101
|
Yang L, Zheng C, Weisbrod CR, Tang X, Munske GR, Hoopmann MR, Eng JK, Bruce JE. In vivo application of photocleavable protein interaction reporter technology. J Proteome Res 2012; 11:1027-41. [PMID: 22168182 DOI: 10.1021/pr200775j] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In vivo protein structures and protein-protein interactions are critical to the function of proteins in biological systems. As a complementary approach to traditional protein interaction identification methods, cross-linking strategies are beginning to provide additional data on protein and protein complex topological features. Previously, photocleavable protein interaction reporter (pcPIR) technology was demonstrated by cross-linking pure proteins and protein complexes and the use of ultraviolet light to cleave or release cross-linked peptides to enable identification. In the present report, the pcPIR strategy is applied to Escherichia coli cells, and in vivo protein interactions and topologies are measured. More than 1600 labeled peptides from E. coli were identified, indicating that many protein sites react with pcPIR in vivo. From those labeled sites, 53 in vivo intercross-linked peptide pairs were identified and manually validated. Approximately half of the interactions have been reported using other techniques, although detailed structures exist for very few. Three proteins or protein complexes with detailed crystallography structures are compared to the cross-linking results obtained from in vivo application of pcPIR technology.
Collapse
Affiliation(s)
- Li Yang
- Department of Chemistry, Washington State University, Pullman, Washington, 99164, USA
| | | | | | | | | | | | | | | |
Collapse
|
102
|
Serpa JJ, Parker CE, Petrotchenko EV, Han J, Pan J, Borchers CH. Mass spectrometry-based structural proteomics. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2012; 18:251-267. [PMID: 22641729 DOI: 10.1255/ejms.1178] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Structural proteomics is the application of protein chemistry and modern mass spectrometric techniques to problems such as the characterization of protein structures and assemblies and the detailed determination of protein-protein interactions. The techniques used in structural proteomics include crosslinking, photoaffinity labeling, limited proteolysis, chemical protein modification and hydrogen/deuterium exchange, all followed by mass spectrometric analysis. None of these methods alone can provide complete structural information, but a "combination" of these complementary approaches can be used to provide enough information for answering important biological questions. Structural proteomics can help to determine, for example, the detailed structure of the interfaces between proteins that may be important drug targets and the interactions between proteins and ligands. In this review, we have tried to provide a brief overview of structural proteomics methodologies, illustrated with examples from our laboratory and from the literature.
Collapse
Affiliation(s)
- Jason J Serpa
- University of Victoria-Genome British Columbia Proteomics Centre, University of Victoria, Victoria, BC V8Z 7X8, Canada
| | | | | | | | | | | |
Collapse
|
103
|
Götze M, Pettelkau J, Schaks S, Bosse K, Ihling CH, Krauth F, Fritzsche R, Kühn U, Sinz A. StavroX--a software for analyzing crosslinked products in protein interaction studies. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:76-87. [PMID: 22038510 DOI: 10.1007/s13361-011-0261-2] [Citation(s) in RCA: 278] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 09/19/2011] [Accepted: 09/20/2011] [Indexed: 05/03/2023]
Abstract
Chemical crosslinking in combination with mass spectrometry has matured into an alternative approach to derive low-resolution structural information of proteins and protein complexes. Yet, one of the major drawbacks of this strategy remains the lack of software that is able to handle the large MS datasets that are created after chemical crosslinking and enzymatic digestion of the crosslinking reaction mixtures. Here, we describe a software, termed StavroX, which has been specifically designed for analyzing highly complex crosslinking datasets. The StavroX software was evaluated for three diverse biological systems: (1) the complex between calmodulin and a peptide derived from Munc13, (2) an N-terminal ß-laminin fragment, and (3) the complex between guanylyl cyclase activating protein-2 and a peptide derived from retinal guanylyl cyclase. We show that the StavroX software is advantageous for analyzing crosslinked products due to its easy-to-use graphical user interface and the highly automated analysis of mass spectrometry (MS) and tandem mass spectrometry (MS/MS) data resulting in short times for analysis. StavroX is expected to give a further push to the chemical crosslinking approach as a routine technique for protein interaction studies.
Collapse
Affiliation(s)
- Michael Götze
- Institute of Biochemistry and Biotechnology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Lambert W, Söderberg CAG, Rutsdottir G, Boelens WC, Emanuelsson C. Thiol-exchange in DTSSP crosslinked peptides is proportional to cysteine content and precisely controlled in crosslink detection by two-step LC-MALDI MSMS. Protein Sci 2011; 20:1682-91. [PMID: 21780214 DOI: 10.1002/pro.699] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 07/04/2011] [Accepted: 07/07/2011] [Indexed: 11/06/2022]
Abstract
The lysine-specific crosslinker 3,3'-dithiobis(sulfosuccinimidylpropionate) (DTSSP) is commonly used in the structural characterization of proteins by chemical crosslinking and mass spectrometry and we here describe an efficient two-step LC-MALDI-TOF/TOF procedure to detect crosslinked peptides. First MS data are acquired, and the properties of isotope-labeled DTSSP are used in data analysis to identify candidate crosslinks. MSMS data are then acquired for a restricted number of precursor ions per spot for final crosslink identification. We show that the thiol-catalyzed exchange between crosslinked peptides, which is due to the disulfide bond in DTSSP and known to possibly obscure data, can be precisely quantified using isotope-labeled DTSSP. Crosslinked peptides are recognized as 8 Da doublet peaks and a new isotopic peak with twice the intensity appears in the middle of the doublet as a consequence of the thiol-exchange. False-positive crosslinks, formed exclusively by thiol-exchange, yield a 1:2:1 isotope pattern, whereas true crosslinks, formed by two lysine residues within crosslinkable distance in the native protein structure, yield a 1:0:1 isotope pattern. Peaks with a 1:X:1 isotope pattern, where 0 < X < 2, can be trusted as true crosslinks, with a defined proportion of the signal [2X/(2 + X)] being noise from the thiol-exchange. The thiol-exchange was correlated with the protein cysteine content and was minimized by shortening the trypsin incubation time, and for two molecular chaperone proteins with known structure all crosslinks fitted well to the structure data. The thiol-exchange can thus be controlled and isotope-labeled DTSSP safely used to detect true crosslinks between lysine residues in proteins.
Collapse
Affiliation(s)
- Wietske Lambert
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, SE-22100 Lund, Sweden.
| | | | | | | | | |
Collapse
|
105
|
Zheng C, Yang L, Hoopmann MR, Eng JK, Tang X, Weisbrod CR, Bruce JE. Cross-linking measurements of in vivo protein complex topologies. Mol Cell Proteomics 2011; 10:M110.006841. [PMID: 21697552 DOI: 10.1074/mcp.m110.006841] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Identification and measurement of in vivo protein interactions pose critical challenges in the goal to understand biological systems. The measurement of structures and topologies of proteins and protein complexes as they exist in cells is particularly challenging, yet critically important to improve understanding of biological function because proteins exert their intended function only through the structures and interactions they exhibit in vivo. In the present study, protein interactions in E. coli cells were identified in our unbiased cross-linking approach, yielding the first in vivo topological data on many interactions and the largest set of identified in vivo cross-linked peptides produced to date. These data show excellent agreement with protein and complex crystal structures where available. Furthermore, our unbiased data provide novel in vivo topological information that can impact understanding of biological function, even for cases where high resolution structures are not yet available.
Collapse
Affiliation(s)
- Chunxiang Zheng
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| | | | | | | | | | | | | |
Collapse
|
106
|
Pflieger D, Bigeard J, Hirt H. Isolation and characterization of plant protein complexes by mass spectrometry. Proteomics 2011; 11:1824-33. [DOI: 10.1002/pmic.201000635] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 01/15/2011] [Accepted: 01/31/2011] [Indexed: 11/10/2022]
|
107
|
Chavez JD, Liu NL, Bruce JE. Quantification of protein-protein interactions with chemical cross-linking and mass spectrometry. J Proteome Res 2011; 10:1528-37. [PMID: 21222489 PMCID: PMC3086679 DOI: 10.1021/pr100898e] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Chemical cross-linking in combination with mass spectrometry has largely been used to study protein structures and protein-protein interactions. Typically, it is used in a qualitative manner to identify cross-linked sites and provide a low-resolution topological map of the interacting regions of proteins. Here, we investigate the capability of chemical cross-linking to quantify protein-protein interactions using a model system of calmodulin and substrates melittin and mastoparan. Calmodulin is a well-characterized protein which has many substrates. Melittin and mastoparan are two such substrates which bind to calmodulin in 1:1 ratios in the presence of calcium. Both the calmodulin-melittin and calmodulin-mastoparan complexes have had chemical cross-linking strategies successfully applied in the past to investigate topological properties. We utilized an excess of immobilized calmodulin on agarose beads and formed complexes with varying quantities of mastoparan and melittin. Then, we applied disuccinimidyl suberate (DSS) chemical cross-linker, digested and detected cross-links through an LC-MS analytical method. We identified five interpeptide cross-links for calmodulin-melittin and three interpeptide cross-links for calmodulin-mastoparan. Using cross-linking sites of calmodulin-mastoparan, we demonstrated that mastoparan also binds in two orientations to calmodulin. We quantitatively demonstrated that both melittin and mastoparan preferentially bind to calmodulin in a parallel fashion, which is opposite to the preferred binding mode of the majority of known calmodulin binding peptides. We also demonstrated that the relative abundances of cross-linked peptide products quantitatively reflected the abundances of the calmodulin peptide complexes formed.
Collapse
Affiliation(s)
- Juan D. Chavez
- Department of Genome Sciences, University of Washington, P.O. Box 358050, Seattle, Washington 98195, United States
| | - Neal L. Liu
- Department of Genome Sciences, University of Washington, P.O. Box 358050, Seattle, Washington 98195, United States
| | - James E. Bruce
- Department of Genome Sciences, University of Washington, P.O. Box 358050, Seattle, Washington 98195, United States
| |
Collapse
|
108
|
Martínez-Fábregas J, Rubio S, Díaz-Quintana A, Díaz-Moreno I, De la Rosa MÁ. Proteomic tools for the analysis of transient interactions between metalloproteins. FEBS J 2011; 278:1401-10. [PMID: 21352492 DOI: 10.1111/j.1742-4658.2011.08061.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Metalloproteins play major roles in cell metabolism and signalling pathways. In many cases, they show moonlighting behaviour, acting in different processes, depending on the physiological state of the cell. To understand these multitasking proteins, we need to discover the partners with which they carry out such novel functions. Although many technological and methodological tools have recently been reported for the detection of protein interactions, specific approaches to studying the interactions involving metalloproteins are not yet well developed. The task is even more challenging for metalloproteins, because they often form short-lived complexes that are difficult to detect. In this review, we gather the different proteomic techniques and biointeractomic tools reported in the literature. All of them have shown their applicability to the study of transient and weak protein-protein interactions, and are therefore suitable for metalloprotein interactions.
Collapse
Affiliation(s)
- Jonathan Martínez-Fábregas
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Centro de Investigaciones Científicas Isla de la Cartuja, Sevilla, Spain
| | | | | | | | | |
Collapse
|
109
|
Du X, Chowdhury SM, Manes NP, Wu S, Mayer MU, Adkins JN, Anderson GA, Smith RD. Xlink-identifier: an automated data analysis platform for confident identifications of chemically cross-linked peptides using tandem mass spectrometry. J Proteome Res 2011; 10:923-31. [PMID: 21175198 PMCID: PMC3048902 DOI: 10.1021/pr100848a] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Chemical cross-linking combined with mass spectrometry provides a powerful method for identifying protein-protein interactions and probing the structure of protein complexes. A number of strategies have been reported that take advantage of the high sensitivity and high resolution of modern mass spectrometers. Approaches typically include synthesis of novel cross-linking compounds, and/or isotopic labeling of the cross-linking reagent and/or protein, and label-free methods. We report Xlink-Identifier, a comprehensive data analysis platform that has been developed to support label-free analyses. It can identify interpeptide, intrapeptide, and deadend cross-links as well as underivatized peptides. The software streamlines data preprocessing, peptide scoring, and visualization and provides an overall data analysis strategy for studying protein-protein interactions and protein structure using mass spectrometry. The software has been evaluated using a custom synthesized cross-linking reagent that features an enrichment tag. Xlink-Identifier offers the potential to perform large-scale identifications of protein-protein interactions using tandem mass spectrometry.
Collapse
Affiliation(s)
- Xiuxia Du
- Department of Bioinformatics & Genomics, University of North Carolina at Charlotte, Charlotte, NC 28023, USA
| | - Saiful M. Chowdhury
- National Institute of Environmental Health Sciences – National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Nathan P. Manes
- National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Si Wu
- Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - M. Uljana Mayer
- Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | | | | | | |
Collapse
|
110
|
Pflieger D, Gonnet F, de la Fuente van Bentem S, Hirt H, de la Fuente A. Linking the proteins--elucidation of proteome-scale networks using mass spectrometry. MASS SPECTROMETRY REVIEWS 2011; 30:268-297. [PMID: 21337599 DOI: 10.1002/mas.20278] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 10/05/2009] [Accepted: 10/05/2009] [Indexed: 05/30/2023]
Abstract
Proteomes are intricate. Typically, thousands of proteins interact through physical association and post-translational modifications (PTMs) to give rise to the emergent functions of cells. Understanding these functions requires one to study proteomes as "systems" rather than collections of individual protein molecules. The abstraction of the interacting proteome to "protein networks" has recently gained much attention, as networks are effective representations, that lose specific molecular details, but provide the ability to see the proteome as a whole. Mostly two aspects of the proteome have been represented by network models: proteome-wide physical protein-protein-binding interactions organized into Protein Interaction Networks (PINs), and proteome-wide PTM relations organized into Protein Signaling Networks (PSNs). Mass spectrometry (MS) techniques have been shown to be essential to reveal both of these aspects on a proteome-wide scale. Techniques such as affinity purification followed by MS have been used to elucidate protein-protein interactions, and MS-based quantitative phosphoproteomics is critical to understand the structure and dynamics of signaling through the proteome. We here review the current state-of-the-art MS-based analytical pipelines for the purpose to characterize proteome-scale networks.
Collapse
Affiliation(s)
- Delphine Pflieger
- Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, Université d'Evry Val d'Essonne, CNRS UMR 8587, Evry, France
| | | | | | | | | |
Collapse
|
111
|
Mayne SLN, Patterton HG. Bioinformatics tools for the structural elucidation of multi-subunit protein complexes by mass spectrometric analysis of protein-protein cross-links. Brief Bioinform 2011; 12:660-71. [PMID: 22101029 DOI: 10.1093/bib/bbq087] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Multi-subunit protein complexes are involved in many essential biochemical processes including signal transduction, protein synthesis, RNA synthesis, DNA replication and protein degradation. An accurate description of the relative structural arrangement of the constituent subunits in such complexes is crucial for an understanding of the molecular mechanism of the complex as a whole. Many complexes, however, lie in the mega-Dalton range, and are not amenable to X-ray crystallographic or nuclear magnetic resonance analysis. Techniques that are suited to structural studies of such large complexes, such as cryo-electron microscopy, do not provide the resolution required for a mechanistic insight. Mass spectrometry (MS) has increasingly been applied to identify the residues that are involved in chemical cross-links in compound protein assemblies, and have provided valuable insight into the molecular arrangement, orientation and contact surfaces of subunits within such large complexes. This approach is known as MS3D, and involves the MS analysis of cross-linked di-peptides following the enzymatic cleavage of a chemically cross-linked complex. A major challenge of this approach is the identification of the cross-linked di-peptides in a composite mixture of peptides, as well as the identification of the residues involved in the cross-link. These analyses require bioinformatics tools with capabilities beyond that of general, MS-based proteomic analysis software. Many MS3D software tools have appeared, often designed for very specific experimental methods. Here, we provide a review of all major MS3D bioinformatics programmes, reviewing their applicability to different workflows, specific experimental requirements and the computational approach taken by each.
Collapse
Affiliation(s)
- Shannon L N Mayne
- Department of Biotechnology, University of the Free State, Bloemfontein 9300, South Africa
| | | |
Collapse
|
112
|
Hoopmann MR, Weisbrod CR, Bruce JE. Improved strategies for rapid identification of chemically cross-linked peptides using protein interaction reporter technology. J Proteome Res 2010; 9:6323-33. [PMID: 20886857 PMCID: PMC3018735 DOI: 10.1021/pr100572u] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein interaction reporter (PIR) technology can enable identification of in vivo protein interactions with the use of specialized chemical cross-linkers, liquid chromatography, and high-resolution mass spectrometry. PIR-cross-linkers contain labile bonds that are specifically fragmented under low energy collision or photodissociation conditions in the mass spectrometer source, thus releasing cross-linked peptides. Successful analysis of PIR-cross-linked proteins requires the use of expected mathematical relationships between cross-linked complexes and released peptides after fragmentation of the labile PIR bonds. Presented here is a next-generation software tool, BLinks, for use in the analysis and identification of PIR-cross-linked proteins. BLinks is an advancement beyond our previous efforts by incorporation of chromatographic profiles that must match between cross-linked complexes and released peptides to enable estimation of p-values to help filter true relationships from complex data sets. Additionally, BLinks was used to incorporate Mascot database searching results from subsequent MS/MS analysis of the released peptides to facilitate identification of cross-linked proteins. BLinks was used in the analysis of human serum albumin, and 46 interpeptide relationships were found spanning 30 proximal residues with a 2.2% false discovery rate. BLinks was also used to track peptides involved in multiple, coeluting relationships that make accurate identification of protein interactions difficult. An additional 10 interpeptide relationships were identified despite poor correlation using the profiling tools provided with BLinks. Additionally, BLinks can be used to globally map all interpeptide relationships from the data analysis and customize subsequent analysis to target specific peptides of interest, thus making it a useful tool for both discovery of protein interactions and mapping protein topology.
Collapse
Affiliation(s)
| | - Chad R. Weisbrod
- Department of Genome Sciences, University of Washington, Seattle, WA 98195
| | - James E. Bruce
- Department of Genome Sciences, University of Washington, Seattle, WA 98195
| |
Collapse
|
113
|
Liu F, Goshe MB. Combinatorial electrostatic collision-induced dissociative chemical cross-linking reagents for probing protein surface topology. Anal Chem 2010; 82:6215-23. [PMID: 20560670 DOI: 10.1021/ac101030w] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
To ascertain more information on protein domain orientation and complex structure associations using chemical cross-linking, we have developed a combination of electrostatic collision-induced dissociative cross-linking reagents that differentially react with protein surfaces which are effectively analyzed by liquid chromatography-tandem mass spectrometry using ion trap multistage collision-induced dissociation. Implementing our original design and methodology based on disuccinimidyl-succinamyl-aspartyl-proline (SuDP) (Soderblom, E. J.; Goshe, M. B. Anal. Chem 2006, 78, 8059-8068. Soderblom, E. J.; Bobay, B. G.; Cavanagh, J.; Goshe, M. B. Rapid Commun Mass Spectrom 2007, 21, 3395-3408.), disuccinimidyl-succinamyl-valyl-proline (SuVP) was synthesized. The SuDP and SuVP reagents are the same except for the valyl and aspartyl groups which provide a distinctive chemical feature to each reagent. When performing labeling reactions using various protein-to-cross-linker ratios at pH 7.5, the negatively charged SuDP and neutral SuVP were used to label bovine serum albumin and hemoglobin. After protein digestion, the resulting peptides were analyzed using four different ion trap LC/MS(3) acquisition methods incorporating multistage CID. The more polar BSA surface resulted in a number of unique interpeptide and intrapeptide cross-links for each reagent whereas the less polarized surface of hemoglobin produced similar results for both reagents. Based on the identification of dead-end products (i.e., a cross-link modification containing a hydrolyzed end) for each protein, the aminolysis reactivity of each modified lysyl side chain revealed a preference for reacting with each reagent according to its local electrostatic surface environment. Overall, combinatorial application of SuDP and SuVP chemical labeling produces a set of unique interpeptide, intrapeptide, and dead-end cross-linked products that provides protein structural information according to its electrostatic surface topology which has the potential to be used to more comprehensively probe protein structure and dynamics.
Collapse
Affiliation(s)
- Fan Liu
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695-7622, USA
| | | |
Collapse
|
114
|
Petrotchenko EV, Borchers CH. Crosslinking combined with mass spectrometry for structural proteomics. MASS SPECTROMETRY REVIEWS 2010; 29:862-76. [PMID: 20730915 DOI: 10.1002/mas.20293] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The method of crosslinking combined with mass spectrometry is being gradually accepted as a technology enabling detailed structural information on proteins and protein complexes. Intrinsic challenges of the method, which have prevented its widespread use, are being progressively addressed by improvements in mass spectrometry instrumentation capabilities, by the development of new crosslinking reagents, and by the development of specialized software tools for processing of mass spectrometric crosslinking data. This review focuses on recent literature concerning the development of specialized crosslinking reagents and approaches for mass spectrometry-based applications. Critical features of crosslinking reagents for optimum mass spectrometric performance, such as isotopic coding, cleavability, affinity groups, structure of the linkers, and reactive groups, are assessed. Requirements for the design of crosslinking reagents to make them well suited for mass spectrometric detection and analysis are summarized.
Collapse
Affiliation(s)
- Evgeniy V Petrotchenko
- University of Victoria Proteomics Centre, 3101-4464 Markham Street, Victoria, British Columbia, Canada V8Z7X8
| | | |
Collapse
|
115
|
Rappsilber J. The beginning of a beautiful friendship: cross-linking/mass spectrometry and modelling of proteins and multi-protein complexes. J Struct Biol 2010; 173:530-40. [PMID: 21029779 PMCID: PMC3043253 DOI: 10.1016/j.jsb.2010.10.014] [Citation(s) in RCA: 330] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 10/21/2010] [Accepted: 10/21/2010] [Indexed: 11/17/2022]
Abstract
After more than a decade of method development, cross-linking in combination with mass spectrometry and bioinformatics is finally coming of age. This technology now provides improved opportunities for modelling by mapping structural details of functional complexes in solution. The structure of proteins or protein complexes is ascertained by identifying amino acid pairs that are positioned in close proximity to each other. The validity of this technique has recently been benchmarked for large multi-protein complexes, by comparing cross-link data with that from a crystal structure of RNA polymerase II. Here, the specific nature of this cross-linking data will be discussed to assess the technical challenges and opportunities for model building. We believe that once remaining technological challenges of cross-linking/mass spectrometry have been addressed and cross-linking/mass spectrometry data has been incorporated into modelling algorithms it will quickly become an indispensable companion of protein and protein complex modelling and a corner-stone of integrated structural biology.
Collapse
Affiliation(s)
- Juri Rappsilber
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, King's Buildings, Mayfield Road, Edinburgh, EH9 3JR Scotland, UK.
| |
Collapse
|
116
|
Gavin AC, Maeda K, Kühner S. Recent advances in charting protein-protein interaction: mass spectrometry-based approaches. Curr Opin Biotechnol 2010; 22:42-9. [PMID: 20934865 DOI: 10.1016/j.copbio.2010.09.007] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 09/08/2010] [Accepted: 09/09/2010] [Indexed: 12/13/2022]
Abstract
Cellular functions are the result of the coordinated action of groups of proteins interacting in molecular assemblies or pathways. The systematic and unbiased charting of protein-protein networks in a variety of organisms has become an important challenge in systems biology. These protein-protein interaction networks contribute comprehensive cartographies of key pathways or biological processes relevant to health or disease by providing a molecular frame for the interpretation of genetic links. At a structural level protein-protein networks enabled the identification of the sequences, motifs and structural folds involved in the process of molecular recognition. A rapidly growing choice of technologies is available for the global charting of protein-protein interactions. In this review, we focus on recent developments in a suite of methods that enable the purification of protein complexes under native conditions and, in conjunction with protein mass spectrometry, identification of their constituents.
Collapse
|
117
|
Trnka MJ, Burlingame AL. Topographic studies of the GroEL-GroES chaperonin complex by chemical cross-linking using diformyl ethynylbenzene: the power of high resolution electron transfer dissociation for determination of both peptide sequences and their attachment sites. Mol Cell Proteomics 2010; 9:2306-17. [PMID: 20813910 DOI: 10.1074/mcp.m110.003764] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Many essential cellular processes depend upon the self-assembly of stable multiprotein entities. The architectures of the vast majority of these protein machines remain unknown because these structures are difficult to obtain by biophysical techniques alone. However, recent progress in defining the architecture of protein complexes has resulted from integrating information from all available biochemical and biophysical sources to generate computational models. Chemical cross-linking is a technique that holds exceptional promise toward achieving this goal by providing distance constraints that reflect the topography of protein complexes. Combined with the available structural data, these constraints can yield three-dimensional models of higher order molecular machines. However, thus far the utility of cross-linking has been thwarted by insufficient yields of cross-linked products and tandem mass spectrometry methods that are unable to unambiguously establish the identity of the covalently labeled peptides and their sites of modification. We report the cross-linking of amino moieties by 1,3-diformyl-5-ethynylbenzene (DEB) with analysis by high resolution electron transfer dissociation. This new reagent coupled with this new energy deposition technique addresses these obstacles by generating cross-linked peptides containing two additional sites of protonation relative to conventional cross-linking reagents. In addition to excellent coverage of sequence ions by electron transfer dissociation, DEB cross-linking produces gas-phase precursor ions in the 4+, 5+, or 6+ charge states that are readily segregated from unmodified and dead-end modified peptides using charge-dependent precursor selection of only quadruply and higher charge state ions. Furthermore, electron transfer induces dissociation of the DEB-peptide bonds to yield diagnostic ion signals that reveal the "molecular ions" of the unmodified peptides. We demonstrate the power of this strategy by cross-linking analysis of the 21-protein, ADP-bound GroEL-GroES chaperonin complex. Twenty-five unique sites of cross-linking were determined.
Collapse
Affiliation(s)
- Michael J Trnka
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, USA
| | | |
Collapse
|
118
|
Kao A, Chiu CL, Vellucci D, Yang Y, Patel VR, Guan S, Randall A, Baldi P, Rychnovsky SD, Huang L. Development of a novel cross-linking strategy for fast and accurate identification of cross-linked peptides of protein complexes. Mol Cell Proteomics 2010; 10:M110.002212. [PMID: 20736410 DOI: 10.1074/mcp.m110.002212] [Citation(s) in RCA: 291] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Knowledge of elaborate structures of protein complexes is fundamental for understanding their functions and regulations. Although cross-linking coupled with mass spectrometry (MS) has been presented as a feasible strategy for structural elucidation of large multisubunit protein complexes, this method has proven challenging because of technical difficulties in unambiguous identification of cross-linked peptides and determination of cross-linked sites by MS analysis. In this work, we developed a novel cross-linking strategy using a newly designed MS-cleavable cross-linker, disuccinimidyl sulfoxide (DSSO). DSSO contains two symmetric collision-induced dissociation (CID)-cleavable sites that allow effective identification of DSSO-cross-linked peptides based on their distinct fragmentation patterns unique to cross-linking types (i.e. interlink, intralink, and dead end). The CID-induced separation of interlinked peptides in MS/MS permits MS(3) analysis of single peptide chain fragment ions with defined modifications (due to DSSO remnants) for easy interpretation and unambiguous identification using existing database searching tools. Integration of data analyses from three generated data sets (MS, MS/MS, and MS(3)) allows high confidence identification of DSSO cross-linked peptides. The efficacy of the newly developed DSSO-based cross-linking strategy was demonstrated using model peptides and proteins. In addition, this method was successfully used for structural characterization of the yeast 20 S proteasome complex. In total, 13 non-redundant interlinked peptides of the 20 S proteasome were identified, representing the first application of an MS-cleavable cross-linker for the characterization of a multisubunit protein complex. Given its effectiveness and simplicity, this cross-linking strategy can find a broad range of applications in elucidating the structural topology of proteins and protein complexes.
Collapse
Affiliation(s)
- Athit Kao
- Department of Physiology and Biophysics and Developmental and Cell Biology, University of California, Irvine, California 92697, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Leitner A, Walzthoeni T, Kahraman A, Herzog F, Rinner O, Beck M, Aebersold R. Probing native protein structures by chemical cross-linking, mass spectrometry, and bioinformatics. Mol Cell Proteomics 2010; 9:1634-49. [PMID: 20360032 PMCID: PMC2938055 DOI: 10.1074/mcp.r000001-mcp201] [Citation(s) in RCA: 378] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 03/30/2010] [Indexed: 12/16/2022] Open
Abstract
Chemical cross-linking of reactive groups in native proteins and protein complexes in combination with the identification of cross-linked sites by mass spectrometry has been in use for more than a decade. Recent advances in instrumentation, cross-linking protocols, and analysis software have led to a renewed interest in this technique, which promises to provide important information about native protein structure and the topology of protein complexes. In this article, we discuss the critical steps of chemical cross-linking and its implications for (structural) biology: reagent design and cross-linking protocols, separation and mass spectrometric analysis of cross-linked samples, dedicated software for data analysis, and the use of cross-linking data for computational modeling. Finally, the impact of protein cross-linking on various biological disciplines is highlighted.
Collapse
Affiliation(s)
- Alexander Leitner
- From the Institute of Molecular Systems Biology, Eidgenössiche Technische Hochschule (ETH) Zurich, Wolfgang-Pauli-Strasse 16, 8093 Zurich, Switzerland
- Department of Analytical Chemistry and Food Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna, Austria
| | - Thomas Walzthoeni
- From the Institute of Molecular Systems Biology, Eidgenössiche Technische Hochschule (ETH) Zurich, Wolfgang-Pauli-Strasse 16, 8093 Zurich, Switzerland
- Ph.D. Program in Molecular Life Sciences, University of Zurich/ETH Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Abdullah Kahraman
- From the Institute of Molecular Systems Biology, Eidgenössiche Technische Hochschule (ETH) Zurich, Wolfgang-Pauli-Strasse 16, 8093 Zurich, Switzerland
| | - Franz Herzog
- From the Institute of Molecular Systems Biology, Eidgenössiche Technische Hochschule (ETH) Zurich, Wolfgang-Pauli-Strasse 16, 8093 Zurich, Switzerland
| | - Oliver Rinner
- From the Institute of Molecular Systems Biology, Eidgenössiche Technische Hochschule (ETH) Zurich, Wolfgang-Pauli-Strasse 16, 8093 Zurich, Switzerland
- Biognosys AG, Wolfgang-Pauli-Strasse 16, 8093 Zurich, Switzerland
| | - Martin Beck
- From the Institute of Molecular Systems Biology, Eidgenössiche Technische Hochschule (ETH) Zurich, Wolfgang-Pauli-Strasse 16, 8093 Zurich, Switzerland
| | - Ruedi Aebersold
- From the Institute of Molecular Systems Biology, Eidgenössiche Technische Hochschule (ETH) Zurich, Wolfgang-Pauli-Strasse 16, 8093 Zurich, Switzerland
- Faculty of Science, University of Zurich, Zurich, Switzerland, and
- Competence Center for Systems Physiology and Metabolic Diseases, Zurich, Switzerland
| |
Collapse
|
120
|
Vellucci D, Kao A, Kaake RM, Rychnovsky SD, Huang L. Selective enrichment and identification of azide-tagged cross-linked peptides using chemical ligation and mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:1432-45. [PMID: 20472459 PMCID: PMC3119349 DOI: 10.1016/j.jasms.2010.04.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Revised: 04/10/2010] [Accepted: 04/11/2010] [Indexed: 05/25/2023]
Abstract
Protein-protein interaction is one of the key regulatory mechanisms for controlling protein function in various cellular processes. Chemical cross-linking coupled with mass spectrometry has proven to be a powerful method not only for mapping protein-protein interactions of all natures, including weak and transient ones, but also for determining their interaction interfaces. One critical challenge remaining in this approach is how to effectively isolate and identify cross-linked products from a complex peptide mixture. In this work, we have developed a novel strategy using conjugation chemistry for selective enrichment of cross-linked products. An azide-tagged cross-linker along with two biotinylated conjugation reagents were designed and synthesized. Cross-linking of model peptides and cytochrome c as well as enrichment of the resulting cross-linked peptides has been assessed. Selective conjugation of azide-tagged cross-linked peptides has been demonstrated using two strategies: copper catalyzed cycloaddition and Staudinger ligation. While both methods are effective, Staudinger ligation is better suited for enriching the cross-linked peptides since there are fewer issues with sample handling. LC MS(n) analysis coupled with database searching using the Protein Prospector software package allowed identification of 58 cytochrome c cross-linked peptides after enrichment and affinity purification. The new enrichment strategy developed in this work provides useful tools for facilitating identification of cross-linked peptides in a peptide mixture by MS, thus presenting a step forward in future studies of protein-protein interactions of protein complexes by cross-linking and mass spectrometry.
Collapse
Affiliation(s)
| | - Athit Kao
- Departments of Physiology & Biophysics and Developmental & Cell Biology, University of California, Irvine, CA 92697
| | - Robyn M. Kaake
- Departments of Physiology & Biophysics and Developmental & Cell Biology, University of California, Irvine, CA 92697
| | | | - Lan Huang
- Departments of Physiology & Biophysics and Developmental & Cell Biology, University of California, Irvine, CA 92697
| |
Collapse
|
121
|
Toews J, Rogalski JC, Kast J. Accessibility governs the relative reactivity of basic residues in formaldehyde-induced protein modifications. Anal Chim Acta 2010; 676:60-7. [DOI: 10.1016/j.aca.2010.07.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2010] [Revised: 07/13/2010] [Accepted: 07/27/2010] [Indexed: 11/29/2022]
|
122
|
Tang X, Bruce JE. A new cross-linking strategy: protein interaction reporter (PIR) technology for protein-protein interaction studies. MOLECULAR BIOSYSTEMS 2010; 6:939-47. [PMID: 20485738 PMCID: PMC3075923 DOI: 10.1039/b920876c] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Chemical cross-linking coupled with mass spectrometry, an emerging approach for protein topology and interaction studies, has gained increasing interest in the past few years. A number of recent proof-of-principle studies on model proteins or protein complex systems with improved cross-linking strategies have shown great promise. However, the heterogeneity and low abundance of the cross-linked products as well as data complexity continue to pose enormous challenges for large-scale application of cross-linking approaches. A novel mass spectrometry-cleavable cross-linking strategy embodied in Protein Interaction Reporter (PIR) technology, first reported in 2005, was recently successfully applied for in vivo identification of protein-protein interactions as well as actual regions of the interacting proteins that share close proximity while present within cells. PIR technology holds great promise for achieving the ultimate goal of mapping protein interaction network at systems level using chemical cross-linking. In this review, we will briefly describe the recent progress in the field of chemical cross-linking development with an emphasis on the PIR concepts, its applications and future directions.
Collapse
Affiliation(s)
- Xiaoting Tang
- Novo Nordisk Inflammation Research Center, Seattle, Washington, USA
| | - James E. Bruce
- Department of Genome Sciences, University of Washington, Box 358050, Seattle, Washington 98195, USA
| |
Collapse
|
123
|
Yang L, Tang X, Weisbrod C, Munske G, Eng J, von Haller P, Kaiser N, Bruce JE. A photocleavable and mass spectrometry identifiable cross-linker for protein interaction studies. Anal Chem 2010; 82:3556-66. [PMID: 20373789 PMCID: PMC2862095 DOI: 10.1021/ac902615g] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this paper, we present the results of proof-of-concept experiments using a novel photocleavable and mass spectrometry identifiable cross-linker pcPIR (photocleavable protein interaction reporter). pcPIR can be dissociated under UV irradiation either off- or online before the introduction to the mass spectrometers. Photo dissociation of cross-linkers is different from either the gas phase or the chemical cleavage of cross-linkers. Different types of cross-links can be identified using the pcPIR mass relationships, where the mass of cross-linked precursor equals the sum of the masses of the released products and reporter. Since pcPIR is cleaved prior to the entrance to the mass spectrometer, the released peptides are available to be sequenced with routine collision-induced dissociation (CID) MS/MS experiments and database search algorithms. In this report, the pcPIR strategy of identifying the cross-linked peptides with on- and off-line photocleavage coupled with novel targeted data dependent LC-MS/MS is demonstrated with the use of standard peptides, bovine serum albumin (BSA), and human hemoglobin tetramer protein complex.
Collapse
Affiliation(s)
- Li Yang
- Department of Chemistry, Washington State University, Pullman, Washington, 99164
| | - Xiaoting Tang
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98109
| | - Chad Weisbrod
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98109
| | - Gerhard Munske
- Department of Chemistry, Washington State University, Pullman, Washington, 99164
| | - Jimmy Eng
- University of Washington Proteomics Resource, Seattle, Washington, 98109
| | - Priska von Haller
- University of Washington Proteomics Resource, Seattle, Washington, 98109
| | - Nathan Kaiser
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98109
| | - James E. Bruce
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98109
| |
Collapse
|
124
|
Singh P, Panchaud A, Goodlett DR. Chemical Cross-Linking and Mass Spectrometry As a Low-Resolution Protein Structure Determination Technique. Anal Chem 2010; 82:2636-42. [DOI: 10.1021/ac1000724] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pragya Singh
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195-7610
| | - Alexandre Panchaud
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195-7610
| | - David R. Goodlett
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195-7610
| |
Collapse
|
125
|
Investigation of protein-protein interactions in living cells by chemical crosslinking and mass spectrometry. Anal Bioanal Chem 2010; 397:3433-40. [PMID: 20076950 DOI: 10.1007/s00216-009-3405-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2009] [Revised: 12/12/2009] [Accepted: 12/14/2009] [Indexed: 01/26/2023]
Abstract
The identification of protein-protein interactions within their physiological environment is the key to understanding biological processes at the molecular level. However, the artificial nature of in vitro experiments, with their lack of other cellular components, may obstruct observations of specific cellular processes. In vivo analyses can provide information on the processes within a cell that might not be observed in vitro. Chemical crosslinking combined with mass spectrometric analysis of the covalently connected binding partners allows us to identify interacting proteins and to map their interface regions directly in the cell. In this paper, different in vivo crosslinking strategies for deriving information on protein-protein interactions in their physiological environment are described.
Collapse
|
126
|
Iglesias AH, Santos LFA, Gozzo FC. Identification of Cross-Linked Peptides by High-Resolution Precursor Ion Scan. Anal Chem 2010; 82:909-16. [DOI: 10.1021/ac902051q] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Amadeu H. Iglesias
- Institute of Chemistry, University of Campinas, and Instituto Nacional de Ciencia e Tecnologia de Bioanalitica, CP 6154, 13083-970 Campinas, São Paulo, Brazil
| | - Luiz Fernando A. Santos
- Institute of Chemistry, University of Campinas, and Instituto Nacional de Ciencia e Tecnologia de Bioanalitica, CP 6154, 13083-970 Campinas, São Paulo, Brazil
| | - Fábio C. Gozzo
- Institute of Chemistry, University of Campinas, and Instituto Nacional de Ciencia e Tecnologia de Bioanalitica, CP 6154, 13083-970 Campinas, São Paulo, Brazil
| |
Collapse
|
127
|
Pan Y, Konermann L. Membrane protein structural insights from chemical labeling and mass spectrometry. Analyst 2010; 135:1191-200. [DOI: 10.1039/b924805f] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
128
|
Puts CF, Lenoir G, Krijgsveld J, Williamson P, Holthuis JCM. A P4-ATPase Protein Interaction Network Reveals a Link between Aminophospholipid Transport and Phosphoinositide Metabolism. J Proteome Res 2009; 9:833-42. [DOI: 10.1021/pr900743b] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Catheleyne F. Puts
- Membrane Enzymology, Bijvoet Center and Institute of Biomembranes, and Biomolecular Mass Spectometry and Proteomics Group, Bijvoet Center and Netherlands Proteomics Center, Utrecht University, 3584 CH Utrecht, The Netherlands and Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Guillaume Lenoir
- Membrane Enzymology, Bijvoet Center and Institute of Biomembranes, and Biomolecular Mass Spectometry and Proteomics Group, Bijvoet Center and Netherlands Proteomics Center, Utrecht University, 3584 CH Utrecht, The Netherlands and Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Jeroen Krijgsveld
- Membrane Enzymology, Bijvoet Center and Institute of Biomembranes, and Biomolecular Mass Spectometry and Proteomics Group, Bijvoet Center and Netherlands Proteomics Center, Utrecht University, 3584 CH Utrecht, The Netherlands and Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Patrick Williamson
- Membrane Enzymology, Bijvoet Center and Institute of Biomembranes, and Biomolecular Mass Spectometry and Proteomics Group, Bijvoet Center and Netherlands Proteomics Center, Utrecht University, 3584 CH Utrecht, The Netherlands and Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Joost C. M. Holthuis
- Membrane Enzymology, Bijvoet Center and Institute of Biomembranes, and Biomolecular Mass Spectometry and Proteomics Group, Bijvoet Center and Netherlands Proteomics Center, Utrecht University, 3584 CH Utrecht, The Netherlands and Department of Biology, Amherst College, Amherst, Massachusetts 01002
| |
Collapse
|
129
|
Smart SK, Mackintosh SG, Edmondson RD, Taverna SD, Tackett AJ. Mapping the local protein interactome of the NuA3 histone acetyltransferase. Protein Sci 2009; 18:1987-97. [PMID: 19621382 DOI: 10.1002/pro.212] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Protein-protein interactions modulate cellular functions ranging from the activity of enzymes to signal transduction cascades. A technology termed transient isotopic differentiation of interactions as random or targeted (transient I-DIRT) is described for the identification of stable and transient protein-protein interactions in vivo. The procedure combines mild in vivo chemical cross-linking and non-stringent affinity purification to isolate low abundance chromatin-associated protein complexes. Using isotopic labeling and mass spectrometric readout, purified proteins are categorized with respect to the protein 'bait' as stable, transient, or contaminant. Here we characterize the local interactome of the chromatin-associated NuA3 histone lysine-acetyltransferase protein complex. We describe transient associations with the yFACT nucleosome assembly complex, RSC chromatin remodeling complex and a nucleosome assembly protein. These novel, physical associations with yFACT, RSC, and Nap1 provide insight into the mechanism of NuA3-associated transcription and chromatin regulation.
Collapse
Affiliation(s)
- Sherri K Smart
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | | | | | |
Collapse
|
130
|
André M, Chambrion C, Charrin S, Soave S, Chaker J, Boucheix C, Rubinstein E, Le Naour F. In situ chemical cross-linking on living cells reveals CD9P-1 cis-oligomer at cell surface. J Proteomics 2009; 73:93-102. [PMID: 19703604 DOI: 10.1016/j.jprot.2009.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 07/08/2009] [Accepted: 08/17/2009] [Indexed: 01/23/2023]
Abstract
Tetraspanins are integral membrane proteins involved in a variety of physiological and pathological processes. They associate with each other in multimolecular complexes containing numerous membrane proteins. As a first step towards the study of the supramolecular organization of tetraspanin complexes, we have implemented a proteomic approach based on in situ protein cross-linking on living cells followed by affinity purification of tetraspanin complexes. This allowed observing the presence of high molecular weight protein complexes that were characterized as containing CD9P-1/CD315 using LC-MS/MS. Western blot analyses and the use of different tags demonstrated the presence of CD9P-1 oligomer in cis-association at cell surface. A significant amount of CD9P-1 oligomer was observed on various cell types. We have shown that CD9P-1 self-associates independently from its association with tetraspanins. However, the expression level of CD9 or CD81 that associate directly and specifically with CD9P-1, positively modulates the cross-linking efficiency of CD9P-1. Thus, tetraspanins can play a role on CD9P-1 oligomerization status.
Collapse
|
131
|
Shi L, Richardson DJ, Wang Z, Kerisit SN, Rosso KM, Zachara JM, Fredrickson JK. The roles of outer membrane cytochromes of Shewanella and Geobacter in extracellular electron transfer. ENVIRONMENTAL MICROBIOLOGY REPORTS 2009; 1:220-7. [PMID: 23765850 DOI: 10.1111/j.1758-2229.2009.00035.x] [Citation(s) in RCA: 217] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
As key components of the electron transfer (ET) pathways used for dissimilatory reduction of solid iron [Fe(III)] (hydr)oxides, outer membrane multihaem c-type cytochromes MtrC and OmcA of Shewanella oneidensis MR-1 and OmcE and OmcS of Geobacter sulfurreducens mediate ET reactions extracellularly. Both MtrC and OmcA are at least partially exposed to the extracellular side of the outer membrane and their translocation across the outer membrane is mediated by bacterial type II secretion system. Purified MtrC and OmcA can bind Fe(III) oxides, such as haematite (α-Fe2 O3 ), and directly transfer electrons to the haematite surface. Bindings of MtrC and OmcA to haematite are probably facilitated by their putative haematite-binding motifs whose conserved sequence is Thr-Pro-Ser/Thr. Purified MtrC and OmcA also exhibit broad operating potential ranges that make it thermodynamically feasible to transfer electrons directly not only to Fe(III) oxides but also to other extracellular substrates with different redox potentials. OmcE and OmcS are proposed to be located on the Geobacter cell surface where they are believed to function as intermediates to relay electrons to type IV pili, which are hypothesized to transfer electrons directly to the metal oxides. Cell surface-localized cytochromes thus are key components mediating extracellular ET reactions in both Shewanella and Geobacter for extracellular reduction of Fe(III) oxides.
Collapse
Affiliation(s)
- Liang Shi
- Pacific Northwest National Laboratory, Richland, WA 99354, USA. Schools of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | | | | | | | | | | | | |
Collapse
|