101
|
Cuvas-Limon RB, Nobre C, Cruz M, Rodriguez-Jasso RM, Ruíz HA, Loredo-Treviño A, Texeira JA, Belmares R. Spontaneously fermented traditional beverages as a source of bioactive compounds: an overview. Crit Rev Food Sci Nutr 2020; 61:2984-3006. [PMID: 32662286 DOI: 10.1080/10408398.2020.1791050] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Fermented food has been present throughout history, since fermentation not only helps preserving food, but also provides specific organoleptic characteristics typically associated to these foods. Most of the traditional fermented foods and artisanal beverages are produced by spontaneous generation, meaning no control of the microbiota, or the substrate used. Nevertheless, even not being standardized, they are an important source of bioactive compounds, such as antioxidant compounds, bioactive beeps, short chain fatty acids, amino acids, vitamins, and minerals. This review compiles a list of relevant traditional fermented beverages around the world, aiming to detail the fermentation process itself-including source of microorganisms, substrates, produced metabolites and the operational conditions involved. As well as to list the bioactive compounds present in each fermented food, together with their impact in the human health. Traditional fermented beverages from Mexico will be highlighted. These compounds are of high interest for the food, pharmaceutical and cosmetics industry. To scale-up the home fermentation processes, it is necessary to fully understand the microbiology and biochemistry behind these traditional products. The use of good quality raw materials with standardized methodologies and defined microorganisms, may improve and increase the production of the desirable bioactive compounds and open a market for novel functional products.
Collapse
Affiliation(s)
- R B Cuvas-Limon
- Food Research Department, School of Chemical Sciences, Autonomous University of Coahuila, Saltillo Coahuila, Saltillo, Coahuila, Mexico.,Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Clarisse Nobre
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Mario Cruz
- Department of Food Science and Technology, Antonio Narro Autonomous Agricultural University, Saltillo, Coahuila, Mexico
| | - Rosa M Rodriguez-Jasso
- Food Research Department, School of Chemical Sciences, Autonomous University of Coahuila, Saltillo Coahuila, Saltillo, Coahuila, Mexico
| | - Héctor A Ruíz
- Food Research Department, School of Chemical Sciences, Autonomous University of Coahuila, Saltillo Coahuila, Saltillo, Coahuila, Mexico
| | - Araceli Loredo-Treviño
- Food Research Department, School of Chemical Sciences, Autonomous University of Coahuila, Saltillo Coahuila, Saltillo, Coahuila, Mexico
| | - J A Texeira
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Ruth Belmares
- Food Research Department, School of Chemical Sciences, Autonomous University of Coahuila, Saltillo Coahuila, Saltillo, Coahuila, Mexico
| |
Collapse
|
102
|
Dai J, Tao L, Shi C, Yang S, Li D, Sheng J, Tian Y. Fermentation Improves Calcium Bioavailability in Moringa oleifera leaves and Prevents Bone Loss in Calcium-deficient Rats. Food Sci Nutr 2020; 8:3692-3703. [PMID: 32724632 PMCID: PMC7382168 DOI: 10.1002/fsn3.1653] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/22/2020] [Accepted: 04/29/2020] [Indexed: 11/21/2022] Open
Abstract
Nowadays, there is an increasing demand of healthier plant calcium supplements. Moringa oleifera leaves (MOL) are rich in calcium and thus are promising candidates for developing efficient calcium supplements. Here, using fermentation-based approaches, we developed a Moringa oleifera leaf ferment (MOLF), which contents higher levels of calcium. The therapeutic potential of the MOLF was also examined both in vitro and in vivo. Nine lactic acid bacteria and four yeasts were tested for better fermentation of MOL. Calcium-deficient rats were used for evaluating the therapeutic effects of MOLF. The results of liquid fermentation showed that the mixture of Lactobacillus reuteri, Lactobacillus acidophilus , and Candida utilis elevated the content of MOL calcium most strikingly, with the content of calcium increased nearly 2.4-fold (from 2.08% to 4.90%). The resulting MOLF was then subjected to cell experiments and animal experiments. The results showed that calcium absorption in Caco-2 cells in MOLF group was higher than that in CaCl2 group significantly. Interestingly, in calcium-deficient rats, MOLF treatment significantly increased the thickness of cortical bone, rat body weight, wet weight of the femur, and the femur bone density, whereas it decreased osteoclast numbers. These results indicate that microbial fermentation increased calcium bioavailability of MOL, promote the growth and development of calcium-deficient rats, bone calcium deposition, and bone growth; enhance bone strength; reduce bone resorption; and prevent calcium deficiency.
Collapse
Affiliation(s)
- Jiahe Dai
- College of Food Science and TechnologyYunnan Agricultural UniversityKunmingChina
| | - Liang Tao
- College of Food Science and TechnologyYunnan Agricultural UniversityKunmingChina
| | - Chongyin Shi
- College of Food Science and TechnologyYunnan Agricultural UniversityKunmingChina
| | - Shuwen Yang
- College of Food Science and TechnologyYunnan Agricultural UniversityKunmingChina
| | - Depeng Li
- College of Food Science and TechnologyYunnan Agricultural UniversityKunmingChina
| | - Jun Sheng
- College of Food Science and TechnologyYunnan Agricultural UniversityKunmingChina
- Yunnan Provincial Key Laboratory of Biological Big DataYunnan Agricultural UniversityKunmingChina
| | - Yang Tian
- College of Food Science and TechnologyYunnan Agricultural UniversityKunmingChina
- Yunnan Provincial Key Laboratory of Biological Big DataYunnan Agricultural UniversityKunmingChina
| |
Collapse
|
103
|
Xia Q, Tao H, Li Y, Pan D, Cao J, Liu L, Zhou X, Barba FJ. Characterizing physicochemical, nutritional and quality attributes of wholegrain Oryza sativa L. subjected to high intensity ultrasound-stimulated pre-germination. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106827] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|