cys-369 in D-3-phosphoglycerate dehydrogenase, and His-246 in aldolase A.
Collapse
Affiliation(s)
- Juan Chavez
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| | | | | | | | | | | |
Collapse
|
123
|
Maier CS, Chavez J, Wang J, Wu J. Protein adducts of aldehydic lipid peroxidation products identification and characterization of protein adducts using an aldehyde/keto-reactive probe in combination with mass spectrometry. Methods Enzymol 2010; 473:305-30. [PMID: 20513485 DOI: 10.1016/s0076-6879(10)73016-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This chapter describes a mass spectrometry-based strategy that facilitates the unambiguous identification and characterization of proteins modified by lipid peroxidation-derived 2-alkenals. The approach employs a biotinylated hydroxyl amine derivative as an aldehyde/keto-reactive probe in conjunction with selective enrichment and tandem mass spectrometric analysis. Methodological details are given for model studies involving a distinct protein and 4-hydroxy-2-nonenal (HNE). The method was also evaluated for an exposure study of a cell culture system with HNE that yielded the major protein targets of HNE in human monocytic THP-1 cells. The application of the approach to complex biological systems is demonstrated for the identification and characterization of endogenous protein targets of aldehydic lipid peroxidation products present in cardiac mitochondria.
Collapse
Affiliation(s)
- Claudia S Maier
- Department of Chemistry, Oregon State University, Corvallis, Oregon, USA
| | | | | | | |
Collapse
|
124
|
Abstract
Over the last 50 years, the posttranslational modification (PTM) of proteins has emerged as a central mechanism for cells to regulate metabolism, growth, differentiation, cell-cell interactions, and immune responses. By influencing protein structure and function, PTM leads to a multiplication of proteome diversity. Redox-dependent PTMs, mediated by environmental and endogenously generated reactive species, induce cell signaling responses and can have toxic effects in organisms. PTMs induced by the electrophilic by-products of redox reactions most frequently occur at protein thiols; other nucleophilic amino acids serve as less favorable targets. Advances in mass spectrometry and affinity-chemistry strategies have improved the detection of electrophile-induced protein modifications both in vitro and in vivo and have revealed a high degree of amino acid and protein selectivity of electrophilic PTM. The identification of biological targets of electrophiles has motivated further study of the functional impact of various PTM reactions on specific signaling pathways and how this might affect organisms.
Collapse
Affiliation(s)
- Tanja K. Rudolph
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Cardiology, University Heart Center Hamburg, Hamburg, Germany
| | - Bruce A. Freeman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
125
|
LoPachin RM, Gavin T, Petersen DR, Barber DS. Molecular mechanisms of 4-hydroxy-2-nonenal and acrolein toxicity: nucleophilic targets and adduct formation. Chem Res Toxicol 2009; 22:1499-508. [PMID: 19610654 PMCID: PMC4452948 DOI: 10.1021/tx900147g] [Citation(s) in RCA: 212] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Acrolein and 4-hydroxy-2-nonenal (HNE) are byproducts of lipid peroxidation and are thought to play central roles in various traumatic injuries and disease states that involve cellular oxidative stress, for example, spinal cord trauma, diabetes, and Alzheimer's disease. In this review, we will discuss the chemical attributes of acrolein and HNE that determine their toxicities. Specifically, these aldehydes are classified as type 2 alkenes and are characterized by an alpha,beta-unsaturated carbonyl structure. This structure is a conjugated system that contains mobile pi-electrons. The carbonyl oxygen atom is electronegative and can promote the withdrawal of mobile electron density from the beta-carbon atom causing regional electron deficiency. On the basis of this type of electron polarizability, both acrolein and HNE are considered to be soft electrophiles that preferentially form 1,4-Michael type adducts with soft nucleophiles. Proteomic, quantum mechanical, and kinetic data will be presented, indicating that cysteine sulfhydryl groups are the primary soft nucleophilic targets of acrolein and HNE. This is in contrast to nitrogen groups on harder biological nucleophiles such as lysine or histidine residues. The toxicological outcome of adduct formation is not only dependent upon residue selectivity but also the importance of the targeted amino acid in protein function or structure. In attempting to discern the toxicological significance of a given adduct, we will consider the normal roles of cysteine, lysine, and histidine residues in proteins and the relative merits of corresponding adducts in the manifestations of diseases or toxic states. Understanding the molecular actions of acrolein and HNE could provide insight into many pathogenic conditions that involve initial cellular oxidative stress and could, thereby, offer new efficacious avenues of pharmacological defense.
Collapse
Affiliation(s)
- Richard M LoPachin
- Department of Anesthesiology, Albert Einstein College of Medicine, Montefiore Medical Center, 111 East 210th Street, Bronx, New York 10467, USA.
| | | | | | | |
Collapse
|
126
|
Kim HYH, Tallman KA, Liebler DC, Porter NA. An azido-biotin reagent for use in the isolation of protein adducts of lipid-derived electrophiles by streptavidin catch and photorelease. Mol Cell Proteomics 2009; 8:2080-9. [PMID: 19483245 DOI: 10.1074/mcp.m900121-mcp200] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HNE (4-hydroxynonenal), a byproduct of lipid peroxidation, reacts with nucleophilic centers on proteins. A terminal alkynyl analog of HNE (alkynyl HNE, aHNE) serves as a surrogate for HNE itself, both compounds reacting with protein amine and thiol functional groups by similar chemistry. Proteins modified with aHNE undergo reaction with a click reagent that bears azido and biotin groups separated by a photocleavable linker. Peptides and proteins modified in this way are affinity purified on streptavidin beads. Photolysis of the beads with a low intensity UV light releases bound biotinylated proteins or peptides, i.e. proteins or peptides modified by aHNE. Two strategies, (a) protein catch and photorelease and (b) peptide catch and photorelease, are employed to enrich adducted proteins or peptide mixtures highly enriched in adducts. Proteomics analysis of the streptavidin-purified peptides by LC-MS/MS permits identification of the adduction site. Identification of 30 separate peptides from human serum albumin by peptide catch and photorelease reveals 18 different aHNE adduction sites on the protein. Protein catch and photorelease shows that both HSA and ApoA1 in human plasma undergo significant modification by aHNE.
Collapse
Affiliation(s)
- Hye-Young H Kim
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | | | | |
Collapse
|