101
|
The sickle cell trait affects contact dynamics and endothelial cell activation in Plasmodium falciparum-infected erythrocytes. Commun Biol 2018; 1:211. [PMID: 30534603 PMCID: PMC6269544 DOI: 10.1038/s42003-018-0223-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/06/2018] [Indexed: 11/08/2022] Open
Abstract
Sickle cell trait, a common hereditary blood disorder, protects carriers from severe disease in infections with the human malaria parasite Plasmodium falciparum. Protection is associated with a reduced capacity of parasitized erythrocytes to cytoadhere to the microvascular endothelium and cause vaso-occlusive events. However, the underpinning cellular and biomechanical processes are only partly understood and the impact on endothelial cell activation is unclear. Here, we show, by combining quantitative flow chamber experiments with multiscale computer simulations of deformable cells in hydrodynamic flow, that parasitized erythrocytes containing the sickle cell haemoglobin displayed altered adhesion dynamics, resulting in restricted contact footprints on the endothelium. Main determinants were cell shape, knob density and membrane bending. As a consequence, the extent of endothelial cell activation was decreased. Our findings provide a quantitative understanding of how the sickle cell trait affects the dynamic cytoadhesion behavior of parasitized erythrocytes and, in turn, endothelial cell activation.
Collapse
|
102
|
Nait Ouhra A, Farutin A, Aouane O, Ez-Zahraouy H, Benyoussef A, Misbah C. Shear thinning and shear thickening of a confined suspension of vesicles. Phys Rev E 2018; 97:012404. [PMID: 29448354 DOI: 10.1103/physreve.97.012404] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Indexed: 11/07/2022]
Abstract
Widely regarded as an interesting model system for studying flow properties of blood, vesicles are closed membranes of phospholipids that mimic the cytoplasmic membranes of red blood cells. In this study we analyze the rheology of a suspension of vesicles in a confined geometry: the suspension, bound by two planar rigid walls on each side, is subject to a shear flow. Flow properties are then analyzed as a function of shear rate γ[over ̇], the concentration of the suspension ϕ, and the viscosity contrast λ=η_{in}/η_{out}, where η_{in} and η_{out} are the fluid viscosities of the inner and outer fluids, respectively. We find that the apparent (or effective viscosity) of the suspension exhibits both shear thinning (decreasing viscosity with shear rate) or shear thickening (increasing viscosity with shear rate) in the same concentration range. The shear thinning or thickening behaviors appear as subtle phenomena, dependant on viscosity contrast λ. We provide physical arguments on the origins of these behaviors.
Collapse
Affiliation(s)
- A Nait Ouhra
- Laboratoire Interdisciplinaire de Physique, Université Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France.,Laboratoire de Matière Condensée et Sciences Interdisciplinaires, Faculty of Sciences, Mohammed V University of Rabat, 1014 Morocco
| | - A Farutin
- Laboratoire Interdisciplinaire de Physique, Université Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| | - O Aouane
- Laboratoire Interdisciplinaire de Physique, Université Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France.,Forschungszentrum Jülich GmbH, Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Dynamics of Complex Fluids and Interfaces, Fürther Straße 248, 90429 Nürnberg, Germany
| | - H Ez-Zahraouy
- Laboratoire de Matière Condensée et Sciences Interdisciplinaires, Faculty of Sciences, Mohammed V University of Rabat, 1014 Morocco
| | - A Benyoussef
- Laboratoire de Matière Condensée et Sciences Interdisciplinaires, Faculty of Sciences, Mohammed V University of Rabat, 1014 Morocco.,Hassan II Academy of Science and Technology, Rabat, 10220 Morocco
| | - C Misbah
- Laboratoire Interdisciplinaire de Physique, Université Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| |
Collapse
|
103
|
Peto K, Nemeth N, Mester A, Magyar Z, Ghanem S, Somogyi V, Tanczos B, Deak A, Bidiga L, Frecska E, Nemes B. Hemorheological and metabolic consequences of renal ischemia-reperfusion and their modulation by N,N-dimethyl-tryptamine on a rat model. Clin Hemorheol Microcirc 2018; 70:107-117. [DOI: 10.3233/ch-170361] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Katalin Peto
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Norbert Nemeth
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Anita Mester
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsuzsanna Magyar
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Souleiman Ghanem
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Viktoria Somogyi
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Bence Tanczos
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Adam Deak
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Laszlo Bidiga
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ede Frecska
- Department of Psychiatry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Balazs Nemes
- Division of Organ Transplantation, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
104
|
Grambow E, Augustin VA, Strüder D, Kundt G, Klar E, Vollmar B. The effects of hydrogen sulfide on microvascular circulation in the axial pattern flap ear model in hairless mice. Microvasc Res 2018; 120:74-83. [PMID: 29991448 DOI: 10.1016/j.mvr.2018.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/27/2018] [Accepted: 06/27/2018] [Indexed: 01/30/2023]
Affiliation(s)
- Eberhard Grambow
- Institute for Experimental Surgery, University Medical Center Rostock, Rostock, Germany; Department for General, Thoracic-, Vascular- and Transplantation Surgery, University Medical Center Rostock, Rostock, Germany.
| | - Vicky A Augustin
- Institute for Experimental Surgery, University Medical Center Rostock, Rostock, Germany
| | - Daniel Strüder
- Institute for Experimental Surgery, University Medical Center Rostock, Rostock, Germany; Department of Otorhinolaryngology, Head and Neck Surgery, Rostock University Medical Center, Rostock, Germany
| | - Günther Kundt
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| | - Ernst Klar
- Department for General, Thoracic-, Vascular- and Transplantation Surgery, University Medical Center Rostock, Rostock, Germany
| | - Brigitte Vollmar
- Institute for Experimental Surgery, University Medical Center Rostock, Rostock, Germany
| |
Collapse
|
105
|
Nemeth N, Deak A, Szentkereszty Z, Peto K. Effects and influencing factors on hemorheological variables taken into consideration in surgical pathophysiology research. Clin Hemorheol Microcirc 2018; 69:133-140. [PMID: 29630533 DOI: 10.3233/ch-189105] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In surgical pathophysiology ischemia-reperfusion, inflammatory processes, sepsis, vascular interventions, tissue trauma, shock, all mean conditions in which hemorheological parameters show alterations. Despite of numerous clinical and experimental studies, the in vivo hemorheology is not completely understood yet, and several fundamental questions still need to be answered. Investigating these issues, experimental surgical models are important, in point of view of the translational research as well. In this paper we aimed to make an attempt on summarizing the possible factors and conditions that might have an effect on hemorheological results in experimental surgical studies. Hemorheological parameters show alterations in surgical pathophysiological processes in a complex way. However, the changes are dominantly non-specific. Standardized experimental conditions, related to the experimental animal (species, animal welfare) anesthesia-medications, operation, sampling and, if applicable, conditions of the postoperative period, are inevitable for a safe assessment of valuable (hemorheological) results. Parallel investigations - such as microcirculatory monitoring, imaging techniques, other laboratory methods, histomorphology- have great importance, together with individual analysis of changes, for a better understanding of the changes and for comparability with clinical results.
Collapse
Affiliation(s)
- Norbert Nemeth
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Adam Deak
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsolt Szentkereszty
- Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Katalin Peto
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
106
|
Uluc N, Unlu MB, Gulsen G, Erkol H. Extended photoacoustic transport model for characterization of red blood cell morphology in microchannel flow. BIOMEDICAL OPTICS EXPRESS 2018; 9:2785-2809. [PMID: 30258691 PMCID: PMC6154189 DOI: 10.1364/boe.9.002785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/21/2018] [Accepted: 04/11/2018] [Indexed: 06/08/2023]
Abstract
The dynamic response behavior of red blood cells holds the key to understanding red blood cell related diseases. In this regard, an understanding of the physiological functions of erythrocytes is significant before focusing on red blood cell aggregation in the microcirculatory system. In this work, we present a theoretical model for a photoacoustic signal that occurs when deformed red blood cells pass through a microfluidic channel. Using a Green's function approach, the photoacoustic pressure wave is obtained analytically by solving a combined Navier-Stokes and photoacoustic equation system. The photoacoustic wave expression includes determinant parameters for the cell deformability such as plasma viscosity, density, and red blood cell aggregation, as well as involving laser parameters such as beamwidth, pulse duration, and repetition rate. The effects of aggregation on blood rheology are also investigated. The results presented by this study show good agreements with the experimental ones in the literature. The comprehensive analytical solution of the extended photoacoustic transport model including a modified Morse type potential function sheds light on the dynamics of aggregate formation and demonstrates that the profile of a photoacoustic pressure wave has the potential for detecting and characterizing red blood cell aggregation.
Collapse
Affiliation(s)
- Nasire Uluc
- Department of Physics, Bogazici University, 34342 Bebek, Istanbul,
Turkey
| | - Mehmet Burcin Unlu
- Department of Physics, Bogazici University, 34342 Bebek, Istanbul,
Turkey
- Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 060-8648,
Japan
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA,
USA
| | - Gultekin Gulsen
- Department of Radiological Sciences, University of California, Irvine, CA,
USA
| | - Hakan Erkol
- Department of Physics, Bogazici University, 34342 Bebek, Istanbul,
Turkey
| |
Collapse
|
107
|
Kilic-Toprak E, Yaylali O, Yaylali YT, Ozdemir Y, Yuksel D, Senol H, Sengoz T, Bor-Kucukatay M. Hemorheological dysfunction in cardiac syndrome X. Acta Cardiol 2018; 73:257-265. [PMID: 28889793 DOI: 10.1080/00015385.2017.1373967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Cardiac syndrome X (CSX) is often described as angina or angina-like chest pain with a normal coronary arteriogram, yet the underlying pathophysiological mechanisms have not been fully elucidated. The aim of the current study was to determine alterations in blood rheology (erythrocyte aggregation and deformability, plasma viscosity - PV) in patients with CSX. METHODS The study comprised 26 CSX patients (55.77 ± 12.33 years) and 37 age- and sex-matched (56.32 ± 11.98 years) healthy controls. Erythrocyte aggregation and deformability were measured by an ektacytometer and PV with a rotational viscometer. RESULTS Erythrocyte deformability measured at 1.69 and 3.00 Pa was lower in the CSX patients compared to the controls (p = .0001 and .017, respectively). Erythrocyte aggregation index (AI) (72.758 ± 7.65 vs. 66.483 ± 6.63, p = .002) and PV measured at a shear rate of 375 s-1 (1.932 ± 0.225 vs. 1.725 ± 0.331, p = .019) were significantly higher in patients with CSX. When AI, RDW and erythrocyte deformability measured at 1.69 Pa were evaluated together, it was observed that the increase in AI and RDW augments the risk of having CSX (OR: 1.2 and 2.65, respectively), while the rise in deformability decreases this risk (OR = 0.02). CONCLUSIONS Hemorheological impairments are associated with CSX.
Collapse
Affiliation(s)
- Emine Kilic-Toprak
- Faculty of Medicine, Department of Physiology, Pamukkale University, Kinikli, Denizli, Turkey
| | - Olga Yaylali
- Faculty of Medicine, Department of Nuclear Medicine, Pamukkale University, Kinikli, Denizli, Turkey
| | - Yalin Tolga Yaylali
- Faculty of Medicine, Department of Cardiology, Pamukkale University, Kinikli, Denizli, Turkey
| | - Yasin Ozdemir
- Faculty of Medicine, Department of Physiology, Pamukkale University, Kinikli, Denizli, Turkey
| | - Dogangun Yuksel
- Faculty of Medicine, Department of Nuclear Medicine, Pamukkale University, Kinikli, Denizli, Turkey
| | - Hande Senol
- Faculty of Medicine, Department of Biostatistics, Pamukkale University, Kinikli, Denizli, Turkey
| | - Tarık Sengoz
- Faculty of Medicine, Department of Nuclear Medicine, Pamukkale University, Kinikli, Denizli, Turkey
| | - Melek Bor-Kucukatay
- Faculty of Medicine, Department of Physiology, Pamukkale University, Kinikli, Denizli, Turkey
| |
Collapse
|
108
|
Detterich JA. Simple chronic transfusion therapy, a crucial therapeutic option for sickle cell disease, improves but does not normalize blood rheology: What should be our goals for transfusion therapy? Clin Hemorheol Microcirc 2018; 68:173-186. [PMID: 29614631 DOI: 10.3233/ch-189006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Sickle cell anemia is characterized by a mutation resulting in the formation of an abnormal beta-hemoglobin called hemoglobin S. Hemoglobin S polymerizes upon deoxygenation, causing impaired red blood cell deformability and increased blood viscosity at equivalent hematocrits. Thus, sickle cell disease is a hemorheologic disease that results in various pathologic processes involving multiple organ systems including the lungs, heart, kidneys and brain. Red blood cell mechanics and the perturbations on blood flow-endothelial interaction underlie much of the pathology found in sickle cell disease. Transfusion therapy is one of the few therapeutic options available to patients, acting as both primary and secondary prevention of stroke. Transfusion therapy, both simple and exchange, is also used for unremitting and frequent pain crises and pulmonary hypertension. Therefore, understanding basic rheologic changes following transfusion inform other therapeutic options that aim to mitigate this diffuse pathologic process. This review will aim to highlight transfusion effects on blood rheology.
Collapse
Affiliation(s)
- Jon A Detterich
- Division of Cardiology, Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA, USA.,Department of Biophysics and Physiology, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
109
|
Abstract
Non-adherence and deformability are the key intrinsic biomechanical features of the red blood cell (RBC), which allow it to tightly squeeze and pass through even the narrowest of microcirculatory networks. Blockage of microcirculatory flow, also known as vaso-occlusion, is a consequence of abnormal cellular adhesion to the vascular endothelium. In sickle cell disease (SCD), an inherited anaemia, even though RBCs have been shown to be heterogeneous in adhesiveness and deformability, this has not been studied in the context of physiologically relevant dynamic shear gradients at the microscale. We developed a microfluidic system that simulates physiologically relevant shear gradients of microcirculatory blood flow at a constant single volumetric flow rate. Using this system, shear dependent adhesion of RBCs from 28 subjects with SCD and from 11 healthy subjects was investigated using vascular endothelial protein functionalized microchannels. We defined a new term, RBC Shear Gradient Microfluidic Adhesion (SiGMA) index to assess shear dependent RBC adhesion in a subject-specific manner. We have shown for the first time that shear dependent adhesion of RBCs is heterogeneous in a microfluidic flow model, which correlates clinically with inflammatory markers and iron overload in subjects with SCD. This study reveals the complex dynamic interactions between RBC-mediated microcirculatory occlusion and clinical outcomes in SCD. These interactions may also be relevant to other microcirculatory disorders and microvascular diseases.
Collapse
Affiliation(s)
- Erdem Kucukal
- Department of Mechanical and Aerospace Engineering, Case Biomanufacturing and Microfabrication Laboratory, Case Western Reserve University, Glennan 616B, 10900 Euclid Ave., Cleveland, OH, USA.
| | - Jane A Little
- Department of Hematology and Oncology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA and Seidman Cancer Center at University Hospitals, Case Medical Center, Cleveland, OH, USA
| | - Umut A Gurkan
- Department of Mechanical and Aerospace Engineering, Case Biomanufacturing and Microfabrication Laboratory, Case Western Reserve University, Glennan 616B, 10900 Euclid Ave., Cleveland, OH, USA. and Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA and Department of Orthopaedics, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
110
|
Mester A, Magyar Z, Molnar A, Somogyi V, Tanczos B, Peto K, Nemeth N. Age- and gender-related hemorheological alterations in intestinal ischemia-reperfusion in the rat. J Surg Res 2018; 225:68-75. [PMID: 29605037 DOI: 10.1016/j.jss.2017.12.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 12/15/2017] [Accepted: 12/29/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Intestinal ischemia-reperfusion (I/R) is a life-threatening clinical disorder. During I/R, the microrheological parameters of blood (red blood cell deformability and aggregation) worsen, which may contribute to microcirculatory deterioration. Age and gender also have a great influence on hemorheological parameters. We aimed to investigate the gender and age-related microrheological alterations during intestinal I/R. MATERIALS AND METHODS After the cannulation of the left femoral artery, median laparotomy was performed in Crl:WI rats under general anesthesia. In the young control animals there were no other interventions (female n = 7; male n = 7). In the young (female n = 7; male n = 7) and older I/R groups (female n = 6; male n = 6), the superior mesenteric artery was clipped for 30 min, and a 120-min reperfusion period was observed afterward. Blood samples were taken before and at the 30-min ischemia, in the 30th, 60th, and 120th min of the reperfusion. Hematological parameters, erythrocyte deformability, and aggregation were determined. RESULTS Hematocrit increased significantly in the younger female I/R group. Red blood cell count was higher in male and older animals. In case of white blood cell count, male animals had higher values compared with females. Platelet count elevated in the younger male and older female I/R animals. Red blood cell deformability worsened, mainly in the male and older I/R groups. Enhanced erythrocyte aggregation was seen in all groups, being more expressed in the female I/R groups. CONCLUSIONS Microrheological parameters show gender and age-related differences during intestinal I/R. These observations have importance in the planning and evaluation of experimental data.
Collapse
Affiliation(s)
- Anita Mester
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsuzsanna Magyar
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Akos Molnar
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Viktoria Somogyi
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Bence Tanczos
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Katalin Peto
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Norbert Nemeth
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
111
|
Payne SJ, Lucas C. Oxygen delivery from the cerebral microvasculature to tissue is governed by a single time constant of approximately 6 seconds. Microcirculation 2018; 25. [DOI: 10.1111/micc.12428] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/02/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Stephen John Payne
- Institute of Biomedical Engineering; Department of Engineering Science; University of Oxford; Oxford UK
| | - Claire Lucas
- School of Engineering; University of Warwick; Coventry UK
| |
Collapse
|
112
|
Mester A, Magyar Z, Sogor V, Tanczos B, Stark Y, Cherniavsky K, Bidiga L, Peto K, Nemeth N. Intestinal ischemia-reperfusion leads to early systemic micro-rheological and multiorgan microcirculatory alterations in the rat. Clin Hemorheol Microcirc 2018; 68:35-44. [DOI: 10.3233/ch-170278] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Anita Mester
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Hungary
| | - Zsuzsanna Magyar
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Hungary
| | - Viktoria Sogor
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Hungary
| | - Bence Tanczos
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Hungary
| | - Yoav Stark
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Hungary
| | - Konstantin Cherniavsky
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Hungary
| | - Laszlo Bidiga
- Department of Pathology, University of Debrecen, Hungary
| | - Katalin Peto
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Hungary
| | - Norbert Nemeth
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Hungary
| |
Collapse
|
113
|
El-Bouri WK, Payne SJ. Investigating the effects of a penetrating vessel occlusion with a multi-scale microvasculature model of the human cerebral cortex. Neuroimage 2018; 172:94-106. [PMID: 29360574 DOI: 10.1016/j.neuroimage.2018.01.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 01/12/2018] [Accepted: 01/18/2018] [Indexed: 01/20/2023] Open
Abstract
The effect of the microvasculature on observed clinical parameters, such as cerebral blood flow, is poorly understood. This is partly due to the gap between the vessels that can be individually imaged in humans and the microvasculature, meaning that mathematical models are required to understand the role of the microvasculature. As a result, a multi-scale model based on morphological data was developed here that is able to model large regions of the human microvasculature. From this model, a clear layering of flow (and 1-dimensional depth profiles) was observed within a voxel, with the flow in the microvasculature being driven predominantly by the geometry of the penetrating vessels. It also appears that the pressure and flow are decoupled, both in healthy vasculatures and in those where occlusions have occurred, again due to the topology of the penetrating vessels shunting flow between them. Occlusion of a penetrating arteriole resulted in a very high degree of overlap of blood pressure drop with experimentally observed cell death. However, drops in blood flow were far more widespread, providing additional support for the theory that pericyte controlled regulation on the capillary scale likely plays a large part in the perfusion of tissue post-occlusion.
Collapse
Affiliation(s)
- Wahbi K El-Bouri
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK.
| | - Stephen J Payne
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| |
Collapse
|
114
|
Yasu T, Mutoh A, Wada H, Kobayashi M, Kikuchi Y, Momomura S, Ueda S. Renin-Angiotensin System Inhibitors Can Prevent Intravenous Lipid Infusion-Induced Myocardial Microvascular Dysfunction and Leukocyte Activation. Circ J 2018; 82:494-501. [PMID: 28954968 DOI: 10.1253/circj.cj-17-0809] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
BACKGROUND Levels of triglycerides and free fatty acids (FFAs) are elevated in patients with diabetes and may contribute to endothelial dysfunction through renin-angiotensin system (RAS) activation and oxidative stress. The present study investigated how systemic FFA loading affected myocardial microcirculation during hyperemia via RAS. METHODS AND RESULTS Eight healthy men received candesartan, perindopril, or a placebo for 2 days in a double-blind crossover design, and then myocardial microcirculation during hyperemia induced by a 2-h infusion of lipid/heparin was assessed using dipyridamole stress-myocardial contrast echocardiography (MCE). Leukocyte activity and hemorheology were also assessed ex vivo using a microchannel flow analyzer, serum levels of oxidative stress markers, and IκB-α expression in mononuclear cells. Serum FFA elevation by the infusion of lipid/heparin significantly decreased myocardial capillary blood velocity and myocardial blood flow during hyperemia. Both candesartan and perindopril significantly prevented the FFA-induced decrease in capillary blood velocity and myocardial blood flow during hyperemia. Systemic FFA loading also caused an increase in the number of adherent leukocytes and prolonged the whole blood passage time. These effects were blocked completely by candesartan and partially by perindopril. Both agents prevented the FFA-induced enhancement of oxidative stress and IκB-α degradation in mononuclear cells. CONCLUSIONS Both candesartan and perindopril can prevent FFA-induced myocardial microcirculatory dysfunction during hyperemia via modulation of leukocyte activation and microvascular endothelial function.
Collapse
Affiliation(s)
- Takanori Yasu
- Department of Cardiovascular Medicine & Nephrology, Dokkyo Medical University Nikko Medical Center
| | - Akiko Mutoh
- Department of Clinical Pharmacology & Therapeutics, University of the Ryukyus Graduate School of Medicine
| | - Hiroshi Wada
- Department of First Integrated Medicine, Saitama Medical Center, Jichi Medical University
| | - Mayumi Kobayashi
- Department of Clinical Pharmacology & Therapeutics, University of the Ryukyus Graduate School of Medicine
| | | | - Shinichi Momomura
- Department of First Integrated Medicine, Saitama Medical Center, Jichi Medical University
| | - Shinichiro Ueda
- Department of Clinical Pharmacology & Therapeutics, University of the Ryukyus Graduate School of Medicine
| |
Collapse
|
115
|
Sweeney PW, Walker-Samuel S, Shipley RJ. Insights into cerebral haemodynamics and oxygenation utilising in vivo mural cell imaging and mathematical modelling. Sci Rep 2018; 8:1373. [PMID: 29358701 PMCID: PMC5778006 DOI: 10.1038/s41598-017-19086-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/16/2017] [Indexed: 01/20/2023] Open
Abstract
The neurovascular mechanisms underpinning the local regulation of cerebral blood flow (CBF) and oxygen transport remain elusive. In this study we have combined novel in vivo imaging of cortical microvascular and mural cell architecture with mathematical modelling of blood flow and oxygen transport, to provide new insights into CBF regulation that would be inaccessible in a conventional experimental context. Our study indicates that vasoconstriction of smooth muscle actin-covered vessels, rather than pericyte-covered capillaries, induces stable reductions in downstream intravascular capillary and tissue oxygenation. We also propose that seemingly paradoxical observations in the literature around reduced blood velocity in response to arteriolar constrictions might be caused by a propagation of constrictions to upstream penetrating arterioles. We provide support for pericytes acting as signalling conduits for upstream smooth muscle activation, and erythrocyte deformation as a complementary regulatory mechanism. Finally, we caution against the use of blood velocity as a proxy measurement for flow. Our combined imaging-modelling platform complements conventional experimentation allowing cerebrovascular physiology to be probed in unprecedented detail.
Collapse
Affiliation(s)
- Paul W Sweeney
- Mechanical Engineering, University College London, London, UK
| | - Simon Walker-Samuel
- Centre for Advanced Biomedical Engineering, University College London, London, UK
| | | |
Collapse
|
116
|
Dumont CM, Piselli J, Temple S, Dai G, Thompson DM. Endothelial Cells Exposed to Fluid Shear Stress Support Diffusion Based Maturation of Adult Neural Progenitor Cells. Cell Mol Bioeng 2017; 11:117-130. [PMID: 31719881 DOI: 10.1007/s12195-017-0516-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 11/18/2017] [Indexed: 12/21/2022] Open
Abstract
Introduction The neural stem cell (NSC) niche is a highly complex cellular and biochemical milieu supporting proliferating NSCs and neural progenitor cells (NPCs) with close apposition to the vasculature, primarily comprised of endothelial cells (ECs). Current in vitro models of the niche incorporate EC-derived factors, but do not reflect the physiologically relevant hemodynamic state of the ECs or the spatial resolution observed between cells within the niche. Methods In this work, we developed a novel in vitro model of the niche that (1) incorporates ECs cultured with fluid shear stress and (2) fosters paracrine cytokine gradients between ECs and NSCs in a spatiotemporal configuration mimicking the cytoarchitecture of the subventricular niche. A modified cone and plate viscometer was used to generate a shear stress of 10 dynes cm-2 for ECs cultured on a membrane, while statically cultured NPCs are 10 or 1000 μm below the ECs. Results NPCs cultured within 10 μm of dynamic ECs exhibit increased PSA-NCAM+ and OLIG2+ cells compared to progenitors in all other culture regimes and the hemodynamic EC phenotype results in distinct progeny phenotypes. This co-culture regime yields greater release of pro-neurogenic factors, suggesting a potential mechanism for the observed progenitor maturation. Conclusions Based on these results, models incorporating ECs exposed to shear stress allow for paracrine signaling gradients and regulate NPC lineage progression with appropriate niche spatial resolution occurring at 10 μm. This model could be used to evaluate cellular or pharmacological interactions within the healthy, diseased, or aged brain.
Collapse
Affiliation(s)
- C M Dumont
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 USA.,Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| | - J Piselli
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 USA.,Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| | - S Temple
- Neural Stem Cell Institute, Rensselaer, NY 12144 USA
| | - G Dai
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 USA.,Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| | - D M Thompson
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 USA.,Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| |
Collapse
|
117
|
Sun YY, Lee J, Huang H, Wagner MB, Joiner CH, Archer DR, Kuan CY. Sickle Mice Are Sensitive to Hypoxia/Ischemia-Induced Stroke but Respond to Tissue-Type Plasminogen Activator Treatment. Stroke 2017; 48:3347-3355. [PMID: 29127268 PMCID: PMC5726594 DOI: 10.1161/strokeaha.117.018334] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 10/04/2017] [Accepted: 10/06/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND PURPOSE The effects of lytic stroke therapy in patients with sickle cell anemia are unknown, although a recent study suggested that coexistent sickle cell anemia does not increase the risk of cerebral hemorrhage. This finding calls for systemic analysis of the effects of thrombolytic stroke therapy, first in humanized sickle mice, and then in patients. There is also a need for additional predictive markers of sickle cell anemia-associated vasculopathy. METHODS We used Doppler ultrasound to examine the carotid artery of Townes sickle mice tested their responses to repetitive mild hypoxia-ischemia- and transient hypoxia-ischemia-induced stroke at 3 or 6 months of age, respectively. We also examined the effects of tPA (tissue-type plasminogen activator) treatment in transient hypoxia-ischemia-injured sickle mice. RESULTS Three-month-old sickle cell (SS) mice showed elevated resistive index in the carotid artery and higher sensitivity to repetitive mild hypoxia-ischemia-induced cerebral infarct. Six-month-old SS mice showed greater resistive index and increased flow velocity without obstructive vasculopathy in the carotid artery. Instead, the cerebral vascular wall in SS mice showed ectopic expression of PAI-1 (plasminogen activator inhibitor-1) and P-selectin, suggesting a proadhesive and prothrombotic propensity. Indeed, SS mice showed enhanced leukocyte and platelet adherence to the cerebral vascular wall, broader fibrin deposition, and higher mortality after transient hypoxia-ischemia. Yet, post-transient hypoxia-ischemia treatment with tPA reduced thrombosis and mortality in SS mice. CONCLUSIONS Sickle mice are sensitive to hypoxia/ischemia-induced cerebral infarct but benefit from thrombolytic treatment. An increased resistive index in carotid arteries may be an early marker of sickle cell vasculopathy.
Collapse
Affiliation(s)
- Yu-Yo Sun
- From the Department of Pediatrics, Emory University School of Medicine, Atlanta, GA (Y.-Y.S., J.L., H.H., C.-Y.K., C.H.J., D.R.A., M.B.W.); Center for Neurodegenerative Diseases (Y.-Y.S., J.L., H.H., C.-Y.K.); Aflac Cancer and Blood Disorders Center, Atlanta, GA (C.H.J., D.R.A.); Children's Heart Research and Outcomes Center, Emory University School of Medicine, Atlanta, GA (M.B.W.); and Children's Healthcare of Atlanta, GA (M.B.W.)
| | - Jolly Lee
- From the Department of Pediatrics, Emory University School of Medicine, Atlanta, GA (Y.-Y.S., J.L., H.H., C.-Y.K., C.H.J., D.R.A., M.B.W.); Center for Neurodegenerative Diseases (Y.-Y.S., J.L., H.H., C.-Y.K.); Aflac Cancer and Blood Disorders Center, Atlanta, GA (C.H.J., D.R.A.); Children's Heart Research and Outcomes Center, Emory University School of Medicine, Atlanta, GA (M.B.W.); and Children's Healthcare of Atlanta, GA (M.B.W.)
| | - Henry Huang
- From the Department of Pediatrics, Emory University School of Medicine, Atlanta, GA (Y.-Y.S., J.L., H.H., C.-Y.K., C.H.J., D.R.A., M.B.W.); Center for Neurodegenerative Diseases (Y.-Y.S., J.L., H.H., C.-Y.K.); Aflac Cancer and Blood Disorders Center, Atlanta, GA (C.H.J., D.R.A.); Children's Heart Research and Outcomes Center, Emory University School of Medicine, Atlanta, GA (M.B.W.); and Children's Healthcare of Atlanta, GA (M.B.W.)
| | - Mary B Wagner
- From the Department of Pediatrics, Emory University School of Medicine, Atlanta, GA (Y.-Y.S., J.L., H.H., C.-Y.K., C.H.J., D.R.A., M.B.W.); Center for Neurodegenerative Diseases (Y.-Y.S., J.L., H.H., C.-Y.K.); Aflac Cancer and Blood Disorders Center, Atlanta, GA (C.H.J., D.R.A.); Children's Heart Research and Outcomes Center, Emory University School of Medicine, Atlanta, GA (M.B.W.); and Children's Healthcare of Atlanta, GA (M.B.W.)
| | - Clinton H Joiner
- From the Department of Pediatrics, Emory University School of Medicine, Atlanta, GA (Y.-Y.S., J.L., H.H., C.-Y.K., C.H.J., D.R.A., M.B.W.); Center for Neurodegenerative Diseases (Y.-Y.S., J.L., H.H., C.-Y.K.); Aflac Cancer and Blood Disorders Center, Atlanta, GA (C.H.J., D.R.A.); Children's Heart Research and Outcomes Center, Emory University School of Medicine, Atlanta, GA (M.B.W.); and Children's Healthcare of Atlanta, GA (M.B.W.)
| | - David R Archer
- From the Department of Pediatrics, Emory University School of Medicine, Atlanta, GA (Y.-Y.S., J.L., H.H., C.-Y.K., C.H.J., D.R.A., M.B.W.); Center for Neurodegenerative Diseases (Y.-Y.S., J.L., H.H., C.-Y.K.); Aflac Cancer and Blood Disorders Center, Atlanta, GA (C.H.J., D.R.A.); Children's Heart Research and Outcomes Center, Emory University School of Medicine, Atlanta, GA (M.B.W.); and Children's Healthcare of Atlanta, GA (M.B.W.)
| | - Chia-Yi Kuan
- From the Department of Pediatrics, Emory University School of Medicine, Atlanta, GA (Y.-Y.S., J.L., H.H., C.-Y.K., C.H.J., D.R.A., M.B.W.); Center for Neurodegenerative Diseases (Y.-Y.S., J.L., H.H., C.-Y.K.); Aflac Cancer and Blood Disorders Center, Atlanta, GA (C.H.J., D.R.A.); Children's Heart Research and Outcomes Center, Emory University School of Medicine, Atlanta, GA (M.B.W.); and Children's Healthcare of Atlanta, GA (M.B.W.).
| |
Collapse
|
118
|
Gagnon L, Sakadžić S, Lesage F, Pouliot P, Dale AM, Devor A, Buxton RB, Boas DA. Validation and optimization of hypercapnic-calibrated fMRI from oxygen-sensitive two-photon microscopy. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0359. [PMID: 27574311 DOI: 10.1098/rstb.2015.0359] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2016] [Indexed: 01/30/2023] Open
Abstract
Hypercapnic-calibrated fMRI allows the estimation of the relative changes in the cerebral metabolic rate of oxygen (rCMRO2) from combined BOLD and arterial spin labelling measurements during a functional task, and promises to permit more quantitative analyses of brain activity patterns. The estimation relies on a macroscopic model of the BOLD effect that balances oxygen delivery and consumption to predict haemoglobin oxygenation and the BOLD signal. The accuracy of calibrated fMRI approaches has not been firmly established, which is limiting their broader adoption. We use our recently developed microscopic vascular anatomical network model in mice as a ground truth simulator to test the accuracy of macroscopic, lumped-parameter BOLD models. In particular, we investigate the original Davis model and a more recent heuristic simplification. We find that these macroscopic models are inaccurate using the originally defined parameters, but that the accuracy can be significantly improved by redefining the model parameters to take on new values. In particular, we find that the parameter α that relates cerebral blood-volume changes to cerebral blood-flow changes is significantly smaller than typically assumed and that the optimal value changes with magnetic field strength. The results are encouraging in that they support the use of simple BOLD models to quantify BOLD signals, but further work is needed to understand the physiological interpretation of the redefined model parameters.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'.
Collapse
Affiliation(s)
- Louis Gagnon
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA Department of Medicine, Laval University, Quebec City, Quebec, Canada Deparment of Electrical Engineering, École Polytechnique Montreal, Montreal, Quebec, Canada
| | - Sava Sakadžić
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Frédéric Lesage
- Deparment of Electrical Engineering, École Polytechnique Montreal, Montreal, Quebec, Canada
| | - Philippe Pouliot
- Deparment of Electrical Engineering, École Polytechnique Montreal, Montreal, Quebec, Canada
| | - Anders M Dale
- Department of Neurosciences and Radiology, UCSD, La Jolla, CA, USA
| | - Anna Devor
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA Department of Neurosciences and Radiology, UCSD, La Jolla, CA, USA
| | | | - David A Boas
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
119
|
Miko I, Nemeth N, Sogor V, Kiss F, Toth E, Peto K, Furka A, Vanyolos E, Toth L, Varga J, Szigeti K, Benkő I, Olah AV, Furka I. Comparative erythrocyte deformability investigations by filtrometry, slit-flow and rotational ektacytometry in a long-term follow-up animal study on splenectomy and different spleen preserving operative techniques: Partial or subtotal spleen resection and spleen autotransplantation. Clin Hemorheol Microcirc 2017; 66:83-96. [PMID: 28128749 DOI: 10.3233/ch-160231] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Partial or subtotal spleen resection or spleen autotransplantation can partly preserve/restore the splenic filtration function, as previous studies demonstrated. OBJECTIVE For better evaluation and follow-up of the various spleen-preserving operative techniques' effectiveness versus splenectomy, a composite methodological approach was applied in a canine experimental model. METHODS Beagle dogs were subjected to control (n = 6), splenectomy (SE, n = 4), partial and subtotal spleen resection (n = 4/each) or spleen autotransplantation groups (AU, Furka's spleen-chip method, n = 8). The follow-up period was 18 postoperative (p.o.) months. Erythrocyte deformability was determined in parallel by bulk filtrometry (Carat FT-1 filtrometer), slit-flow ektacytometry (RheoScan D-200) and rotational ektacytometry (LoRRca MaxSis Osmoscan). RESULTS By filtrometry, relative cell transit time increased in the SE group (mostly in animal Nr. SE-3), showing the highest values on the 3rd, 9th and in 18th p.o. months. Elongation index values decreased in this group (both by slit-flow and rotational ektacytometers). In general, AU and two resection groups' values were lower versus control and higher than in SE. CONCLUSIONS Forasmuch in the circulation both elongation by shear stress and filtration occur, these various erythrocyte deformability testing methods together may describe better the alterations. Considering the possible complications related to functional asplenic-hyposplenic conditions, individual analysis of cases is highly important.
Collapse
Affiliation(s)
- Iren Miko
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Norbert Nemeth
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Viktoria Sogor
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ferenc Kiss
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Eniko Toth
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Katalin Peto
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andrea Furka
- Department of Clinical Oncology, Division of Radiotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Erzsebet Vanyolos
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Laszlo Toth
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Jozsef Varga
- Department of Nuclear Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Krisztian Szigeti
- Department of Biophysics and Radiation Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Ilona Benkő
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Anna V Olah
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Istvan Furka
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
120
|
Jamasbi J, Ayabe K, Goto S, Nieswandt B, Peter K, Siess W. Platelet receptors as therapeutic targets: Past, present and future. Thromb Haemost 2017; 117:1249-1257. [DOI: 10.1160/th16-12-0911] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 04/08/2017] [Indexed: 01/08/2023]
Abstract
SummaryAnti-platelet drugs reduce arterial thrombosis after plaque rupture and erosion, prevent stent thrombosis and are used to prevent and treat myocardial infarction and ischaemic stroke. Some of them may also be helpful in treating less frequent diseases such as thrombotic thrombocytopenic purpura. The present concise review aims to cover current and future developments of anti-platelet drugs interfering with the interaction of von Willebrand factor (VWF) with glycoprotein (GP) Ibα, and directed against GPVI, GPIIb/IIIa (integrin αIIbβ3), the thrombin receptor PAR-1, and the ADP receptor P2Y12. The high expectations of having novel antiplatelet drugs which selectively inhibit arterial thrombosis without interfering with normal haemostasis could possibly be met in the near future.
Collapse
|
121
|
|
122
|
Hansen CE, Lam WA. Clinical Implications of Single-Cell Microfluidic Devices for Hematological Disorders. Anal Chem 2017; 89:11881-11892. [PMID: 28942646 DOI: 10.1021/acs.analchem.7b01013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Single-cell microfluidic devices are poised to substantially impact the hematology field by providing a high-throughput and rapid device to analyze disease-mediated biophysical cellular changes in the clinical setting in order to diagnose patients and monitor disease prognosis. In this Feature, we cover recent advances of single-cell microfluidic devices for studying and diagnosing hematological dysfunctions and the clinical impact made possible by these advances.
Collapse
Affiliation(s)
- Caroline E Hansen
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Children's Healthcare of Atlanta/Emory University School of Medicine , Atlanta, Georgia 30322, United States.,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University , Atlanta, Georgia 30332, United States.,School of Chemistry and Biochemistry, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Wilbur A Lam
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Children's Healthcare of Atlanta/Emory University School of Medicine , Atlanta, Georgia 30322, United States.,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University , Atlanta, Georgia 30332, United States.,School of Chemistry and Biochemistry, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| |
Collapse
|
123
|
Kaliviotis E, Pasias D, Sherwood J, Balabani S. Red blood cell aggregate flux in a bifurcating microchannel. Med Eng Phys 2017; 48:23-30. [DOI: 10.1016/j.medengphy.2017.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/21/2017] [Accepted: 04/16/2017] [Indexed: 11/26/2022]
|
124
|
Ugurlu E, Kilic-Toprak E, Can I, Kilic-Erkek O, Altinisik G, Bor-Kucukatay M. Impaired Hemorheology in Exacerbations of COPD. Can Respir J 2017; 2017:1286263. [PMID: 29089816 PMCID: PMC5635272 DOI: 10.1155/2017/1286263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 08/07/2017] [Accepted: 08/21/2017] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is characterized by progressive airflow limitation. Cardiovascular-related comorbidities are established to contribute to morbidity and mortality especially during exacerbations. The aim of the current study was to determine alterations in hemorheology (erythrocyte aggregation, deformability) in newly diagnosed COPD patients and their response to medical treatment and to compare with values of COPD patients with exacerbations. MATERIALS AND METHODS The study comprised 13 COPD patients, 12 controls, and 16 COPD patients with exacerbations. The severity of COPD was determined according to Global Initiative for Chronic Obstructive Lung Disease guidelines. Red blood cell (RBC) deformability and aggregation were measured by an ektacytometer. RESULTS RBC deformability of COPD patients with exacerbations was decreased compared to the other groups. Erythrocyte aggregation and plasma fibrinogen of COPD patients determined during exacerbations were higher than control. CONCLUSION Decreased RBC deformability and increased aggregation associated with exacerbations of COPD may serve as unfavorable mechanisms to worsen oxygenation and thus clinical symptoms of the patient. Treatment modalities that modify rheological parameters might be beneficial.
Collapse
Affiliation(s)
- Erhan Ugurlu
- Faculty of Medicine, Department of Pulmonology, Pamukkale University, Denizli, Turkey
| | - Emine Kilic-Toprak
- Faculty of Medicine, Department of Physiology, Pamukkale University, Denizli, Turkey
| | - Ilknur Can
- Faculty of Medicine, Department of Pulmonology, Pamukkale University, Denizli, Turkey
| | - Ozgen Kilic-Erkek
- Faculty of Medicine, Department of Physiology, Pamukkale University, Denizli, Turkey
| | - Goksel Altinisik
- Faculty of Medicine, Department of Pulmonology, Pamukkale University, Denizli, Turkey
| | - Melek Bor-Kucukatay
- Faculty of Medicine, Department of Physiology, Pamukkale University, Denizli, Turkey
| |
Collapse
|
125
|
An effective model of cerebrovascular pressure reactivity and blood flow autoregulation. Microvasc Res 2017; 115:34-43. [PMID: 28847705 DOI: 10.1016/j.mvr.2017.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 06/12/2017] [Accepted: 08/19/2017] [Indexed: 10/19/2022]
Abstract
Understanding cerebral blood flow dynamics is crucial for the care of patients at risk of poor cerebral perfusion. We describe an effective model of cerebral hemodynamics designed to reveal important macroscopic features of cerebral blood flow without having to resolve the detailed microvasculature of the brain. Based on principles of fluid and elastic dynamics and vascular pressure-reactivity, the model quantifies the physical means by which the vasculature executes autoregulatory reflexes. We demonstrate that the frequency response of the proposed model matches experimental measurements and explains the influence of mechanical factors on the autoregulatory performance. Analysis of the model indicates the existence of an optimal mean arterial pressure which minimizes the sensitivity of the flow to changes in perfusion pressure across the frequency spectrum of physiological oscillations. We highlight the simplicity of the model and its potential to improve monitoring of brain perfusion via real-time computational simulations of cerebro- and cardio-vascular interventions.
Collapse
|
126
|
Dasanna AK, Lansche C, Lanzer M, Schwarz US. Rolling Adhesion of Schizont Stage Malaria-Infected Red Blood Cells in Shear Flow. Biophys J 2017; 112:1908-1919. [PMID: 28494961 DOI: 10.1016/j.bpj.2017.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 03/27/2017] [Accepted: 04/03/2017] [Indexed: 01/08/2023] Open
Abstract
To avoid clearance by the spleen, red blood cells infected with the human malaria parasite Plasmodium falciparum (iRBCs) adhere to the vascular endothelium through adhesive protrusions called "knobs" that the parasite induces on the surface of the host cell. However, the detailed relation between the developing knob structure and the resulting movement in shear flow is not known. Using flow chamber experiments on endothelial monolayers and tracking of the parasite inside the infected host cell, we find that trophozoites (intermediate-stage iRBCs) tend to flip due to their biconcave shape, whereas schizonts (late-stage iRBCs) tend to roll due to their almost spherical shape. We then use adhesive dynamics simulations for spherical cells to predict the effects of knob density and receptor multiplicity per knob on rolling adhesion of schizonts. We find that rolling adhesion requires a homogeneous coverage of the cell surface by knobs and that rolling adhesion becomes more stable and slower for higher knob density. Our experimental data suggest that schizonts are at the border between transient and stable rolling adhesion. They also allow us to establish an estimate for the molecular parameters for schizont adhesion to the vascular endothelium and to predict bond dynamics in the contact region.
Collapse
Affiliation(s)
- Anil K Dasanna
- BioQuant-Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany; Institute of Theoretical Physics, Heidelberg University, Heidelberg, Germany
| | - Christine Lansche
- Department of Infectious Diseases, Heidelberg University, Heidelberg, Germany
| | - Michael Lanzer
- Department of Infectious Diseases, Heidelberg University, Heidelberg, Germany
| | - Ulrich S Schwarz
- BioQuant-Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany; Institute of Theoretical Physics, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
127
|
Dumont CM, Piselli JM, Kazi N, Bowman E, Li G, Linhardt RJ, Temple S, Dai G, Thompson DM. Factors Released from Endothelial Cells Exposed to Flow Impact Adhesion, Proliferation, and Fate Choice in the Adult Neural Stem Cell Lineage. Stem Cells Dev 2017; 26:1199-1213. [PMID: 28557666 DOI: 10.1089/scd.2016.0350] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The microvasculature within the neural stem cell (NSC) niche promotes self-renewal and regulates lineage progression. Previous work identified endothelial-produced soluble factors as key regulators of neural progenitor cell (NPC) fate and proliferation; however, endothelial cells (ECs) are sensitive to local hemodynamics, and the effect of this key physiological process has not been defined. In this study, we evaluated adult mouse NPC response to soluble factors isolated from static or dynamic (flow) EC cultures. Endothelial factors generated under dynamic conditions significantly increased neuronal differentiation, while those released under static conditions stimulated oligodendrocyte differentiation. Flow increases EC release of neurogenic factors and of heparin sulfate glycosaminoglycans that increase their bioactivity, likely underlying the enhanced neuronal differentiation. Additionally, endothelial factors, especially from static conditions, promoted adherent growth. Together, our data suggest that blood flow may impact proliferation, adhesion, and the neuron-glial fate choice of adult NPCs, with implications for diseases and aging that reduce flow.
Collapse
Affiliation(s)
- Courtney M Dumont
- 1 Department of Biomedical Engineering, Rensselaer Polytechnic Institute , Troy, New York.,2 Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York
| | - Jennifer M Piselli
- 1 Department of Biomedical Engineering, Rensselaer Polytechnic Institute , Troy, New York.,2 Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York
| | - Nadeem Kazi
- 1 Department of Biomedical Engineering, Rensselaer Polytechnic Institute , Troy, New York.,2 Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York
| | - Evan Bowman
- 2 Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York
| | - Guoyun Li
- 2 Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York.,3 Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute , Troy, New York
| | - Robert J Linhardt
- 2 Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York.,3 Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute , Troy, New York
| | - Sally Temple
- 4 Neural Stem Cell Institute , Rensselaer, New York
| | - Guohao Dai
- 1 Department of Biomedical Engineering, Rensselaer Polytechnic Institute , Troy, New York.,2 Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York
| | - Deanna M Thompson
- 1 Department of Biomedical Engineering, Rensselaer Polytechnic Institute , Troy, New York.,2 Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York
| |
Collapse
|
128
|
Abukabda AB, Stapleton PA, McBride CR, Yi J, Nurkiewicz TR. Heterogeneous Vascular Bed Responses to Pulmonary Titanium Dioxide Nanoparticle Exposure. Front Cardiovasc Med 2017; 4:33. [PMID: 28596957 PMCID: PMC5442182 DOI: 10.3389/fcvm.2017.00033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/01/2017] [Indexed: 01/06/2023] Open
Abstract
A growing body of research links engineered nanomaterial (ENM) exposure to adverse cardiovascular endpoints. The purpose of this study was to evaluate the impact of ENM exposure on vascular reactivity in discrete segments so that we may determine the most sensitive levels of the vasculature where these negative cardiovascular effects are manifest. We hypothesized that acute nano-TiO2 exposure differentially affects reactivity with a more robust impairment in the microcirculation. Sprague-Dawley rats (8–10 weeks) were exposed to nano-TiO2via intratracheal instillation (20, 100, or 200 µg suspended per 250 µL of vehicle) 24 h prior to vascular assessments. A serial assessment across distinct compartments of the vascular tree was then conducted. Wire myography was used to evaluate macrovascular active tension generation specifically in the thoracic aorta, the femoral artery, and third-order mesenteric arterioles. Pressure myography was used to determine vascular reactivity in fourth- and fifth-order mesenteric arterioles. Vessels were treated with phenylephrine, acetylcholine (ACh), and sodium nitroprusside. Nano-TiO2 exposure decreased endothelium-dependent relaxation in the thoracic aorta and femoral arteries assessed via ACh by 53.96 ± 11.6 and 25.08 ± 6.36%, respectively. Relaxation of third-order mesenteric arterioles was impaired by 100 and 20 µg nano-TiO2 exposures with mean reductions of 50.12 ± 8.7 and 68.28 ± 8.7%. Cholinergic reactivity of fourth- and fifth-order mesenteric arterioles was negatively affected by nano-TiO2 with diminished dilations of 82.86 ± 12.6% after exposure to 200 µg nano-TiO2, 42.6 ± 12.6% after 100 µg nano-TiO2, and 49.4 ± 12.6% after 20 µg nano-TiO2. Endothelium-independent relaxation was impaired in the thoracic aorta by 34.05 ± 25% induced by exposure to 200 µg nano-TiO2 and a reduction in response of 49.31 ± 25% caused by 100 µg nano-TiO2. Femoral artery response was reduced by 18 ± 5%, while third-order mesenteric arterioles were negatively affected by 20 µg nano-TiO2 with a mean decrease in response of 38.37 ± 10%. This is the first study to directly compare the differential effect of ENM exposure on discrete anatomical segments of the vascular tree. Pulmonary ENM exposure produced macrovascular and microvascular dysfunction resulting in impaired responses to endothelium-dependent, endothelium-independent, and adrenergic agonists with a more robust dysfunction at the microvascular level. These results provide additional evidence of an endothelium-dependent and endothelium-independent impairment in vascular reactivity.
Collapse
Affiliation(s)
- Alaeddin B Abukabda
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Phoebe A Stapleton
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ, USA
| | - Carroll R McBride
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Jinghai Yi
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Timothy R Nurkiewicz
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
| |
Collapse
|
129
|
Kaliviotis E, Sherwood JM, Balabani S. Partitioning of red blood cell aggregates in bifurcating microscale flows. Sci Rep 2017; 7:44563. [PMID: 28303921 PMCID: PMC5355999 DOI: 10.1038/srep44563] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/09/2017] [Indexed: 12/12/2022] Open
Abstract
Microvascular flows are often considered to be free of red blood cell aggregates, however, recent studies have demonstrated that aggregates are present throughout the microvasculature, affecting cell distribution and blood perfusion. This work reports on the spatial distribution of red blood cell aggregates in a T-shaped bifurcation on the scale of a large microvessel. Non-aggregating and aggregating human red blood cell suspensions were studied for a range of flow splits in the daughter branches of the bifurcation. Aggregate sizes were determined using image processing. The mean aggregate size was marginally increased in the daughter branches for a range of flow rates, mainly due to the lower shear conditions and the close cell and aggregate proximity therein. A counterintuitive decrease in the mean aggregate size was apparent in the lower flow rate branches. This was attributed to the existence of regions depleted by aggregates of certain sizes in the parent branch, and to the change in the exact flow split location in the T-junction with flow ratio. The findings of the present investigation may have significant implications for microvascular flows and may help explain why the effects of physiological RBC aggregation are not deleterious in terms of in vivo vascular resistance.
Collapse
Affiliation(s)
- E Kaliviotis
- Dept. of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Cyprus.,Dept. of Mechanical Engineering, University College London, UK
| | - J M Sherwood
- Dept. of Bioengineering, Imperial College London, UK
| | - S Balabani
- Dept. of Mechanical Engineering, University College London, UK
| |
Collapse
|
130
|
Lemaster K, Jackson D, Goldman D, Frisbee JC. Insidious incrementalism: The silent failure of the microcirculation with increasing peripheral vascular disease risk. Microcirculation 2017; 24. [DOI: 10.1111/micc.12332] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 11/02/2016] [Indexed: 01/21/2023]
Affiliation(s)
- Kent Lemaster
- Department of Physiology and Pharmacology; Schulich School of Medicine and Dentistry; University of Western Ontario; London ON Canada
| | - Dwayne Jackson
- Department of Medical Biophysics; Schulich School of Medicine and Dentistry; University of Western Ontario; London ON Canada
| | - Daniel Goldman
- Department of Medical Biophysics; Schulich School of Medicine and Dentistry; University of Western Ontario; London ON Canada
| | - Jefferson C. Frisbee
- Department of Medical Biophysics; Schulich School of Medicine and Dentistry; University of Western Ontario; London ON Canada
| |
Collapse
|
131
|
Nemeth N, Sogor V, Kiss F, Ulker P. Interspecies diversity of erythrocyte mechanical stability at various combinations in magnitude and duration of shear stress, and osmolality. Clin Hemorheol Microcirc 2017; 63:381-398. [PMID: 26890103 DOI: 10.3233/ch-152031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We hypothesized that the results of red blood cell mechanical stability test show interspecies differences. The comparative investigations were performed on blood samples obtained from rats, beagle dogs, pigs and healthy volunteers. Mechanical stress was applied in nine combinations: 30, 60 or 100 Pa shear stress for 100, 200 or 300 seconds. Generally, rat erythrocytes showed the highest capability of resistance. With the applied combinations of mechanical stress pig erythrocytes were the most sensitive. On human erythrocytes 60 Pa for 200 s was the minimum combination to result significant deformability deterioration. By increasing the magnitude and duration of the applied mechanical stress we experienced escalating deformability impairment in all species. 100 Pa shear stress for 300 seconds on human erythrocytes showed the largest deformability impairment. The mechanical stability test results were also dependent on osmolality. At hypoosmolar range (200 mOsmol/kg) the mechanical stress improved EI data mostly in rat and porcine blood. At higher osmolality (500 mOsmol/kg), the test did not show detectable difference, while in 250-300 mOsmol/kg range the differences were well observable. In summary, erythrocytes' capability of resistance against mechanical stress shows interspecies differences depending on the magnitude and duration of the applied stress, and on the osmolality.
Collapse
Affiliation(s)
- Norbert Nemeth
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Hungary
| | - Viktoria Sogor
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Hungary
| | - Ferenc Kiss
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Hungary
| | - Pinar Ulker
- Department of Physiology, Akdeniz University Faculty of Medicine, Antalya, Turkey
| |
Collapse
|
132
|
Nemeth N, Peto K, Deak A, Sogor V, Varga G, Tanczos B, Balog K, Csiszko A, Godo Z, Szentkereszty Z. Hemorheological factors can be informative in comparing treatment possibilities of abdominal compartment syndrome. Clin Hemorheol Microcirc 2017; 64:765-775. [DOI: 10.3233/ch-168027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Norbert Nemeth
- Department of Operative Techniques & Surgical Research, Faculty of Medicine, University of Debrecen, Hungary
| | - Katalin Peto
- Department of Operative Techniques & Surgical Research, Faculty of Medicine, University of Debrecen, Hungary
| | - Adam Deak
- Department of Operative Techniques & Surgical Research, Faculty of Medicine, University of Debrecen, Hungary
| | - Viktoria Sogor
- Department of Operative Techniques & Surgical Research, Faculty of Medicine, University of Debrecen, Hungary
| | - Gabor Varga
- Department of Operative Techniques & Surgical Research, Faculty of Medicine, University of Debrecen, Hungary
| | - Bence Tanczos
- Department of Operative Techniques & Surgical Research, Faculty of Medicine, University of Debrecen, Hungary
| | - Klaudia Balog
- Institute of Surgery, Faculty of Medicine, University of Debrecen, Hungary
| | - Adrienn Csiszko
- Institute of Surgery, Faculty of Medicine, University of Debrecen, Hungary
| | - Zoltan Godo
- Department of Information Technology, Faculty of Informatics, University of Debrecen, Hungary
| | | |
Collapse
|
133
|
Namgung B, Sakai H, Kim S. Influence of erythrocyte aggregation at pathological levels on cell-free marginal layer in a narrow circular tube. Clin Hemorheol Microcirc 2016; 61:445-57. [PMID: 25335815 DOI: 10.3233/ch-141909] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Human red blood cells (RBCs) were perfused in a circular micro-tube (inner diameter of 25 μm) to examine the dynamic changes of cell-free marginal region at both physiological (normal) and pathophysiological (hyper) levels of RBC aggregation. The cell-free area (CFA) was measured to provide additional information on the cell-free layer (CFL) width changes in space and time domains. A prominent enhancement in the mean CFL width was found in hyper-aggregating conditions as compared to that in non-aggregating conditions (P < 0.001). The frequent contacts between RBC and the tube wall were observed and the contact frequency was greatly decreased when the aggregation level was increased from none to normal (P < 0.05) and to hyper (P < 0.001) levels. In addition, the enhanced aggregation from none to hyper levels significantly enlarged the CFA (P < 0.01). We concluded that the RBC aggregation at pathophysiological levels could promote not only the CFL width (one-dimensional parameter) but also the spatiotemporal variation of CFA (two-dimensional parameter).
Collapse
Affiliation(s)
- Bumseok Namgung
- Department of Biomedical Engineering and Department of Surgery, National University of Singapore, Singapore
| | - Hiromi Sakai
- Department of Chemistry, School of Medicine, Nara Medical University, Nara, Japan
| | - Sangho Kim
- Department of Biomedical Engineering and Department of Surgery, National University of Singapore, Singapore
| |
Collapse
|
134
|
Alapan Y, Fraiwan A, Kucukal E, Hasan MN, Ung R, Kim M, Odame I, Little JA, Gurkan UA. Emerging point-of-care technologies for sickle cell disease screening and monitoring. Expert Rev Med Devices 2016; 13:1073-1093. [PMID: 27785945 PMCID: PMC5166583 DOI: 10.1080/17434440.2016.1254038] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Sickle Cell Disease (SCD) affects 100,000 Americans and more than 14 million people globally, mostly in economically disadvantaged populations, and requires early diagnosis after birth and constant monitoring throughout the life-span of the patient. Areas covered: Early diagnosis of SCD still remains a challenge in preventing childhood mortality in the developing world due to requirements of skilled personnel and high-cost of currently available modalities. On the other hand, SCD monitoring presents insurmountable challenges due to heterogeneities among patient populations, as well as in the same individual longitudinally. Here, we describe emerging point-of-care micro/nano platform technologies for SCD screening and monitoring, and critically discuss current state of the art, potential challenges associated with these technologies, and future directions. Expert commentary: Recently developed microtechnologies offer simple, rapid, and affordable screening of SCD and have the potential to facilitate universal screening in resource-limited settings and developing countries. On the other hand, monitoring of SCD is more complicated compared to diagnosis and requires comprehensive validation of efficacy. Early use of novel microdevices for patient monitoring might come in especially handy in new clinical trial designs of emerging therapies.
Collapse
Affiliation(s)
- Yunus Alapan
- Case Biomanufacturing and Microfabrication Laboratory, Mechanical and Aerospace Engineering Department, Case Western Reserve University, Cleveland, OH, USA
| | - Arwa Fraiwan
- Case Biomanufacturing and Microfabrication Laboratory, Mechanical and Aerospace Engineering Department, Case Western Reserve University, Cleveland, OH, USA
| | - Erdem Kucukal
- Case Biomanufacturing and Microfabrication Laboratory, Mechanical and Aerospace Engineering Department, Case Western Reserve University, Cleveland, OH, USA
| | - M. Noman Hasan
- Case Biomanufacturing and Microfabrication Laboratory, Mechanical and Aerospace Engineering Department, Case Western Reserve University, Cleveland, OH, USA
| | - Ryan Ung
- Biomedical Engineering Department, Case Western Reserve University, Cleveland, OH, USA
| | - Myeongseop Kim
- Case Biomanufacturing and Microfabrication Laboratory, Mechanical and Aerospace Engineering Department, Case Western Reserve University, Cleveland, OH, USA
| | - Isaac Odame
- Division of Haematology/Oncology, The Hospital for Sick Children; Toronto, Canada
- Department of Pediatrics, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Jane A. Little
- Department of Hematology and Oncology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Seidman Cancer Center at University Hospitals, Case Medical Center, Cleveland, OH, USA
| | - Umut A. Gurkan
- Case Biomanufacturing and Microfabrication Laboratory, Mechanical and Aerospace Engineering Department, Case Western Reserve University, Cleveland, OH, USA
- Biomedical Engineering Department, Case Western Reserve University, Cleveland, OH, USA
- Department of Orthopedics, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
135
|
Red cells' dynamic morphologies govern blood shear thinning under microcirculatory flow conditions. Proc Natl Acad Sci U S A 2016; 113:13289-13294. [PMID: 27834220 DOI: 10.1073/pnas.1608074113] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Blood viscosity decreases with shear stress, a property essential for an efficient perfusion of the vascular tree. Shear thinning is intimately related to the dynamics and mutual interactions of RBCs, the major component of blood. Because of the lack of knowledge about the behavior of RBCs under physiological conditions, the link between RBC dynamics and blood rheology remains unsettled. We performed experiments and simulations in microcirculatory flow conditions of viscosity, shear rates, and volume fractions, and our study reveals rich RBC dynamics that govern shear thinning. In contrast to the current paradigm, which assumes that RBCs align steadily around the flow direction while their membranes and cytoplasm circulate, we show that RBCs successively tumble, roll, deform into rolling stomatocytes, and, finally, adopt highly deformed polylobed shapes for increasing shear stresses, even for semidilute volume fractions of the microcirculation. Our results suggest that any pathological change in plasma composition, RBC cytosol viscosity, or membrane mechanical properties will affect the onset of these morphological transitions and should play a central role in pathological blood rheology and flow behavior.
Collapse
|
136
|
Influences of Macrohemodynamic Conditions on Systemic Microhemodynamic Changes in Burns. Ann Plast Surg 2016; 77:523-528. [DOI: 10.1097/sap.0000000000000868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
137
|
Cehreli R, Akpinar H, Artmann AT, Sagol O. Effects of Glutamine and Omega-3 Fatty Acids on Erythrocyte Deformability and Oxidative Damage in Rat Model of Enterocolitis. Gastroenterology Res 2016; 8:265-273. [PMID: 27785307 PMCID: PMC5051045 DOI: 10.14740/gr683w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/24/2015] [Indexed: 11/11/2022] Open
Abstract
Background The aim of the study was to investigate preventive effects of glutamine (Gln), omega-3 fatty acids (FA) on erythrocyte deformability (EDEF) in rat model of indomethacin-induced enterocolitis. Methods Nineteen Wistar albino male rats were divided into three groups: control group, colitis induced by indomethacin and were fed with a standard laboratory diet (group 1), and colitis induced by indomethacin and were also fed with Gln, omega-3 FA (group 2). An investigation was performed in a rat model of experimental colitis induced by subcutaneous injections of 2 mL intdomethacine solution applied at 24 and 48 hours intervals to male Wistar rats for 14 days. Gln and omega-3 FA were added to the daily standard diets of the animals during 14 days of injections. During the study, changes in body weight were evaluated. The intestines were examined, and colitis was macroscopic and histologically scored. The circulating tumor necrosis factor alpha (TNF-α) and interleukine-1β (IL-1β), erythrocyte transit time (ETT) and thiobarbituric acid reactive substances (TBARS) levels were determined in addition to calculation of EDEF indices in all groups. Results No significant differences in body weight changes could be determined between the standard diet and special diet groups at the end of the experiment. After macroscopic and microscopic scoring, in all of the groups that colitis was found induced, the lowest microscopic score was observed in the group 2. But Gln and omega-3 FA supplemented diet did not change the mean macroscopic and histological scores in all rats. The proliferating cell nuclear antigen (PCNA) levels were significantly higher in group 1 and group 2 compared to the control group. Effects of the diet on circulating TNF-α and IL-1β levels were found correlated with inflammation but statistically significant differences were not found in the group 1 and group 2 (P < 0.05). The ETT and TBARS levels in standard and special diet groups were significantly increased (P < 0.05). However, EDEF indices which are an important parameter of the study were decreased in indomethacin-induced enterocolitis groups that fed with standard and special diet. Conclusions Increases in ETT and TBARS levels did not return to normal by addition of Gln and omega-3 FA to diet. Our results suggest that determination of effective optimal doses and route of administration for these nutrients may play an important role in reducing EDEF and microvascular changes.
Collapse
Affiliation(s)
- Ruksan Cehreli
- Department of Prevantive Oncology, Institute of Oncology, Dokuz Eylul University Inciralti, Izmir 35340, Turkey
| | - Hale Akpinar
- Division of Gastroenterology, Dokuz Eylul University School of Medicine, Inciralti, Izmir 35340, Turkey
| | - Aysegul Temiz Artmann
- Department of Cell Biophysics and Cellular Engineering, Institute for Bioengineering, Aachen University of Applied Sciences, Germany
| | - Ozgul Sagol
- Department of Pathology, Dokuz Eylul University School of Medicine, Inciralti, Izmir 35340, Turkey
| |
Collapse
|
138
|
Barshtein G, Pries AR, Goldschmidt N, Zukerman A, Orbach A, Zelig O, Arbell D, Yedgar S. Deformability of transfused red blood cells is a potent determinant of transfusion-induced change in recipient's blood flow. Microcirculation 2016; 23:479-486. [DOI: 10.1111/micc.12296] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/06/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Gregory Barshtein
- Department of Biochemistry; Hebrew University Faculty of Medicine; Jerusalem Israel
| | | | - Neta Goldschmidt
- Department of Hematology; Hadassah University Hospital; Jerusalem Israel
| | - Ayelet Zukerman
- Department of Biochemistry; Hebrew University Faculty of Medicine; Jerusalem Israel
| | - Ariel Orbach
- Department of Biochemistry; Hebrew University Faculty of Medicine; Jerusalem Israel
| | - Orly Zelig
- Blood Bank; Hadassah-Hebrew University Hospital; Jerusalem Israel
| | - Dan Arbell
- Department of Pediatric Surgery; Hadassah- Hebrew University Hospital; Jerusalem Israel
| | - Saul Yedgar
- Department of Biochemistry; Hebrew University Faculty of Medicine; Jerusalem Israel
| |
Collapse
|
139
|
Ushiyama A, Kataoka H, Iijima T. Glycocalyx and its involvement in clinical pathophysiologies. J Intensive Care 2016; 4:59. [PMID: 27617097 PMCID: PMC5017018 DOI: 10.1186/s40560-016-0182-z] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/22/2016] [Indexed: 01/06/2023] Open
Abstract
Vascular hyperpermeability is a frequent intractable feature involved in a wide range of diseases in the intensive care unit. The glycocalyx (GCX) seemingly plays a key role to control vascular permeability. The GCX has attracted the attention of clinicians working on vascular permeability involving angiopathies, and several clinical approaches to examine the involvement of the GCX have been attempted. The GCX is a major constituent of the endothelial surface layer (ESL), which covers most of the surface of the endothelial cells and reduces the access of cellular and macromolecular components of the blood to the surface of the endothelium. It has become evident that this structure is not just a barrier for vascular permeability but contributes to various functions including signal sensing and transmission to the endothelium. Because GCX is a highly fragile and unstable layer, the image had been only obtained by conventional transmission electron microscopy. Recently, advanced microscopy techniques have enabled direct visualization of the GCX in vivo, most of which use fluorescent-labeled lectins that bind to specific disaccharide moieties of glycosaminoglycan (GAG) chains. Fluorescent-labeled solutes also enabled to demonstrate vascular leakage under the in vivo microscope. Thus, functional analysis of GCX is advancing. A biomarker of GCX degradation has been clinically applied as a marker of vascular damage caused by surgery. Fragments of the GCX, such as syndecan-1 and/or hyaluronan (HA), have been examined, and their validity is now being examined. It is expected that GCX fragments can be a reliable diagnostic or prognostic indicator in various pathological conditions. Since GCX degradation is strongly correlated with disease progression, pharmacological intervention to prevent GCX degradation has been widely considered. HA and other GAGs are candidates to repair GCX; further studies are needed to establish pharmacological intervention. Recent advancement of GCX research has demonstrated that vascular permeability is not regulated by simple Starling’s law. Biological regulation of vascular permeability by GCX opens the way to develop medical intervention to control vascular permeability in critical care patients.
Collapse
Affiliation(s)
- Akira Ushiyama
- Department of Environmental Health, National Institute of Public Health, Saitama, Japan
| | - Hanae Kataoka
- Department of Perioperative Medicine, Division of Anesthesiology, Showa University, School of Dentistry, Tokyo, Japan
| | - Takehiko Iijima
- Department of Perioperative Medicine, Division of Anesthesiology, Showa University, School of Dentistry, Tokyo, Japan
| |
Collapse
|
140
|
Kaliviotis E, Dusting J, Sherwood JM, Balabani S. Quantifying local characteristics of velocity, aggregation and hematocrit of human erythrocytes in a microchannel flow. Clin Hemorheol Microcirc 2016; 63:123-48. [DOI: 10.3233/ch-151980] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Efstathios Kaliviotis
- Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Limassol, Cyprus
- Department of Mechanical Engineering, University College London, UK
| | | | | | | |
Collapse
|
141
|
Engoren M, Brown RR, Dubovoy A. A retrospective analysis of the effect of blood transfusion on cerebral oximetry entropy and acute kidney injury. Perfusion 2016; 32:35-43. [DOI: 10.1177/0267659116661050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Purpose: Acute anemia is associated with both cerebral dysfunction and acute kidney injury and is often treated with red blood cell transfusion. We sought to determine if blood transfusion changed the cerebral oximetry entropy, a measure of the complexity or irregularity of the oximetry values, and if this change was associated with subsequent acute kidney injury. Methods: This was a retrospective, case-control study of patients undergoing cardiac surgery with cardiopulmonary bypass at a tertiary care hospital, comparing those who received a red blood cell transfusion to those who did not. Acute kidney injury was defined as a perioperative increase in serum creatinine by ⩾26.4 μmol/L or by ⩾50% increase. Entropy was measured using approximate entropy, sample entropy, forbidden word entropy and basescale4 entropy in 500-point sets. Results: Forty-four transfused patients were matched to 88 randomly selected non-transfused patients. All measures of entropy had small changes in the transfused group, but increased in the non-transfused group (p<0.05, for all comparisons). Thirty-five of 132 patients (27%) suffered acute kidney injury. Based on preoperative factors, patients who suffered kidney injury were similar to those who did not, including baseline cerebral oximetry levels. After analysis with hierarchical logistic regression, the change in basescale4 entropy (odds ratio = 1.609, 95% confidence interval = 1.057–2.450, p = 0.027) and the interaction between basescale entropy and transfusion were significantly associated with subsequent development of acute kidney injury. Conclusions: The transfusion of red blood cells was associated with a smaller rise in entropy values compared to non-transfused patients, suggesting a change in the regulation of cerebral oxygenation, and these changes in cerebral oxygenation are also associated with acute kidney injury.
Collapse
Affiliation(s)
- Milo Engoren
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
- Department of Anesthesiology, Mercy St. Vincent Medical Center, Toledo, OH, USA
| | - Russell R. Brown
- Department of Information Technology Services, Promedica Health System, Toledo, OH, USA
| | - Anna Dubovoy
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
142
|
Gupta S, Wang WS, Vanapalli SA. Microfluidic viscometers for shear rheology of complex fluids and biofluids. BIOMICROFLUIDICS 2016; 10:043402. [PMID: 27478521 PMCID: PMC4947045 DOI: 10.1063/1.4955123] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 06/21/2016] [Indexed: 05/20/2023]
Abstract
The rich diversity of man-made complex fluids and naturally occurring biofluids is opening up new opportunities for investigating their flow behavior and characterizing their rheological properties. Steady shear viscosity is undoubtedly the most widely characterized material property of these fluids. Although widely adopted, macroscale rheometers are limited by sample volumes, access to high shear rates, hydrodynamic instabilities, and interfacial artifacts. Currently, microfluidic devices are capable of handling low sample volumes, providing precision control of flow and channel geometry, enabling a high degree of multiplexing and automation, and integrating flow visualization and optical techniques. These intrinsic advantages of microfluidics have made it especially suitable for the steady shear rheology of complex fluids. In this paper, we review the use of microfluidics for conducting shear viscometry of complex fluids and biofluids with a focus on viscosity curves as a function of shear rate. We discuss the physical principles underlying different microfluidic viscometers, their unique features and limits of operation. This compilation of technological options will potentially serve in promoting the benefits of microfluidic viscometry along with evincing further interest and research in this area. We intend that this review will aid researchers handling and studying complex fluids in selecting and adopting microfluidic viscometers based on their needs. We conclude with challenges and future directions in microfluidic rheometry of complex fluids and biofluids.
Collapse
Affiliation(s)
- Siddhartha Gupta
- Department of Chemical Engineering, Texas Tech University , Lubbock, Texas 79409, USA
| | - William S Wang
- Department of Chemical Engineering, Texas Tech University , Lubbock, Texas 79409, USA
| | - Siva A Vanapalli
- Department of Chemical Engineering, Texas Tech University , Lubbock, Texas 79409, USA
| |
Collapse
|
143
|
Dimakopoulos Y, Kelesidis G, Tsouka S, Georgiou GC, Tsamopoulos J. Hemodynamics in stenotic vessels of small diameter under steady state conditions: Effect of viscoelasticity and migration of red blood cells. Biorheology 2016; 52:183-210. [PMID: 26406781 DOI: 10.3233/bir-14033] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND In microcirculation, the non-Newtonian behavior of blood and the complexity of the microvessel network are responsible for the high flow resistance and the large reduction of the blood pressure. Red blood cell aggregation along with inward radial migration are two significant mechanisms determining the former. Yet, their impact on hemodynamics in non-straight vessels is not well understood. OBJECTIVE In this study, the steady state blood flow in stenotic rigid vessels is examined, employing a sophisticated non-homogeneous constitutive law. The effect of red blood cells migration on the hydrodynamics is quantified and the constitutive model's accuracy is evaluated. METHODS A numerical algorithm based on the two-dimensional mixed finite element method and the EVSS/SUPG technique for a stable discretization of the mass and momentum conservation equations in addition to the constitutive model is employed. RESULTS The numerical simulations show that a cell-depleted layer develops along the vessel wall with an almost constant thickness for slow flow conditions. This causes the reduction of the drag force and the increase of the pressure gradient as the constriction ratio decreases. CONCLUSIONS Viscoelastic effects in blood flow were found to be responsible for steeper decreases of tube and discharge hematocrits as decreasing function of constriction ratio.
Collapse
Affiliation(s)
- Yannis Dimakopoulos
- Laboratory of Fluid Mechanics and Rheology, Department of Chemical Engineering, University of Patras, Patras, Greece.,Department of Mathematics and Statistics, University of Cyprus, Nicosia, Cyprus
| | - George Kelesidis
- Laboratory of Fluid Mechanics and Rheology, Department of Chemical Engineering, University of Patras, Patras, Greece
| | - Sophia Tsouka
- Laboratory of Fluid Mechanics and Rheology, Department of Chemical Engineering, University of Patras, Patras, Greece
| | - Georgios C Georgiou
- Department of Mathematics and Statistics, University of Cyprus, Nicosia, Cyprus
| | - John Tsamopoulos
- Laboratory of Fluid Mechanics and Rheology, Department of Chemical Engineering, University of Patras, Patras, Greece
| |
Collapse
|
144
|
Jung LY, Lee SR, Jung JM, Kim YS, Lee SH, Rhee KS, Chae JK, Lee DH, Kim DS, Kim WH, Ko JK. Rosuvastatin Reduces Blood Viscosity in Patients with Acute Coronary Syndrome. Korean Circ J 2016; 46:147-53. [PMID: 27014344 PMCID: PMC4805558 DOI: 10.4070/kcj.2016.46.2.147] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 06/22/2015] [Accepted: 08/11/2015] [Indexed: 12/02/2022] Open
Abstract
Background and Objectives Wall shear stress contributes to atherosclerosis progression and plaque rupture. There are limited studies for statin as a major contributing factor on whole blood viscosity (WBV) in patients with acute coronary syndrome (ACS). This study investigates the effect of statin on WBV in ACS patients. Subjects and Methods We prospectively enrolled 189 consecutive patients (mean age, 61.3±10.9 years; 132 males; ST-segment elevation myocardial infarction, n=52; non-ST-segment elevation myocardial infarction, n=84; unstable angina n=53). Patients were divided into two groups (group I: previous use of statins for at least 3 months, n=51; group II: statin-naïve patients, n=138). Blood viscosities at shear rates of 1 s-1 (diastolic blood viscosity; DBV) and 300 s-1 (systolic blood viscosity; SBV) were measured at baseline and one month after statin treatment. Rosuvastatin was administered to patients after enrollment (mean daily dose, 16.2±4.9 mg). Results Baseline WBV was significantly higher in group II ([SBV: group I vs group II, 40.8±5.9 mP vs. 44.2±7.4 mP, p=0.003], [DBV: 262.2±67.8 mP vs. 296.9±76.0 mP, p=0.002]). WBV in group II was significantly lower one month after statin treatment ([SBV: 42.0±4.7 mP, p=0.012, DBV: 281.4±52.6 mP, p=0.044]). However, low-density lipoprotein cholesterol level was not associated with WBV in both baseline (SBV: R2=0.074, p=0.326; DBV: R2=0.073, p=0.337) and after one month follow up (SBV: R2=0.104, p=0.265; DBV: R2=0.112, p=0.232). Conclusion Previous statin medication is an important determinant in lowering WBV in patients with ACS. However, one month of rosuvastatin decreased WBV in statin-naïve ACS patients.
Collapse
Affiliation(s)
- Lae-Young Jung
- Division of Cardiology, Chonbuk National University Hospital and Chonbuk National University Medical School, Jeonju, Korea
| | - Sang-Rok Lee
- Division of Cardiology, Chonbuk National University Hospital and Chonbuk National University Medical School, Jeonju, Korea
| | - Jin-Mu Jung
- Division of Mechanical Design Engineering, Chonbuk National University, Jeonju, Korea
| | - Yi-Shik Kim
- Division of Cardiology, Chonbuk National University Hospital and Chonbuk National University Medical School, Jeonju, Korea
| | - Sun-Hwa Lee
- Division of Cardiology, Chonbuk National University Hospital and Chonbuk National University Medical School, Jeonju, Korea
| | - Kyoung-Suk Rhee
- Division of Cardiology, Chonbuk National University Hospital and Chonbuk National University Medical School, Jeonju, Korea
| | - Jei-Keon Chae
- Division of Cardiology, Chonbuk National University Hospital and Chonbuk National University Medical School, Jeonju, Korea
| | - Dong-Hwan Lee
- Division of Mechanical Design Engineering, Chonbuk National University, Jeonju, Korea
| | - Dal-Sik Kim
- Department of Laboratory Medicine, Chonbuk National University Hospital and Chonbuk National University Medical School, Jeonju, Korea
| | - Won-Ho Kim
- Division of Cardiology, Chonbuk National University Hospital and Chonbuk National University Medical School, Jeonju, Korea
| | - Jae-Ki Ko
- Division of Cardiology, Chonbuk National University Hospital and Chonbuk National University Medical School, Jeonju, Korea
| |
Collapse
|
145
|
Low KWQ, van Loon R, Rolland SA, Sienz J. Pore-Scale Modeling of Non-Newtonian Shear-Thinning Fluids in Blood Oxygenator Design. J Biomech Eng 2016; 138:051001. [DOI: 10.1115/1.4032801] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Indexed: 11/08/2022]
Abstract
This paper reviews and further develops pore-scale computational flow modeling techniques used for creeping flow through orthotropic fiber bundles used in blood oxygenators. Porous model significantly reduces geometrical complexity by taking a homogenization approach to model the fiber bundles. This significantly simplifies meshing and can avoid large time-consuming simulations. Analytical relationships between permeability and porosity exist for Newtonian flow through regular arrangements of fibers and are commonly used in macroscale porous models by introducing a Darcy viscous term in the flow momentum equations. To this extent, verification of analytical Newtonian permeability–porosity relationships has been conducted for parallel and transverse flow through square and staggered arrangements of fibers. Similar procedures are then used to determine the permeability–porosity relationship for non-Newtonian blood. The results demonstrate that modeling non-Newtonian shear-thinning fluids in porous media can be performed via a generalized Darcy equation with a porous medium viscosity decomposed into a constant term and a directional expression through least squares fitting. This concept is then investigated for various non-Newtonian blood viscosity models. The proposed methodology is conducted with two different porous model approaches, homogeneous and heterogeneous, and validated against a high-fidelity model. The results of the heterogeneous porous model approach yield improved pressure and velocity distribution which highlights the importance of wall effects.
Collapse
Affiliation(s)
- Kenny W. Q. Low
- Advanced Sustainable Manufacturing Technologies (ASTUTE) Project, College of Engineering, Swansea University, Bay Campus, Fabian Way, Swansea SA1 8EN, UK e-mail:
| | - Raoul van Loon
- College of Engineering, Swansea University, Bay Campus, Fabian Way, Swansea SA1 8EN, UK e-mail:
| | - Samuel A. Rolland
- Advanced Sustainable Manufacturing Technologies (ASTUTE) Project, College of Engineering, Swansea University, Bay Campus, Fabian Way, Swansea SA1 8EN, UK e-mail:
| | - Johann Sienz
- Advanced Sustainable Manufacturing Technologies (ASTUTE) Project, College of Engineering, Swansea University, Bay Campus, Fabian Way, Swansea SA1 8EN, UK e-mail:
| |
Collapse
|
146
|
Pham M, Bendszus M. Facing Time in Ischemic Stroke: An Alternative Hypothesis for Collateral Failure. Clin Neuroradiol 2016; 26:141-51. [PMID: 26952017 PMCID: PMC4914521 DOI: 10.1007/s00062-016-0507-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 02/11/2016] [Indexed: 12/31/2022]
Abstract
Several randomized-controlled trials could recently demonstrate that ischemic stroke which is caused by large-cerebral-artery-occlusion can be treated effectively by endovascular recanalization. Among these studies, particularly the data from the ESCAPE study further corroborated the strong association between macrovascular pial collateral flow (before recanalization) and clinical outcome after recanalization. This review briefly gives an overview on these data and on the clinical key observations demonstrating this association in practice. Since the ischemic penumbra can only be sustained by collateral flow, the collapse of collateral blood flow or poor collateral filling, observed for example by DSA or CTA before recanalization, seems to be a primary cause of rapidly progressive infarction and futile therapeutic recanalization. However, it needs to be emphasized that the true cause-effect relationship between collateral failure and rapidly progressive infarction of the penumbra, i.e. the high probability of unfavorable clinical outcome despite recanalization, remains unclear. Along this line, an alternative hypothesis is offered viewing the collapse of collateral flow not as a cause but possibly as an inevitable secondary consequence of increasing peripheral/microvascular resistance during progressive infarction.
Collapse
Affiliation(s)
- M Pham
- Department of Neuroradiology, Heidelberg University Hospital, INF 400, 69120, Heidelberg, Germany.
| | - M Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, INF 400, 69120, Heidelberg, Germany
| |
Collapse
|
147
|
Davis MA, Gagnon L, Boas DA, Dunn AK. Sensitivity of laser speckle contrast imaging to flow perturbations in the cortex. BIOMEDICAL OPTICS EXPRESS 2016; 7:759-75. [PMID: 27231587 PMCID: PMC4866454 DOI: 10.1364/boe.7.000759] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/27/2016] [Accepted: 01/28/2016] [Indexed: 05/18/2023]
Abstract
Laser speckle contrast imaging has become a ubiquitous tool for imaging blood flow in a variety of tissues. However, due to its widefield imaging nature, the measured speckle contrast is a depth integrated quantity and interpretation of baseline values and the depth dependent sensitivity of those values to changes in underlying flow has not been thoroughly evaluated. Using dynamic light scattering Monte Carlo simulations, the sensitivity of the autocorrelation function and speckle contrast to flow changes in the cerebral cortex was extensively examined. These simulations demonstrate that the sensitivity of the inverse autocorrelation time, [Formula: see text], varies across the field of view: directly over surface vessels [Formula: see text] is strongly localized to the single vessel, while parenchymal ROIs have a larger sensitivity to flow changes at depths up to 500 μm into the tissue and up to 200 μm lateral to the ROI. It is also shown that utilizing the commonly used models the relate [Formula: see text] to flow resulted in nearly the same sensitivity to the underlying flow, but fail to accurately relate speckle contrast values to absolute [Formula: see text].
Collapse
Affiliation(s)
- Mitchell A. Davis
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712,
USA
| | - Louis Gagnon
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129,
USA
| | - David A. Boas
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129,
USA
| | - Andrew K. Dunn
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712,
USA
| |
Collapse
|
148
|
Hamlin SK, Benedik PS. Basic concepts of hemorheology in microvascular hemodynamics. Crit Care Nurs Clin North Am 2016; 26:337-44. [PMID: 25169687 DOI: 10.1016/j.ccell.2014.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Blood rheology, or hemorheology, involves the flow and deformation behavior of blood and its formed elements (ie, erythrocytes, leukocytes, platelets). The adequacy of blood flow to meet metabolic demands through large circulatory vessels depends highly on vascular control mechanisms. However, the extent to which rheologic properties of blood contribute to vascular flow resistance, particularly in the microcirculation, is becoming more appreciated. Current evidence suggests that microvascular blood flow is determined by local vessel resistance and hemorheologic factors such as blood viscosity, erythrocyte deformability, and erythrocyte aggregation. Such knowledge will aid clinicians caring for patients with hemodynamic alterations.
Collapse
Affiliation(s)
- Shannan K Hamlin
- Nursing Research and Evidence-Based Practice, Houston Methodist Hospital, 6565 Fannin, MGJ 11-017, Houston, TX 77030, USA.
| | - Penelope S Benedik
- UT Health School of Nursing, University of Texas Health Science Center at Houston, 6901 Bertner Street, Room 682, Houston, TX 77030, USA
| |
Collapse
|
149
|
Varvarousi G, Xanthos T, Sarafidou P, Katsioula E, Georgiadou M, Eforakopoulou M, Pavlou H. Role of levosimendan in the management of subarachnoid hemorrhage. Am J Emerg Med 2016; 34:298-306. [DOI: 10.1016/j.ajem.2015.11.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/27/2015] [Accepted: 11/12/2015] [Indexed: 11/16/2022] Open
|
150
|
Agrawal R, Sherwood J, Chhablani J, Ricchariya A, Kim S, Jones PH, Balabani S, Shima D. Red blood cells in retinal vascular disorders. Blood Cells Mol Dis 2016; 56:53-61. [DOI: 10.1016/j.bcmd.2015.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 10/26/2015] [Indexed: 02/05/2023]
|