101
|
Fries GR, Zamzow MJ, Colpo GD, Monroy-Jaramillo N, Quevedo J, Arnold JG, Bowden CL, Walss-Bass C. The anti-aging effects of lithium in lymphoblastoid cell lines from patients with bipolar disorder and controls. J Psychiatr Res 2020; 128:38-42. [PMID: 32516629 PMCID: PMC7484018 DOI: 10.1016/j.jpsychires.2020.05.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/02/2020] [Accepted: 05/25/2020] [Indexed: 02/08/2023]
Abstract
Bipolar disorder (BD) has been previously associated with accelerated aging, and recent investigations have started to explore the potential anti-aging effects of BD treatments. Lithium, the most commonly used mood stabilizer, has been suggested to impact telomere length in specific populations, although its effects on other aging biomarkers, such as epigenetic aging, have never been investigated. We assessed the in vitro effects of lithium on telomere length and epigenetic aging in lymphoblastoid cell lines (LCLs) from 14 patients with BD and 14 controls, all matched for age, sex, and ethnicity. Our results showed that telomere length significantly correlated with chronological age in LCLs in both groups and that BD patients have shorter telomere lengths compared to controls at baseline (vehicle treatment), confirming previous in vivo findings. Moreover, lithium treatment significantly increased telomere length in LCLs from patients, but not in controls. On the other hand, epigenetic age did not correlate with chronological age and was not shown to differ between patients and controls. In addition, lithium did not induce any changes in epigenetic age in cells from either patients or controls. Overall, our results support previous reports of an anti-aging effect of lithium based on its modulation of telomere length and suggest a different lithium effect in cells from patients and controls. Finally, we also discuss the limitations of using transformed LCLs for the study of DNA methylation mechanisms.
Collapse
Affiliation(s)
- Gabriel R. Fries
- Translational Psychiatry Program, Louis A. Faillace, MD, Department of Psychiatry & Behavioral Sciences, The University of Texas Health Science Center at Houston. 1941 East Rd, 77054 Houston, TX.,Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston. 7000 Fannin St, 77030 Houston, TX.,Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Madeline J. Zamzow
- Translational Psychiatry Program, Louis A. Faillace, MD, Department of Psychiatry & Behavioral Sciences, The University of Texas Health Science Center at Houston. 1941 East Rd, 77054 Houston, TX
| | - Gabriela D. Colpo
- Translational Psychiatry Program, Louis A. Faillace, MD, Department of Psychiatry & Behavioral Sciences, The University of Texas Health Science Center at Houston. 1941 East Rd, 77054 Houston, TX
| | - Nancy Monroy-Jaramillo
- Department of Genetics, National Institute of Neurology and Neurosurgery, Manuel Velasco Suárez. Insurgentes Sur 3877 Col. La Fama, Tlalpan, C. P. 14269, Mexico city, Mexico
| | - Joao Quevedo
- Translational Psychiatry Program, Louis A. Faillace, MD, Department of Psychiatry & Behavioral Sciences, The University of Texas Health Science Center at Houston. 1941 East Rd, 77054 Houston, TX.,Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.,Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil,Center of Excellence in Mood Disorders, Department of Psychiatry & Behavioral Sciences, The University of Texas Health Science Center at Houston. 1941 East Rd, 77054 Houston, TX
| | - Jodi G. Arnold
- Department of Psychiatry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States
| | - Charles L. Bowden
- Department of Psychiatry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States
| | - Consuelo Walss-Bass
- Translational Psychiatry Program, Louis A. Faillace, MD, Department of Psychiatry & Behavioral Sciences, The University of Texas Health Science Center at Houston. 1941 East Rd, 77054 Houston, TX.,Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
102
|
Dudinskaya EN, Tkacheva ON, Brailova NV, Strazhesko ID, Shestakova MV. [Telomere biology and metabolic disorders: the role of insulin resistance and type 2 diabetes]. ACTA ACUST UNITED AC 2020; 66:35-44. [PMID: 33351357 DOI: 10.14341/probl12510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/03/2020] [Accepted: 08/10/2020] [Indexed: 11/06/2022]
Abstract
BACKGROUND Insulin resistance accelerates the aging process, but its speed depends on the individual characteristics of the metabolism. One of the reasons for the different aging rates in individuals with insulin resistance is the initially different "genetic protection" of cells, which many scientists associate with replicative cellular aging. AIMS to study the relationship between the state of carbohydrate metabolism and markers of replicative cell aging in individuals with different sensitivity to insulin. MATERIALS AND METHODS The observation study included 305 patients. The parameters of glucose metabolism and telomere biology were studied. RESULTS The mean age of the patients was 51.5±13.3 years. Patients were divided into three groups depending on presence of insulin resistance: healthy, with insulin resistance and with type 2 diabetes. The mean age of healthy patients was 48.82±13.87 years, in insulin resistance group - 53.04±12.8, in 2 diabetes mellitus - 58.4±7.90. The median telomere length was 9.76. The median telomerase activity was 0.48. Both telomere length and telomerase activity progressively decrease as insulin resistance increases. In patients with diabetes, short telomere lengths and low telomerase activity predominated. The insulin resistance index has the greatest impact on the risk of detecting "short" telomeres. In patients with insulin resistance, an increase in glycated hemoglobin increases the likelihood of detecting short telomeres by 2.4 times, and in diabetes mellitus by 4.26 times, an increase in fasting plasma glucose by 90%, and an increase in HOMA-IR by 35%. An increase in insulin resistance increases the risk of detecting «low» telomerase activity by 53% and the risk of detecting «very low» telomerase activity by 92%. A decrease in synsulin resistance increases the chance of increasing telomerase activity to «very high» by 51%. CONCLUSION Shorter telomeres are associated with more pronounced disorders of carbohydrate metabolism and a higher degree of insulin resistance. Further studies of metabolic status are necessary to personalize their lifestyle and treatment goals.
Collapse
Affiliation(s)
- Ekaterina N Dudinskaya
- Pirogov Russian National Research Medical University of Ministry of Health of Russian Federation "Russian Gerontology Research and Clinical Centre"
| | - Olga N Tkacheva
- Pirogov Russian National Research Medical University of Ministry of Health of Russian Federation "Russian Gerontology Research and Clinical Centre"
| | - Natalia V Brailova
- Pirogov Russian National Research Medical University of Ministry of Health of Russian Federation "Russian Gerontology Research and Clinical Centre"
| | - Irina D Strazhesko
- Pirogov Russian National Research Medical University of Ministry of Health of Russian Federation "Russian Gerontology Research and Clinical Centre"
| | - Marina V Shestakova
- The National Medical Research Center for Endocrinology of Ministry of Health of Russian Federation
| |
Collapse
|
103
|
Oxidative Stress, Telomere Shortening, and Apoptosis Associated to Sarcopenia and Frailty in Patients with Multimorbidity. J Clin Med 2020; 9:jcm9082669. [PMID: 32824789 PMCID: PMC7464426 DOI: 10.3390/jcm9082669] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 08/14/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The presence of oxidative stress, telomere shortening, and apoptosis in polypathological patients (PP) with sarcopenia and frailty remains unknown. METHODS Multicentric prospective observational study in order to assess oxidative stress markers (catalase, glutathione reductase (GR), total antioxidant capacity to reactive oxygen species (TAC-ROS), and superoxide dismutase (SOD)), absolute telomere length (aTL), and apoptosis (DNA fragmentation) in peripheral blood samples of a hospital-based population of PP. Associations of these biomarkers to sarcopenia, frailty, functional status, and 12-month mortality were analyzed. RESULTS Of the 444 recruited patients, 97 (21.8%), 278 (62.6%), and 80 (18%) were sarcopenic, frail, or both, respectively. Oxidative stress markers (lower TAC-ROS and higher SOD) were significantly enhanced and aTL significantly shortened in patients with sarcopenia, frailty or both syndromes. No evidence of apoptosis was detected in blood leukocytes of any of the patients. Both oxidative stress markers (GR, p = 0.04) and telomere shortening (p = 0.001) were associated to death risk and to less survival days. CONCLUSIONS Oxidative stress markers and telomere length were enhanced and shortened, respectively, in blood samples of polypathological patients with sarcopenia and/or frailty. Both were associated to decreased survival. They could be useful in the clinical practice to assess vulnerable populations with multimorbidity and of potential interest as therapeutic targets.
Collapse
|
104
|
Bibliometric Analysis of Research on Telomere Length in Children: A Review of Scientific Literature. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17124593. [PMID: 32604805 PMCID: PMC7345248 DOI: 10.3390/ijerph17124593] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/15/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022]
Abstract
Telomere length in early life has been recently associated with biological aging and development of negative consequences in later adult life. A relevant area of research has emerged to understand the factors that impact telomere length in children. We conducted a bibliometric analysis to track research output and identify global trends and gaps in the knowledge of telomere length in children. Bibliographic data were retrieved from the Web of Science database and then analyzed by using Bibliometrix R package. A total of 840 publications were yielded from 1991 to 2019. The references were prominently published in journals, with 20 high ranked journals contributing to 30% of literature on telomere length in children. The USA was the most productive country (35.7%), followed by Europe (12.1%), and Asia (11.9%). A knowledge map of telomere length in children through keyword analyses revealed that there were two potential main lines of research based on two different approaches: genomic research and epidemiological research. This study shows that telomere length in children is a topic of research that has gained significant relevance in the last decade. This bibliometric study may be helpful in identifying research trends and finding research hot spots and gaps in this research field.
Collapse
|
105
|
Affiliation(s)
- Daniel A Notterman
- Department of Molecular Biology, Princeton University, Princeton, New Jersey
- Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey
| | - Lisa Schneper
- Department of Molecular Biology, Princeton University, Princeton, New Jersey
| |
Collapse
|
106
|
Fries GR, Zamzow MJ, Andrews T, Pink O, Scaini G, Quevedo J. Accelerated aging in bipolar disorder: A comprehensive review of molecular findings and their clinical implications. Neurosci Biobehav Rev 2020; 112:107-116. [DOI: 10.1016/j.neubiorev.2020.01.035] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/11/2020] [Accepted: 01/29/2020] [Indexed: 01/08/2023]
|
107
|
Sun Y, Zhao JQ, Jiao YR, Ren J, Zhou YH, Li L, Yao HC. Predictive value of leukocyte telomere length for the severity of coronary artery disease. Per Med 2020; 17:175-183. [PMID: 31984849 DOI: 10.2217/pme-2019-0152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Aim: This study aimed to explore leukocyte telomere length (LTL) in the prediction of the severity of coronary artery disease (CAD). Materials & methods: A total of 359 CAD patients who underwent coronary angiography were enrolled in this study. Severity of coronary artery was assessed by Gensini score (GS). Results: LTL is negatively correlated with GS (Spearman's rank correlation coefficient = -0.335; p < 0.001). Multivariate logistic regression results showed that LTL was an independent predictor of high GS (p = 0.001). Area under the curve value of LTL for predicting high GS was 0.659 (p < 0.001). Conclusion: LTL could be considered as a potential predictor of the severity of coronary artery in patients with CAD.
Collapse
Affiliation(s)
- Ying Sun
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong Province, 250021, China.,Department of Cardiology, Liaocheng People's Hospital Affiliated to Shandong University & Clinical School of Shandong First Medical University, Liaocheng, 252000, China
| | - Jing-Qian Zhao
- Department of Cardiology, Liaocheng People's Hospital Affiliated to Shandong University & Clinical School of Shandong First Medical University, Liaocheng, 252000, China
| | - Yue-Ru Jiao
- Department of Cardiology, Liaocheng People's Hospital Affiliated to Shandong University & Clinical School of Shandong First Medical University, Liaocheng, 252000, China
| | - Jian Ren
- Department of Cardiology, Liaocheng Dongchangfu People's Hospital, The second affiliated Hospital of Liaocheng University, Liaocheng, 252000, China
| | - Yan-Hong Zhou
- Department of Cardiology, Liaocheng People's Hospital Affiliated to Shandong University & Clinical School of Shandong First Medical University, Liaocheng, 252000, China
| | - Li Li
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong Province, 250021, China
| | - Heng-Chen Yao
- Department of Cardiology, Liaocheng People's Hospital Affiliated to Shandong University & Clinical School of Shandong First Medical University, Liaocheng, 252000, China
| |
Collapse
|
108
|
Long Leukocyte Telomere Length Is Associated with Increased Risks of Soft Tissue Sarcoma: A Mendelian Randomization Study. Cancers (Basel) 2020; 12:cancers12030594. [PMID: 32150919 PMCID: PMC7139681 DOI: 10.3390/cancers12030594] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/24/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Leukocyte telomere length (LTL) has been associated with the risks of several cancers in observational studies. Mendelian randomization (MR) studies, using genetic variants as instrumental variables, have also shown associations of genetically predicted LTL with cancer risks. In this study, we performed the first MR analysis on soft tissue sarcoma (STS) to investigate the causal relationship between LTL and the risk of STS. Methods: Genotypes from eleven LTL-associated single nucleotide polymorphisms (SNPs) in 821 STS cases and 851 cancer-free controls were aggregated into a weighted genetic risk score (GRS) to predict LTL. Multivariate logistic regression was used to assess the association of STS risk with individual SNPs and aggregated GRS. Results: Four SNPs displayed evidence for an individual association between long LTL-conferring allele and increased STS risk: rs7675998 (odds ratio (OR) = 1.21, 95% confidence interval (CI) = 1.02–1.43), rs9420907 (OR = 1.31, 95% CI = 1.08–1.59), rs8105767 (OR = 1.18, 95% CI = 1.02–1.37), and rs412658 (OR = 1.18, 95% CI = 1.02–1.36). Moreover, longer genetically predicted LTL, calculated as GRS, was strongly associated with an increased risk of STS (OR = 1.44, 95% CI = 1.18–1.75, p < 0.001), and there was a significant dose-response association (p for trend <0.001 in tertile and quartile analyses). The association of longer LTL with higher STS risk was more evident in women than in men. In stratified analyses by major STS subtypes, longer LTL was significantly associated with higher risks of leiomyosarcoma and gastrointestinal stromal tumors. Conclusions: Longer LTL is associated with increased risks of STS.
Collapse
|
109
|
Rossi M, Gorospe M. Noncoding RNAs Controlling Telomere Homeostasis in Senescence and Aging. Trends Mol Med 2020; 26:422-433. [PMID: 32277935 DOI: 10.1016/j.molmed.2020.01.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/23/2019] [Accepted: 01/21/2020] [Indexed: 12/12/2022]
Abstract
Aging is a universal and time-dependent biological decline associated with progressive deterioration of cells, tissues, and organs. Age-related decay can eventually lead to pathology such as cardiovascular and neurodegenerative diseases, cancer, and diabetes. A prominent molecular process underlying aging is the progressive shortening of telomeres, the structures that protect the ends of chromosomes, eventually triggering cellular senescence. Noncoding (nc)RNAs are emerging as major regulators of telomere length homeostasis. In this review, we describe the impact of ncRNAs on telomere function and discuss their implications in senescence and age-related diseases. We discuss emerging therapeutic strategies targeting telomere-regulatory ncRNAs in aging pathology.
Collapse
Affiliation(s)
- Martina Rossi
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA.
| |
Collapse
|
110
|
Aerobic capacity and telomere length in human skeletal muscle and leukocytes across the lifespan. Aging (Albany NY) 2020; 12:359-369. [PMID: 31901896 PMCID: PMC6977669 DOI: 10.18632/aging.102627] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/18/2019] [Indexed: 02/06/2023]
Abstract
A reduction in aerobic capacity and the shortening of telomeres are hallmarks of the ageing process. We examined whether a lower aerobic capacity is associated with shorter TL in skeletal muscle and/or leukocytes, across a wide age range of individuals. We also tested whether TL in human skeletal muscle (MTL) correlates with TL in leukocytes (LTL). Eighty-two recreationally active, healthy men from the Gene SMART cohort (31.4±8.2 years; body mass index (BMI)=25.3±3.3kg/m2), and 11 community dwelling older men (74.2±7.5years-old; BMI=28.7±2.8kg/m2) participated in the study. Leukocytes and skeletal muscle samples were collected at rest. Relative telomere length (T/S ratio) was measured by RT-PCR. Associations between TL, aerobic capacity (VO2 peak and peak power) and age were assessed with robust linear models. Older age was associated with shorter LTL (45% variance explained, P<0.001), but not MTL (P= 0.7). Aerobic capacity was not associated with MTL (P=0.5), nor LTL (P=0.3). MTL and LTL were correlated across the lifespan (rs=0.26, P=0.03). In healthy individuals, age explain most of the variability of LTL and this appears to be independent of individual aerobic capacity. Individuals with longer LTL also have a longer MTL, suggesting that there might be a shared molecular mechanism regulating telomere length.
Collapse
|
111
|
Yeh JK, Lin MH, Wang CY. Telomeres as Therapeutic Targets in Heart Disease. ACTA ACUST UNITED AC 2019; 4:855-865. [PMID: 31998853 PMCID: PMC6978555 DOI: 10.1016/j.jacbts.2019.05.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 12/14/2022]
Abstract
Age-associated CVDs impose a great burden on current health systems. Despite the fact that current strong evidence supports the links among aging, telomere attrition, and CVDs, there is no clear direction for the development of telomere therapeutics against CVDs. This review focuses on immune modulation, CHIP, pharmaceutical interventions, and gene therapy for their therapeutic roles in age-associated CVDs. The future goal of telomere cardiovascular therapy in young subjects is to prevent senescence and diseases, whereas in older adult subjects, the goal is restoration of cardiovascular functions. Further studies on the telomere-CHIP-atherosclerosis axis may shed insights on how to achieve these 2 different therapeutic targets.
Telomeres are double-stranded repeats of G-rich tandem DNA sequences that gradually shorten with each cell division. Aging, inflammation, and oxidative stress accelerate the process of telomere shortening. Telomerase counteracts this process by maintaining and elongating the telomere length. Patients with atherosclerotic diseases and cardiovascular risk factors (e.g., smoking, obesity, sedentary lifestyle, and hypertension) have shorter leukocyte telomere length. Following myocardial infarction, telomerase expression and activity in cardiomyocytes and endothelial cells increase significantly, implying that telomerase plays a role in regulating tissue repairs in heart diseases. Although previous studies have focused on the changes of telomeres in heart diseases and the telomere length as a marker for aging cardiovascular systems, recent studies have explored the potential of telomeres and telomerase in the treatment of cardiovascular diseases. This review discusses the significant advancements of telomere therapeutics in gene therapy, atherosclerosis, anti-inflammation, and immune modulation in patients with cardiovascular diseases.
Collapse
Affiliation(s)
- Jih-Kai Yeh
- Department of Cardiology, Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Taoyuan City, Taiwan
| | - Mei-Hsiu Lin
- Department of Cardiology, Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Taoyuan City, Taiwan
| | - Chao-Yung Wang
- Department of Cardiology, Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Taoyuan City, Taiwan.,Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| |
Collapse
|
112
|
Obesity, weight loss, and influence on telomere length: New insights for personalized nutrition. Nutrition 2019; 66:115-121. [DOI: 10.1016/j.nut.2019.05.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/22/2019] [Accepted: 05/11/2019] [Indexed: 01/29/2023]
|
113
|
Monroe DM, Goldstein RL, Teylan MA, Hart JE, DeVivo I, Orr EH, Garshick E. Clinical associations with telomere length in chronic spinal cord injury. Spinal Cord 2019; 57:1084-1093. [PMID: 31383950 PMCID: PMC6940383 DOI: 10.1038/s41393-019-0336-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN Cross-sectional study OBJECTIVES: To determine clinical factors associated with telomere length in persons with chronic spinal cord injury (SCI). SETTING Veterans Affairs Medical Center, Boston, MA. METHODS Two hundred seventy-eight participants with chronic SCI provided blood samples for measurement of C-reactive protein (CRP), interleukin-6 (IL-6), and telomere length, completed respiratory health questionnaires, underwent dual X-ray absorptiometry (DXA) to assess body fat, and completed spirometry. High-throughput real-time PCR assays were used to assess telomere length in leukocyte genomic DNA. Linear regression models were used to assess cross-sectional associations with telomere length. RESULTS Telomere length was inversely related to age (p < 0.0001). In age-adjusted models, gender, race, injury duration, %-total and %-trunk fat, body mass index (BMI), %-predicted forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV1), chronic cough or phlegm, CRP, IL-6, wheeze, smoking, diabetes, heart disease, chronic obstructive pulmonary disease (COPD), skin ulcer, urinary tract infection (UTI), or chest illness history were not significantly associated with telomere length. There was a suggestive age-adjusted association between persons with the most severe SCI (cervical motor complete and AIS C) and shorter telomere length (p = 0.055), an effect equivalent to ~8.4 years of premature aging. There were similar age-adjusted associations with telomere length between persons using a wheelchair (p = 0.059) and persons with chronic urinary catheter use (p = 0.082) compared to persons without these characteristics. CONCLUSIONS Our results suggest that clinical characteristics such as decreased mobility and bladder dysfunction that are common in individuals with more severe SCI are associated with shorter telomere length.
Collapse
Affiliation(s)
| | - Rebekah L Goldstein
- Research and Development Service, VA Boston Healthcare System, West Roxbury, MA, USA
| | - Merilee A Teylan
- Research and Development Service, VA Boston Healthcare System, West Roxbury, MA, USA
| | - Jaime E Hart
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Immaculata DeVivo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Esther H Orr
- Brigham and Women's Hospital and Dept of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Eric Garshick
- Pulmonary, Allergy, Sleep and Critical Care Medicine Section, VA Boston Healthcare System and Harvard Medical School, West Roxbury, MA, USA. .,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
114
|
Song L, Liu B, Zhang L, Wu M, Wang L, Cao Z, Zhang B, Li Y, Wang Y, Xu S. Association of prenatal exposure to arsenic with newborn telomere length: Results from a birth cohort study. ENVIRONMENTAL RESEARCH 2019; 175:442-448. [PMID: 31158562 DOI: 10.1016/j.envres.2019.05.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 06/09/2023]
Abstract
OBJECTIVES The telomere length at birth has important implications for telomere dynamics over the lifespan; however, few studies have explored the relationship between prenatal arsenic exposure and newborn telomere length (TL). We investigated whether newborn TL is related to prenatal arsenic exposure. METHODS We used data from a birth cohort study of 762 mother-newborn pairs conducted between November 2013 and March 2015 in Wuhan, China. We measured relative cord blood TL using quantitative real-time polymerase chain reaction. Arsenic concentrations were measured in spot urine samples collected during three trimesters using inductively coupled plasma mass spectrometry. We applied multiple informant models to explore the relationships between prenatal urinary arsenic concentrations and cord blood TL. RESULTS The geometric means of urinary arsenic concentrations were 21.7 μg/g creatinine, 27.3 μg/g creatinine, and 27.1 μg/g creatinine in the first, second, and third trimesters, respectively. After adjustment for potential confounders, a doubling of maternal urinary arsenic concentration during the third trimester was related to a 5.75% (95% CI: 1.70%, 9.95%) increase in cord blood TL, particularly in female infants. Similarly, mothers in the highest quartile of urinary arsenic during the third trimester had an 11.45% (95% CI: 1.91%, 21.88%) longer cord blood TL than those in the lowest quartile. However, no significant association was found between maternal urinary arsenic concentration and cord blood TL during the first and second trimesters. CONCLUSION Our findings suggested that maternal arsenic exposure during the third trimester was positively associated with newborn TL. The elongation of newborn telomeres due to prenatal arsenic exposure may offer new insights into the mechanisms underlying arsenic-related disorders.
Collapse
Affiliation(s)
- Lulu Song
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bingqing Liu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lina Zhang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mingyang Wu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lulin Wang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhongqiang Cao
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bin Zhang
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Youjie Wang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|