101
|
Zhang W, Zhang S. Downregulation of circRNA_0000285 Suppresses Cervical Cancer Development by Regulating miR197-3p-ELK1 Axis. Cancer Manag Res 2020; 12:8663-8674. [PMID: 32982457 PMCID: PMC7509321 DOI: 10.2147/cmar.s253174] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/16/2020] [Indexed: 01/08/2023] Open
Abstract
Background Circular RNAs (circRNAs) are involved in the development of human cancers, including cervical cancer (CC). However, the role and mechanism of the circRNA hsa_circ_0000285 (circ_0000285) in CC development remain largely unknown. Methods Thirty paired CC and adjacent normal tissue samples were harvested. CC cell lines SiHa and HeLa were cultured in this study. The expression of circ_0000285, miR197-3p and ELK1 was detected via qRT-PCR or Western blot. CC development was assessed via cell viability, colony formation, apoptosis, cell cycle, and autophagy using MTT, colony-formation assays, flow cytometry and Western blot. The target association was analyzed via dual luciferase–reporter assay, RNA immunoprecipitation, and RNA pull-down. The role of circ_0000285 in CC in vivo was analyzed using a xenograft model. Results circ_0000285 abundance was enhanced in CC tissue and cells and mainly located in cytoplasm. Silence of circ_0000285 suppressed cell viability and colony formation, arrested the cell cycle at the G0/G1 phase, and induced apoptosis and autophagy in CC cells. miR197-3p was targeted by circ_0000285, and miR197-3p knockdown reversed the effect of circ_0000285 silence on CC development. miR197-3p directly targeted ELK1 to inhibit CC development. circ_0000285 regulated ELK1 by modulating miR197-3p. Knockdown of circ_0000285 reduced xenograft tumor growth in vivo. Conclusion Knockdown of circ_0000285 repressed CC development by increasing miR197-3p and decreasing ELK1.
Collapse
Affiliation(s)
- Wenmin Zhang
- Department of Obstetrics and Gynecology, Heze Municipal Hospital, Heze, Shandong 274000, People's Republic of China
| | - Suping Zhang
- Department of Reproductive, Zoucheng People's Hospital, Zoucheng, Shandong 273500, People's Republic of China
| |
Collapse
|
102
|
Dou D, Ren X, Han M, Xu X, Ge X, Gu Y, Wang X, Zhao S. CircUBE2D2 (hsa_circ_0005728) promotes cell proliferation, metastasis and chemoresistance in triple-negative breast cancer by regulating miR-512-3p/CDCA3 axis. Cancer Cell Int 2020; 20:454. [PMID: 32944002 PMCID: PMC7491078 DOI: 10.1186/s12935-020-01547-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/09/2020] [Indexed: 02/08/2023] Open
Abstract
Background Triple-negative breast cancer (TNBC) is a clinically aggressive subtype of breast cancer with a bad prognosis. Chemotherapy is still the standard of care for TNBC treatment. Circular RNAs (CircRNAs) have been recently discovered to be closely involved in the initiation and development of human cancers. Herein, we focus our attention on the functions and underlying mechanisms of circUBE2D2 in TNBC progression and chemoresistance. Methods The expression of circUBE2D2, miR-512-3p, and cell division cycle associated 3 (CDCA3) mRNA were determined by qRT-PCR. CCK-8, colony formation, transwell and flow cytometry assays were performed to detect cell proliferation, migration, invasion and apoptosis. Western blot assay was utilized to measure the protein level of CDCA3. RNA pull-down, luciferase reporter and RIP experiments were employed to examine the possible regulatory mechanism of circUBE2D2. Results CircUBE2D2 expression was elevated in TNBC tissues and cells. TNBC patients with high circUBE2D2 expression are inclined to present advanced TNM stage, lymph node metastasis and adverse prognosis. Knockdown of circUBE2D2 repressed cell proliferation, migration and invasion in vitro, and impeded tumor growth in vivo. Moreover, silencing of circUBE2D2 reduced doxorubicin resistance of TNBC cells. In-depth mechanism analysis revealed that circUBE2D2 served as a miRNA sponge to protect CDCA3 from the attack of miR-512-3p. Additionally, the tumor-suppressive effect induced by circUBE2D2 depletion was greatly impaired upon miR512-3p down-regulation or CDCA3 overexpression. Also, depletion of circUBE2D2 decreased the resistance to doxorubicin through regulating miR-512-3p/CDCA3 axis. Conclusion CircUBE2D2 promoted TNBC progression and doxorubicin resistance through acting as a sponge of miR-512-3p to up-regulate CDCA3 expression. Targeting circUBE2D2 combine with doxorubicin might be exploited as a novel therapy for TNBC.
Collapse
Affiliation(s)
- Dongwei Dou
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Erqi District, Zhengzhou, 450052 China
| | - Xiaoyang Ren
- Department of Information, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Mingli Han
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Erqi District, Zhengzhou, 450052 China
| | - Xiaodong Xu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Erqi District, Zhengzhou, 450052 China
| | - Xin Ge
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Erqi District, Zhengzhou, 450052 China
| | - Yuanting Gu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Erqi District, Zhengzhou, 450052 China
| | - Xinxing Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Erqi District, Zhengzhou, 450052 China
| | - Song Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Erqi District, Zhengzhou, 450052 China
| |
Collapse
|
103
|
Zhu Y, Zou C, Jia Y, Zhang H, Ma X, Zhang J. Knockdown of circular RNA circMAT2B reduces oxygen-glucose deprivation-induced inflammatory injury in H9c2 cells through up-regulating miR-133. Cell Cycle 2020; 19:2622-2630. [PMID: 32897801 DOI: 10.1080/15384101.2020.1814025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Myocardial infarction (MI) is the main cause of morbidity and mortality. Reperfusion ways can cause damage to cardiomyocytes. CircMAT2B, a novel circRNA, takes positive roles in regulating glucose metabolism under hypoxia. Therefore, we aimed to explore the effects of circMAT2B on MI. Oxygen-glucose deprivation (OGD)-induced H9c2 cell model was employed to stimulate MI. Ex-circMAT2B, si-circMAT2B, miR-133 inhibitor and relative control were transfected into H9c2 cells. qRT-PCR was employed to examine levels of circMAT2B and miR-133. Cell activity, apoptosis, ROS generation and release of inflammatory factors were assessed by CCK-8, flow cytometry, ROS species assay kit and ELISA, respectively. Moreover, the expression of apoptosis-related and pathway-related factors was detected through western blot analysis. The results showed that circMAT2B expression was notably up-regulated by OGD treatment. Moreover, circMAT2B knockdown could effectively decrease OGD-induced the increasing of apoptosis, ROS generation and the expression of IL-1β, IL-6 and TNF-α. Besides, miR-133 was positively regulated by si-circMAT2B. CircMAT2B knockdown attenuated OGD-induced H9c2 cell damage and alleviated OGD-induced the inhibition of PI3K/AKT and Raf/MEK/ERK pathways through up-regulating miR-133. In brief, circMAT2B knockdown works as an inflammatory inhibitor in OGD-induced H9c2 cells inflammatory injury through up-regulating miR-133.
Collapse
Affiliation(s)
- Yanhui Zhu
- Department of Cardiac Surgery, Shandong Provincial Hospital Affiliated to Shandong University , Jinan, Shandong, China
| | - Chengwei Zou
- Department of Cardiac Surgery, Shandong Provincial Hospital Affiliated to Shandong University , Jinan, Shandong, China
| | - Yanting Jia
- Department of Cardiac Surgery, Shandong Provincial Hospital Affiliated to Shandong University , Jinan, Shandong, China
| | - Haizhou Zhang
- Department of Cardiac Surgery, Shandong Provincial Hospital Affiliated to Shandong University , Jinan, Shandong, China
| | - Xiaochun Ma
- Department of Cardiac Surgery, Shandong Provincial Hospital Affiliated to Shandong University , Jinan, Shandong, China
| | - Jun Zhang
- Department of Cardiac Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University , Jinan, Shandong, China
| |
Collapse
|
104
|
Wang J, Zhu W, Tao G, Wang W. Circular RNA circ-LRP6 facilitates Myc-driven tumorigenesis in esophageal squamous cell cancer. Bioengineered 2020; 11:932-938. [PMID: 32867570 PMCID: PMC8291805 DOI: 10.1080/21655979.2020.1809922] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Circular RNA (circRNA) circ-LRP6 was recently proven to be a pivotal player in various human diseases. Nevertheless, its role in esophageal squamous cell cancer (ESCC) remains unknown. In the current study, we investigated the expression level, biological function and mechanism of circ-LRP6 in ESCC. Circ-LRP6 was significantly upregulated in ESCC tissues and correlated with malignant clinicopathological characteristics and poor prognosis. Knockdown of circ-LRP6 evidently reduced ESCC cell viability, colony formation and invasion. Circ-LRP6 was mainly located in the cytoplasm and could sponge miR-182 to increase the expression of Myc, a well-documented proto-oncogene. Importantly, circ-LRP6 depletion significantly retarded tumor growth in vivo. And silencing of miR-182 or overexpression of Myc effectively rescued the attenuated aggressive phenotype of ESCC cells caused by circ-LRP6 knockdown. Therefore, our data indicate that circ-LRP6 is a novel oncogenic circRNA in ESCC, targeting the circ-LRP6/miR-182/Myc signaling may be a promising therapeutic approach for ESCC patients.
Collapse
Affiliation(s)
- Jiayang Wang
- Department of Radiation Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University , Huai'an, Jiangsu, China
| | - Weiguo Zhu
- Department of Radiation Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University , Huai'an, Jiangsu, China
| | - Guangzhou Tao
- Department of Radiation Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University , Huai'an, Jiangsu, China
| | - Wanwei Wang
- Department of Radiation Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University , Huai'an, Jiangsu, China
| |
Collapse
|
105
|
Zang H, Li Y, Zhang X, Huang G. Blocking circ_0000520 Suppressed Breast Cancer Cell Growth, Migration and Invasion Partially via miR-1296/SP1 Axis Both in vitro and in vivo. Cancer Manag Res 2020; 12:7783-7795. [PMID: 32922078 PMCID: PMC7457856 DOI: 10.2147/cmar.s251666] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 08/01/2020] [Indexed: 12/24/2022] Open
Abstract
Background Breast cancer (BCa) is an overwhelming malignant tumor mainly in women globally. Circular RNAs (circRNAs) are a special type of noncoding RNAs involved in competing endogenous RNA (ceRNA) network, a classic molecular mechanism of the tumorigenesis of human cancers, including BCa. Here, we intended to explore the role and mechanism of hsa_circ_0000520 (circ_0000520) in BCa cells. Methods Expression of circ_0000520, miRNA-1296-5p (miR-1296) and specificity protein 1 (SP1) was measured by real time-quantitative PCR and Western blotting. Cell growth was measured by cell counting kit-8, colony formation assay and flow cytometry method. Cell migration and invasion were assessed by transwell assays and Western blotting. Tumor growth was determined by xenograft models. The direct interaction among circ_0000520, miR-1296 and SP1 was confirmed by dual-luciferase reporter assay and RNA pull-down assay. Results circ_0000520 was upregulated in BCa tumors and cell lines (T47D, MCF7, MDA-MB-231, BT549, and SKBR3), and circ_0000520 high expression was associated with poor overall survival. Blocking circ_0000520 suppressed cell viability, colony formation, migration and invasion, but promoted cell cycle arrest and apoptosis rate in MDA-MB-231 and MCF7 cells. circ_0000520 could directly regulate miR-1296 expression, and SP1 was a novel target for miR-1296. Moreover, the anti-tumor role of circ_0000520 silencing was abrogated by miR-1296 downregulation or SP1 restoration. Notably, tumor growth of MDA-MB-231 cells in mice was restrained by circ_0000520 deletion. Conclusion circ_0000520 knockdown could suppress cell growth, migration and invasion both in vitro and in vivo through regulating miR-1296/SP1 pathway.
Collapse
Affiliation(s)
- Hongliang Zang
- Department of General Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Yuhui Li
- Department of General Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Xue Zhang
- Department of General Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Guomin Huang
- Department of General Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| |
Collapse
|
106
|
Luo Y, Gui R. Circulating Exosomal CircMYC Is Associated with Recurrence and Bortezomib Resistance in Patients with Multiple Myeloma. Turk J Haematol 2020; 37:248-262. [PMID: 32812415 PMCID: PMC7702652 DOI: 10.4274/tjh.galenos.2020.2020.0243] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Objective Studies have shown that serum circRNA can be used as a biomarker for many tumors. However, the role of exosomal circRNA in prognostic evaluation in patients with multiple myeloma (MM) remains unclear. In this study, we aimed to analyze the role of circulating exosomal circMYC in the relapse and prognosis of patients with MM. Materials and Methods Circulating exosomes from 122 patients with MM and 54 healthy people were isolated. Quantitative polymerase chain reaction was performed to measure circMYC exosomal expression. Kaplan-Meier survival curves with log-rank testing were used for estimating significance in survival rates. A Cox regression model was used for univariate and multivariate analysis. Results Compared with healthy people, the expression level of serum exosomal circMYC was significantly increased in patients with MM. In addition, the expression of circMYC in circulating exosomes in bortezomib-resistant patients was significantly higher than that in non-resistant patients. The expression level of exosomal circMYC was correlated with deletion 17p, t(4;14), Durie-Salmon staging, and the International Staging System. Univariate and multivariate Cox regression analysis found that a high exosomal circMYC level was an independent predictor of poor prognosis in patients with MM. The patients with high exosome circMYC expression had higher relapse rates and higher mortality rates. The overall survival rate and progression-free survival rate of MM patients with high exosomal circMYC expression were lower than those of patients with low exosomal circMYC expression. Conclusion These findings suggest that circulating exosomal circMYC has great potential as a biomarker for the diagnosis and prognosis of MM.
Collapse
Affiliation(s)
- Yanwei Luo
- The Third Xiangya Hospital of Central South University, Department of Blood Transfusion, Changsha, China
| | - Rong Gui
- The Third Xiangya Hospital of Central South University, Department of Blood Transfusion, Changsha, China
| |
Collapse
|
107
|
Cheng H, Jiang W, Song Z, Li T, Li Y, Zhang L, Wang G. Circular RNA circLPAR3 Facilitates Esophageal Squamous Cell Carcinoma Progression Through Upregulating HMGB1 via Sponging miR-375/miR-433. Onco Targets Ther 2020; 13:7759-7771. [PMID: 32801782 PMCID: PMC7414984 DOI: 10.2147/ott.s244699] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/04/2020] [Indexed: 12/20/2022] Open
Abstract
Background Circular RNAs (circRNAs) are critical regulators of many diseases, including esophageal squamous cell carcinoma (ESCC). A recent study has shown that circLPAR3 is highly expressed in ESCC, but its role and mechanism in ESCC are still unclear. Methods The expression levels of circLPAR3, microRNA-375 (miR-375), miR-433, and high-mobility group box 1 (HMGB1) were measured by quantitative real-time polymerase chain reaction (qRT-PCR). The circular characteristic and localization of circLPAR3 were identified by Ribonuclease R (RNase R) and nuclear-cytoplasmic separation assay. Also, cell proliferation was detected by cell counting kit-8 (CCK-8) and colony formation assays. Cell migration and invasion were tested by transwell assay. Moreover, Western blot (WB) analysis was used to test the levels of proliferation and metastasis-related protein, as well as the HMGB1 protein. Besides, mice xenograft models were constructed to assess the effect of circLPAR3 on ESCC tumor growth in vivo. In addition, dual-luciferase reporter and RNA pull-down assays were used to identify the mechanism of circLPAR3. Results CircLPAR3 was upregulated in ESCC tissues and cells, and its high expression was related to the poor prognosis of ESCC patients. CircLPAR3 was a stable cyclic transcript, mainly located in the cytoplasm, and its knockdown hindered the proliferation, migration and invasion of ESCC cells and inhibited ESCC tumor growth in vivo. MiR-375/miR-433 could be sponged by circLPAR3, and their inhibitors could reverse the suppression effect of silenced circLPAR3 on ESCC progression. HMGB1 could be targeted by miR-375/miR-433, and its overexpression also could invert the inhibition effect of circLPAR3 knockdown on ESCC progression. Conclusion CircLPAR3 might play an oncogenic role in ESCC through sponging miR-375/miR-433 to promote HMGB1 expression, which might provide a theoretical basis for circLPAR3 to become a biomarker for ESCC therapy.
Collapse
Affiliation(s)
- Hongzhong Cheng
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, People's Republic of China
| | - Wen Jiang
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, People's Republic of China
| | - Zhengji Song
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, People's Republic of China
| | - Ting Li
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, People's Republic of China
| | - Yulian Li
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, People's Republic of China
| | - Libin Zhang
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, People's Republic of China
| | - Guoping Wang
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, People's Republic of China
| |
Collapse
|
108
|
Protein-Related Circular RNAs in Human Pathologies. Cells 2020; 9:cells9081841. [PMID: 32781555 PMCID: PMC7463956 DOI: 10.3390/cells9081841] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/02/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
Circular RNAs (circRNAs) are a distinct family of RNAs derived from alternative splicing which play a crucial role in regulating gene expression by acting as microRNA (miRNA) and RNA binding protein (RBP) sponges. However, recent studies have also reported the multifunctional potential of these particles. Under different conditions, circRNAs not only regulate protein synthesis, destination, and degradation but can serve as protein scaffolds or recruiters and are also able to produce short peptides with active biological functions. circRNAs are under ongoing investigation because of their close association with the development of diseases. Some circRNAs are reportedly expressed in a tissue- and development stage-specific manner. Furthermore, due to other features of circRNAs, including their stability, conservation, and high abundance in bodily fluids, they are believed to be potential biomarkers for various diseases, including cancers. In this review, we focus on providing a summary of the current knowledge on circRNA-protein interactions. We present the properties and functions of circRNAs, the possible mechanisms of their translation abilities, and the emerging functions of circRNA-derived peptides in human pathologies.
Collapse
|
109
|
Rochow H, Franz A, Jung M, Weickmann S, Ralla B, Kilic E, Stephan C, Fendler A, Jung K. Instability of circular RNAs in clinical tissue samples impairs their reliable expression analysis using RT-qPCR: from the myth of their advantage as biomarkers to reality. Am J Cancer Res 2020; 10:9268-9279. [PMID: 32802191 PMCID: PMC7415809 DOI: 10.7150/thno.46341] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/25/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Circular RNAs (circRNAs) are a new class of RNAs with medical significance. Compared to that of linear mRNA transcripts, the stability of circRNAs against degradation owing to their circular structure is considered advantageous for their use as biomarkers. As systematic studies on the stability of circRNAs depending on the RNA integrity, determined as RNA integrity number (RIN), in clinical tissue samples are lacking, we have investigated this aspect in the present study under model and clinical conditions. Methods: Total RNA isolated from kidney cancer tissue and cell lines (A-498 and HEK-293) with different RIN after thermal degradation was used in model experiments. Further, RNA isolated from kidney cancer and prostate cancer tissue collected under routine surgical conditions, representing clinical samples with RIN ranging from 2 to 9, were examined. Quantitative real-time reverse-transcription polymerase chain reaction (RT-qPCR) analysis of several circRNAs (circEGLN3, circRHOBTB3, circCSNK1G3, circRNA4, and circRNA9), their corresponding linear counterparts, tissue-specific reference genes, and three microRNAs (as controls) was performed. The quantification cycles were converted into relative quantities and normalized to the expression of specific reference genes for the corresponding tissue. The effect of RIN on the expression of different RNA entities was determined using linear regression analysis, and clinical samples were classified into two groups based on RIN greater or lesser than 6. Results: The results of model experiments and clinical sample analyses showed that all relative circRNA expression gradually decreased with reduction in RIN values. The adverse effect of RIN was partially compensated after normalizing the data and limiting the samples to only those with RIN values > 6. Conclusions: Our results suggested that circRNAs are not stable in clinical tissue samples, but are subjected to degradative processes similar to mRNAs. This has not been investigated extensively in circRNA expression studies, and hence must be considered in future for obtaining reliable circRNA expression data. This can be achieved by applying the principles commonly used in mRNA expression studies.
Collapse
|
110
|
Gao Y, Liu J, Huan J, Che F. Downregulation of circular RNA hsa_circ_0000735 boosts prostate cancer sensitivity to docetaxel via sponging miR-7. Cancer Cell Int 2020; 20:334. [PMID: 32714093 PMCID: PMC7376840 DOI: 10.1186/s12935-020-01421-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022] Open
Abstract
Background One of the main reasons for the failure of prostate cancer (PCa) treatment is the generation of chemoresistance. Circular RNA hsa_circ_0000735 (hsa_circ_0000735) is connected with the progression of cancer. Nevertheless, the role and regulatory mechanism of hsa_circ_0000735 in the resistance of PCa to docetaxel (DTX) are unclear. Methods Expression levels of hsa_circ_0000735 and miR-7-5p (miR-7) in tissue samples and cells were examined via quantitative real-time polymerase chain reaction (qRT-PCR). The DTX sensitivity, viability, colony formation, cell cycle progression, and apoptosis of DTX-resistant PCa cells were determined via Cell Counting Kit-8 (CCK-8), cell colony formation, or flow cytometry assays. The levels of multidrug resistance protein 1 (MDR1) protein, cyclinD1, and B cell lymphoma 2 (bcl-2) were detected by western blotting. The interaction between hsa_circ_0000735 and miR-7 was verified via dual-luciferase reporter, RNA immunoprecipitation (RIP), and RNA pull-down assays. The role of hsa_circ_0000735 in vivo was validated through tumor formation experiments. Results Hsa_circ_0000735 was upregulated and miR-7 was downregulated in DTX-resistant PCa tissues and cells. High hsa_circ_0000735 expression had a shorter overall survival. Both hsa_circ_0000735 knockdown and miR-7 mimic boosted DTX sensitivity, constrained viability, colony formation, cell cycle progression, and fostered apoptosis of DTX-resistant PCa cells. Also, hsa_circ_0000735 silencing elevated DTX sensitivity and repressed tumor growth in PCa in vivo. Mechanistically, hsa_circ_0000735 served as a sponge for miR-7. MiR-7 inhibition overturned hsa_circ_0000735 silencing-mediated impacts on DTX sensitivity and the malignant behaviors of DTX-resistant PCa cells. Conclusion Hsa_circ_0000735 downregulation boosted PCa sensitivity to DTX and reduced tumor growth via sponging miR-7, providing a promising prognostic biomarker and therapeutic target for PCa.
Collapse
Affiliation(s)
- Yisheng Gao
- Guangzhou University of Chinese Medicine, Guangzhou, 510006 Guangdong China.,Department of Urology, Linyi People's Hospital, Linyi, 276003 Shandong China
| | - Jie Liu
- Department of Urology, Linyi People's Hospital, Linyi, 276003 Shandong China
| | - Jing Huan
- Guangzhou University of Chinese Medicine, Guangzhou, 510006 Guangdong China.,Department of Acupuncture and Moxibustion, Linyi People's Hospital, Linyi, 276003 Shandong China
| | - Fengyuan Che
- Guangzhou University of Chinese Medicine, Guangzhou, 510006 Guangdong China.,Department of Neurology, Linyi People's Hospital, No. 27, East Section of Jiefang Road, Lanshan District, Linyi, 276003 Shandong China
| |
Collapse
|
111
|
Pereira AL, Magalhães L, Pantoja RP, Araújo G, Ribeiro-dos-Santos Â, Vidal AF. The Biological Role of Sponge Circular RNAs in Gastric Cancer: Main Players or Coadjuvants? Cancers (Basel) 2020; 12:E1982. [PMID: 32708088 PMCID: PMC7409348 DOI: 10.3390/cancers12071982] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 12/24/2022] Open
Abstract
Circular RNAs (circRNAs) are a new class of long noncoding RNAs able to perform multiple functions, including sponging microRNAs (miRNAs) and RNA-Binding Proteins (RBPs). They play an important role in gastric carcinogenesis, but its involvement during gastric cancer (GC) development and progression are not well understood. We gathered miRNA and/or RBPs sponge circRNAs present in GC, and accessed their biological roles through functional enrichment of their target genes or ligand RBPs. We identified 54 sponge circRNAs in GC that are able to sponge 51 miRNAs and 103 RBPs. Then, we evaluated their host gene expression using The Cancer Genome Atlas (TCGA) database and observed that COL1A2 is the most overexpressed gene, which may be due to circHIPK3/miR-29b-c/COL1A2 axis dysregulation. We identified 27 GC-related pathways that may be affected mainly by circPVT1, circHIPK3 and circNF1. Our results indicate that circHIPK3/miR-107/BDNF/LIN28 axis may mediate chemoresistance in GC, and that circPVT1, circHIPK3, circNF1, ciRS-7 and circ_0000096 appear to be involved in gastrointestinal cancer development. Lastly, circHIPK3, circNRIP1 and circSMARCA5 were identified in different ethnic populations and may be ubiquitous modulators of gastric carcinogenesis. Overall, the studied sponge circRNAs are part of a complex RBP-circRNA-miRNA-mRNA interaction network, and are involved in the establishment, chemoresistance and progression of GC.
Collapse
Affiliation(s)
- Adenilson Leão Pereira
- Faculty of Medicine, Federal University of Pará, Altamira 68371-163, Brazil;
- Research Center on Oncology, Graduate Program of Oncology and Medical Science, Federal University of Pará, Belém 66073-000, Brazil;
| | - Leandro Magalhães
- Laboratory of Human and Medical Genetics, Institute of Biological Sciences, Graduate Program of Genetics and Molecular Biology, Federal University of Pará, Belém 66075-110, Brazil; (L.M.); (R.P.P.); (G.A.)
| | - Rafael Pompeu Pantoja
- Laboratory of Human and Medical Genetics, Institute of Biological Sciences, Graduate Program of Genetics and Molecular Biology, Federal University of Pará, Belém 66075-110, Brazil; (L.M.); (R.P.P.); (G.A.)
| | - Gilderlanio Araújo
- Laboratory of Human and Medical Genetics, Institute of Biological Sciences, Graduate Program of Genetics and Molecular Biology, Federal University of Pará, Belém 66075-110, Brazil; (L.M.); (R.P.P.); (G.A.)
| | - Ândrea Ribeiro-dos-Santos
- Research Center on Oncology, Graduate Program of Oncology and Medical Science, Federal University of Pará, Belém 66073-000, Brazil;
- Laboratory of Human and Medical Genetics, Institute of Biological Sciences, Graduate Program of Genetics and Molecular Biology, Federal University of Pará, Belém 66075-110, Brazil; (L.M.); (R.P.P.); (G.A.)
| | - Amanda Ferreira Vidal
- Laboratory of Human and Medical Genetics, Institute of Biological Sciences, Graduate Program of Genetics and Molecular Biology, Federal University of Pará, Belém 66075-110, Brazil; (L.M.); (R.P.P.); (G.A.)
| |
Collapse
|
112
|
Zhang PF, Gao C, Huang XY, Lu JC, Guo XJ, Shi GM, Cai JB, Ke AW. Cancer cell-derived exosomal circUHRF1 induces natural killer cell exhaustion and may cause resistance to anti-PD1 therapy in hepatocellular carcinoma. Mol Cancer 2020; 19:110. [PMID: 32593303 PMCID: PMC7320583 DOI: 10.1186/s12943-020-01222-5] [Citation(s) in RCA: 384] [Impact Index Per Article: 76.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 05/28/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Natural killer (NK) cells play a critical role in the innate antitumor immune response. Recently, NK cell dysfunction has been verified in various malignant tumors, including hepatocellular carcinoma (HCC). However, the molecular biological mechanisms of NK cell dysfunction in human HCC are still obscure. METHODS The expression of circular ubiquitin-like with PHD and ring finger domain 1 RNA (circUHRF1) in HCC tissues, exosomes, and cell lines was detected by qRT-PCR. Exosomes were isolated from the culture medium of HCC cells and plasma of HCC patients using an ultracentrifugation method and the ExoQuick Exosome Precipitation Solution kit and then characterized by transmission electronic microscopy, NanoSight and western blotting. The role of circUHRF1 in NK cell dysfunction was assessed by ELISA. In vivo circRNA precipitation, RNA immunoprecipitation, and luciferase reporter assays were performed to explore the molecular mechanisms of circUHRF1 in NK cells. In a retrospective study, the clinical characteristics and prognostic significance of circUHRF1 were determined in HCC tissues. RESULTS Here, we report that the expression of circUHRF1 is higher in human HCC tissues than in matched adjacent nontumor tissues. Increased levels of circUHRF1 indicate poor clinical prognosis and NK cell dysfunction in patients with HCC. In HCC patient plasma, circUHRF1 is predominantly secreted by HCC cells in an exosomal manner, and circUHRF1 inhibits NK cell-derived IFN-γ and TNF-α secretion. A high level of plasma exosomal circUHRF1 is associated with a decreased NK cell proportion and decreased NK cell tumor infiltration. Moreover, circUHRF1 inhibits NK cell function by upregulating the expression of TIM-3 via degradation of miR-449c-5p. Finally, we show that circUHRF1 may drive resistance to anti-PD1 immunotherapy in HCC patients. CONCLUSIONS Exosomal circUHRF1 is predominantly secreted by HCC cells and contributes to immunosuppression by inducing NK cell dysfunction in HCC. CircUHRF1 may drive resistance to anti-PD1 immunotherapy, providing a potential therapeutic strategy for patients with HCC.
Collapse
MESH Headings
- Animals
- Apoptosis
- Biomarkers, Tumor/genetics
- CCAAT-Enhancer-Binding Proteins/genetics
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/pathology
- Cell Proliferation
- Drug Resistance, Neoplasm
- Exosomes/genetics
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Immune Checkpoint Inhibitors/pharmacology
- Killer Cells, Natural/immunology
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/immunology
- Liver Neoplasms/pathology
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Neoplasm Invasiveness
- Prognosis
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- RNA, Circular/genetics
- Retrospective Studies
- Survival Rate
- Tumor Cells, Cultured
- Ubiquitin-Protein Ligases/genetics
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Peng-Fei Zhang
- Liver Cancer Institute, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, People's Republic of China, 200032
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, People's Republic of China
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
| | - Chao Gao
- Liver Cancer Institute, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, People's Republic of China, 200032
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, People's Republic of China
| | - Xiao-Yong Huang
- Liver Cancer Institute, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, People's Republic of China, 200032
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, People's Republic of China
| | - Jia-Cheng Lu
- Liver Cancer Institute, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, People's Republic of China, 200032
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, People's Republic of China
| | - Xiao-Jun Guo
- Liver Cancer Institute, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, People's Republic of China, 200032
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, People's Republic of China
| | - Guo-Ming Shi
- Liver Cancer Institute, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, People's Republic of China, 200032.
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, People's Republic of China.
| | - Jia-Bin Cai
- Liver Cancer Institute, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, People's Republic of China, 200032.
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, People's Republic of China.
| | - Ai-Wu Ke
- Liver Cancer Institute, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, People's Republic of China, 200032.
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
113
|
Li L, Wei H, Zhang H, Xu F, Che G. Circ_100565 promotes proliferation, migration and invasion in non-small cell lung cancer through upregulating HMGA2 via sponging miR-506-3p. Cancer Cell Int 2020; 20:160. [PMID: 32425695 PMCID: PMC7216320 DOI: 10.1186/s12935-020-01241-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/01/2020] [Indexed: 02/08/2023] Open
Abstract
Background Circular RNAs (circRNAs) play a vital role in the development of various cancers. Circ_100565 was found to be a highly expressed circRNA in non-small cell lung cancer (NSCLC) tissues screened by microarray profiles of circRNAs. However, the role of circ_100565 in NSCLC still remains unknown. Methods Microarray analysis was used to screen for differentially expressed circRNAs in NSCLC tissues. The expression levels of circ_100565, microRNA-506-3p (miR-506-3p) and high mobility group AT-hook 2 (HMGA2) were measured by quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation was detected by cell counting kit-8 (CCK-8) and colony formation assays. Transwell assay was used to determine the migration and invasion of cells. Besides, Western blot (WB) analysis was performed to assess the levels of proliferation and metastasis-related proteins and HMGA2 protein. Moreover, animal experiments were used to confirm the effect of circ_100565 on NSCLC tumor growth in vivo. In addition, the interaction between miR-506-3p and circ_100565 or HMGA2 was confirmed by dual-luciferase reporter, RNA immunoprecipitation (RIP) assay or biotin-labeled pull-down assay. Results Circ_100565 was upregulated in NSCLC, and its high expression was positively associated with the poor overall survival of NSCLC patients. Silencing of circ_100565 suppressed the proliferation, migration and invasion of NSCLC cells in vitro and reduced the tumor growth of NSCLC in vivo. Circ_100565 could sponge miR-506-3p, and miR-506-3p could target HMGA2. Moreover, miR-506-3p inhibitor or HMGA2 overexpression could reverse the inhibition effect of circ_100565 knockdown on NSCLC progression. Conclusion Circ_100565 increased HMGA2 expression to promote proliferation, migration and invasion in NSCLC via absorbing miR-506-3p. Our findings provided a new biomarker for NSCLC therapy.
Collapse
Affiliation(s)
- Li Li
- 1Department of Thoracic Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Wuhou District, Chengdu, 610041 Sichuan China.,2School of Nursing and Health, Henan University, Kaifeng, 475001 Henan China
| | - Haitao Wei
- 3Department of Thoracic Surgery, Huaihe Hospital of Henan University, Kaifeng, 475000 Henan China
| | - Haifeng Zhang
- 3Department of Thoracic Surgery, Huaihe Hospital of Henan University, Kaifeng, 475000 Henan China
| | - Feng Xu
- 4Department of Respiratory, Huaihe Hospital of Henan University, Kaifeng, 475000 Henan China
| | - Guowei Che
- 1Department of Thoracic Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Wuhou District, Chengdu, 610041 Sichuan China
| |
Collapse
|
114
|
Van Der Steen N, Lyu Y, Hitzler AK, Becker AC, Seiler J, Diederichs S. The Circular RNA Landscape of Non-Small Cell Lung Cancer Cells. Cancers (Basel) 2020; 12:E1091. [PMID: 32353949 PMCID: PMC7281449 DOI: 10.3390/cancers12051091] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/25/2022] Open
Abstract
The class of circular RNA (circRNA) is characterized by head-to-tail bonds between exons formed by backsplicing. Here, we provide a resource of circRNA expression in a comprehensive panel of 60 lung cancer and non-transformed cell lines (FL3C dataset). RNA sequencing after depletion of ribosomal RNA quantified the expression of circRNA and linear RNA. We detected 148,811 circular RNAs quantified by 2.8 million backsplicing reads originating from 12,251 genes. The number of identified circRNAs was markedly higher using rRNA depletion compared to public polyA-enriched RNA-seq datasets. CircRNAs almost never started in the first exon nor ended in the last exon and started more frequently in earlier exons. Most circRNAs showed high cell line specificity and correlated positively with their linear RNA counterpart. Known cancer genes produced more circRNAs than non-cancer genes. Subsets of circRNAs correlated with cell proliferation, histological subtype or genotype. CircTNFRSF21 was translated crossing the backsplice site in two different reading frames. Overexpression of circPVT1, circERBB2, circHIPK3, circCCNB1, circSMAD2, circTNFRSF21 and circKIF5B significantly increased colony formation. In conclusion, our data provide a comprehensive map of circRNA expression in lung cancer cells and global patterns of circRNA production as a useful resource for future research into lung cancer circRNAs.
Collapse
Affiliation(s)
- Nele Van Der Steen
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, 79106 Freiburg, Germany
| | - Yanhong Lyu
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Anne K Hitzler
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Andrea C Becker
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Jeanette Seiler
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sven Diederichs
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, 79106 Freiburg, Germany
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
115
|
The circRNA circSEPT9 mediated by E2F1 and EIF4A3 facilitates the carcinogenesis and development of triple-negative breast cancer. Mol Cancer 2020; 19:73. [PMID: 32264877 PMCID: PMC7137343 DOI: 10.1186/s12943-020-01183-9] [Citation(s) in RCA: 293] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/12/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Increasing studies have shown that circRNA is closely related to the carcinogenesis and development of many cancers. However, biological functions and the underlying molecular mechanism of circRNAs in triple-negative breast cancer (TNBC) remain largely unclear so far. METHODS Here, we investigated the expression pattern of circRNAs in four pairs of TNBC tissues and paracancerous normal tissues using RNA-sequencing. The expression and prognostic significance of circSEPT9 were evaluated with qRT-PCR and in situ hybridization in two TNBC cohorts. The survival curves were drawn by the Kaplan-Meier method, and statistical significance was estimated with the log-rank test. A series of in vitro and in vivo functional experiments were executed to investigate the role of circSEPT9 in the carcinogenesis and development of TNBC. Mechanistically, we explored the potential regulatory effects of E2F1 and EIF4A3 on biogenesis of circSEPT9 with chromatin immunoprecipitation (ChIP), luciferase reporter and RNA immunoprecipitation (RIP) assays. Furthermore, fluorescent in situ hybridization (FISH), luciferase reporter and biotin-coupled RNA pull-down assays were implemented to verify the relationship between the circSEPT9 and miR-637 in TNBC. RESULTS Increased expression of circSEPT9 was found in TNBC tissues, which was positively correlated with advanced clinical stage and poor prognosis. Knockdown of circSEPT9 significantly suppressed the proliferation, migration and invasion of TNBC cells, induced apoptosis and autophagy in TNBC cells as well as inhibited tumor growth and metastasis in vivo. Whereas up-regulation of circSEPT9 exerted opposite effects. Further mechanism research demonstrated that circSEPT9 could regulate the expression of Leukemia Inhibitory Factor (LIF) via sponging miR-637 and activate LIF/Stat3 signaling pathway involved in progression of TNBC. More importantly, we discovered that E2F1 and EIF4A3 might promote the biogenesis of circSEPT9. CONCLUSIONS Our data reveal that the circSEPT9 mediated by E2F1 and EIF4A3 facilitates the carcinogenesis and development of triple-negative breast cancer through circSEPT9/miR-637/LIF axis. Therefore, circSEPT9 could be used as a potential prognostic marker and therapeutical target for TNBC.
Collapse
|
116
|
Yuan P, Lei L, Dong S, Liu D. Circular RNA hsa_circ_0068033 Acts as a Diagnostic Biomarker and Suppresses the Progression of Breast Cancer Through Sponging miR-659. Onco Targets Ther 2020; 13:1921-1929. [PMID: 32184627 PMCID: PMC7061413 DOI: 10.2147/ott.s223542] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 01/30/2020] [Indexed: 12/18/2022] Open
Abstract
Purpose Recently, dysregulated circular RNAs (circRNAs) have been associated with the progression of numerous malignant tumors. However, the mechanism through which circRNAs participate in breast cancer (BC) remains unclear. This study was designed to illustrate the role of hsa_circ_0068033 in BC. Methods We detected the expression levels of hsa_circ_0068033 in BC tissues using quantitative real-time PCR (qRT-PCR) and in situ hybridization (ISH). A series of functional experiments were conducted to assess the function of hsa_circ_0068033 in BC development and the underlying mechanisms. Results The results suggested that the expression of hsa_circ_0068033 was downregulated in BC tissues, and its expression was markedly correlated with tumor size (P=0.021), and the Tumor, Node, and Metastasis stage (P=0.023). Receiver operating characteristic analysis showed that hsa_circ_0068033 testing yielded an area under the curve value of 0.8480 in discriminating BC from non-tumor controls. Functionally, in-vitro experiments demonstrated that overexpression of hsa_circ_0068033 could inhibit the growths, clone formation, invasion and migration of MCF-7 and MDA-MB-231 cells while activating the intrinsic apoptotic pathway to induce apoptosis. The xenograft experiment revealed that exogenous hsa_circ_0068033 is able to evidently reduce the tumorigenic ability of MDA-MB-231 cells in nude mice. Rescue assays further proved that hsa_circ_0068033 exerts biological functions by sponging miR-659. Conclusion Collectively, this study revealed for the first time that hsa_circ_0068033 acts as a tumor suppressor gene in BC, and the hsa_circ_0068033/miR-659 axis participates in the progression of BC.
Collapse
Affiliation(s)
- Pengfei Yuan
- Department of Gastrointestinal Surgery (Breast Surgery), The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, People's Republic of China
| | - Liangliang Lei
- Department of Gastrointestinal Surgery (Breast Surgery), The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, People's Republic of China
| | - Shuaijun Dong
- Department of Gastrointestinal Surgery (Breast Surgery), The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, People's Republic of China
| | - Dechun Liu
- Department of Gastrointestinal Surgery (Breast Surgery), The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, People's Republic of China
| |
Collapse
|
117
|
Sun D, Chen L, Lv H, Gao Y, Liu X, Zhang X. Circ_0058124 Upregulates MAPK1 Expression to Promote Proliferation, Metastasis and Metabolic Abilities in Thyroid Cancer Through Sponging miR-940. Onco Targets Ther 2020; 13:1569-1581. [PMID: 32110054 PMCID: PMC7037104 DOI: 10.2147/ott.s237307] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/10/2020] [Indexed: 01/07/2023] Open
Abstract
Background Thyroid cancer (TC) is an endocrine disease, and its progression is regulated by many factors, including circular RNAs (circRNAs). However, as a new circRNA, the role of circ_0058124 in TC is worth further exploration. Methods The expression levels of circ_0058124, microRNA-940 (miR-940) and mitogen-activated protein kinase 1 (MAPK1) were assessed by quantitative polymerase chain reaction (q-PCR). The circular characteristic of circ_0058124 was identified by oligo (dT)18 primers, Ribonuclease R (RNase R) and Actinomycin D (ActD), and its localization was determined by nuclear-cytoplasmic separation assay. Also, cell proliferation was detected by colony formation assay, and cell migration and invasion were assessed by transwell assay. Further, Seahorse XF Extracellular Flux Analyzer was used to measure the oxygen consumption rate (OCR) of cells. Besides, dual-luciferase reporter, RNA immunoprecipitation (RIP) and RNA pull-down assays were used to identify the mechanism of circ_0058124. Western blot (WB) analysis was used to test the MAPK1 protein level. In addition, mice xenograft models were constructed to test the effect of circ_0058124 on TC tumor growth in vivo. Results Circ_0058124 was highly expressed in TC and is a stable cyclic transcript, mainly located in the cytoplasm. Circ_0058124 knockdown suppressed proliferation, migration, invasion and metabolic abilities in TC cells. MiR-940 could be absorbed by circ_0058124, and the inhibition effect of its overexpression on TC progression could be reversed by overexpressed-circ_0058124. MAPK1 was a target of miR-940, and the suppression effect of its silencing on TC progression could be inverted by miR-940 inhibitor. Besides, MAPK1 expression was regulated by circ_0058124 and miR-940. Interference of circ_0058124 also reduced TC tumor growth in vivo. Conclusion Circ_0058124 might play a carcinogenic role in TC progression by regulating the miR-940/MAPK1 axis, which might provide a new idea for the treatment of TC.
Collapse
Affiliation(s)
- Dezhong Sun
- Department of Otolaryngology, Linyi People's Hospital, Linyi, Shandong, People's Republic of China
| | - Li Chen
- Department of Anesthesiology Operation, Linyi People's Hospital, Linyi, Shandong, People's Republic of China
| | - Huaiqing Lv
- Department of Otolaryngology, Linyi People's Hospital, Linyi, Shandong, People's Republic of China
| | - Yongli Gao
- Department of Medicine Oncology, Linyi People's Hospital, Linyi, Shandong, People's Republic of China
| | - Xuelai Liu
- Department of Neurosurgery, Linyi Hospital of Traditional Chinese Medicine, Linyi, Shandong, People's Republic of China
| | - Xiaoyan Zhang
- Department of Medicine Oncology, Linyi People's Hospital, Linyi, Shandong, People's Republic of China
| |
Collapse
|
118
|
Papaioannou D, Volinia S, Nicolet D, Świerniak M, Petri A, Mrózek K, Bill M, Pepe F, Walker CJ, Walker AE, Carroll AJ, Kohlschmidt J, Eisfeld AK, Powell BL, Uy GL, Kolitz JE, Wang ES, Kauppinen S, Dorrance A, Stone RM, Byrd JC, Bloomfield CD, Garzon R. Clinical and functional significance of circular RNAs in cytogenetically normal AML. Blood Adv 2020; 4:239-251. [PMID: 31945158 PMCID: PMC6988408 DOI: 10.1182/bloodadvances.2019000568] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/14/2019] [Indexed: 01/08/2023] Open
Abstract
Circular RNAs (circRNAs) are noncoding RNA molecules that display a perturbed arrangement of exons, called backsplicing. To examine the prognostic and biologic significance of circRNA expression in cytogenetically normal acute myeloid leukemia (CN-AML), we conducted whole-transcriptome profiling in 365 younger adults (age 18-60 years) with CN-AML. We applied a novel pipeline, called Massive Scan for circRNA, to identify and quantify circRNA expression. We validated the high sensitivity and specificity of our pipeline by performing RNase R treatment and RNA sequencing in samples of AML patients and cell lines. Unsupervised clustering analyses identified 3 distinct circRNA expression-based clusters with different frequencies of clinical and molecular features. After dividing our cohort into training and validation data sets, we identified 4 circRNAs (circCFLAR, circKLHL8, circSMC1A, and circFCHO2) that were prognostic in both data sets; high expression of each prognostic circRNA was associated with longer disease-free, overall, and event-free survival. In multivariable analyses, high circKLHL8 and high circFCHO2 expression were independently associated with better clinical outcome of CN-AML patients, after adjusting for other covariates. To examine the biologic relevance of circRNA expression, we performed knockdown screening experiments in a subset of prognostic and gene mutation-related candidate circRNAs. We identified circFBXW7, but not its linear messenger RNA, as a regulator of the proliferative capacity of AML blasts. In summary, our findings underscore the molecular associations, prognostic significance, and functional relevance of circRNA expression in CN-AML.
Collapse
Affiliation(s)
| | - Stefano Volinia
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Deedra Nicolet
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
- Alliance Statistics and Data Center, The Ohio State University, Columbus, OH
| | - Michał Świerniak
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Andreas Petri
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | - Krzysztof Mrózek
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Marius Bill
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Felice Pepe
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | | | - Allison E Walker
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Andrew J Carroll
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL
| | - Jessica Kohlschmidt
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
- Alliance Statistics and Data Center, The Ohio State University, Columbus, OH
| | | | - Bayard L Powell
- The Comprehensive Cancer Center of Wake Forest University, Winston-Salem, NC
| | - Geoffrey L Uy
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO
| | - Jonathan E Kolitz
- Monter Cancer Center, Hofstra Northwell School of Medicine, Lake Success, NY
| | - Eunice S Wang
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY; and
| | - Sakari Kauppinen
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | | | - Richard M Stone
- Dana-Farber Cancer Institute, Harvard University, Boston, MA
| | - John C Byrd
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | | | - Ramiro Garzon
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
| |
Collapse
|
119
|
Wang J, Kong J, Nie Z, Chen D, Qiang J, Gao W, Chen X. Circular RNA Hsa_circ_0066755 as an Oncogene via sponging miR-651 and as a Promising Diagnostic Biomarker for Nasopharyngeal Carcinoma. Int J Med Sci 2020; 17:1499-1507. [PMID: 32669952 PMCID: PMC7359393 DOI: 10.7150/ijms.47024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/02/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Circular RNAs (circRNAs) represent a class of broad and diversified endogenous RNAs that regulate gene expressions in eukaryotes. Hsa_circ_006675 has been proven as an important circRNA molecule in nasopharyngeal carcinoma (NPC), however, its function still remains elusive. This study aims to discuss the biofunctions of hsa_circ_0066755 in NPC. Methods: We detected the expression levels of hsa_circ_0066755 in NPC patients by quantitative real-time polymerase chain reaction (qRT-PCR), and the corresponding ROC curves were plotted. Functional experiments including CCK-8, colony formation, Transwell assay and Xenograft experiment were conducted. Bioinformatics analysis was performed to seek miRNAs which might have binding sites with hsa_circ_0066755. Luciferase reporter assays were finally carried out to verify the binding sites. Results: We found significant increases of hsa_circ_0066755 in the plasma and tissues of the patients. Moreover, its levels were positively correlated with clinical staging (P=0.019). The receiver operating characteristic (ROC) analysis showed that the area under the curves (AUCs) of tissue and plasma hsa_circ_0066755 for distinguishing NPC from non-cancerous controls were 0.8537 and 0.9044, respectively. Both tissue and plasma hsa_circ_0066755 testing presented a comparable diagnostic accuracy to the magnetic resonance imaging (MRI). Our in-vitro experiment showed that the overexpression of hsa_circ_0066755 facilitated the growth, proliferation, clone formation, invasion and migration of CNE-1 NPC cells, while its down-regulation showed completely opposite effects. The xenograft experiment showed that exogenous hsa_circ_0066755 could significantly enhance the in-vivo tumorigenic ability of CNE-1 cells. Rescue assay further confirmed hsa_circ_0066755 as a tumor facilitator by sponging miR-651. Conclusions: Collectively, this study reported for the first time that hsa_circ_0066755 played a role of oncogene in NPC and could be used as an effective diagnostic marker for NPC, and that hsa_circ_0066755 / miR-651 axis also involved in the progression of NPC.
Collapse
Affiliation(s)
- Jian Wang
- Center of Image Diagnoses, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Jinyu Kong
- Henan Key Laboratory of Cancer Epigenetics; Cancer Institute, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Zhong Nie
- Center of Image Diagnoses, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Diansen Chen
- Center of Image Diagnoses, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Jun Qiang
- Center of Image Diagnoses, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Wanqin Gao
- Center of Image Diagnoses, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Xiaojie Chen
- Medical College, Henan University of Science and Technology, Luoyang 471003, Henan, China
| |
Collapse
|
120
|
Zhang PF, Pei X, Li KS, Jin LN, Wang F, Wu J, Zhang XM. Circular RNA circFGFR1 promotes progression and anti-PD-1 resistance by sponging miR-381-3p in non-small cell lung cancer cells. Mol Cancer 2019; 18:179. [PMID: 31815619 PMCID: PMC6900862 DOI: 10.1186/s12943-019-1111-2] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 11/25/2019] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Immune system evasion, distance tumor metastases, and increased cell proliferation are the main reasons for the progression of non-small cell lung cancer (NSCLC) and the death of NSCLC patients. Dysregulation of circular RNAs plays a critical role in the progression of NSCLC; therefore, further understanding the biological mechanisms of abnormally expressed circRNAs is critical to discovering novel, promising therapeutic targets for NSCLC treatment. METHODS The expression of circular RNA fibroblast growth factor receptor 1 (circFGFR1) in NSCLC tissues, paired nontumor tissues, and cell lines was detected by RT-qPCR. The role of circFGFR1 in NSCLC progression was assessed both in vitro by CCK-8, clonal formation, wound healing, and Matrigel Transwell assays and in vivo by a subcutaneous tumor mouse assay. In vivo circRNA precipitation, RNA immunoprecipitation, and luciferase reporter assays were performed to explore the interaction between circFGFR1 and miR-381-3p. RESULTS Here, we report that circFGFR1 is upregulated in NSCLC tissues, and circFGFR1 expression is associated with deleterious clinicopathological characteristics and poor prognoses for NSCLC patients. Forced circFGFR1 expression promoted the migration, invasion, proliferation, and immune evasion of NSCLC cells. Mechanistically, circFGFR1 could directly interact with miR-381-3p and subsequently act as a miRNA sponge to upregulate the expression of the miR-381-3p target gene C-X-C motif chemokine receptor 4 (CXCR4), which promoted NSCLC progression and resistance to anti-programmed cell death 1 (PD-1)- based therapy. CONCLUSION Taken together, our results suggest the critical role of circFGFR1 in the proliferation, migration, invasion, and immune evasion abilities of NSCLC cells and provide a new perspective on circRNAs during NSCLC progression.
Collapse
Affiliation(s)
- Peng-Fei Zhang
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xu Pei
- Department of Cardiothoracic Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ke-Sang Li
- Department of Hematology and Oncology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Zrhejiang, Ningbo, China
| | - Li-Na Jin
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fei Wang
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jing Wu
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xue-Mei Zhang
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
121
|
Myosin Heavy Chain-Associated RNA Transcripts Promotes Gastric Cancer Progression Through the miR-4529-5p/ROCK2 Axis. Dig Dis Sci 2019; 64:3539-3548. [PMID: 31273599 DOI: 10.1007/s10620-019-05708-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/13/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIM Characterization of genetic aberrations provides novel strategies for diagnosis and treatment of gastric cancer. Accumulating evidence has shown the involvement of long non-coding RNA (lncRNA) in the pathology of gastric cancer, especially in proliferation and metastasis. The aim of this study was to delineate the role of myosin heavy chain-associated RNA transcripts (MHRT), a heart-specific lncRNA, in gastric cancer and to understand the correlation between MHRT, miR-4529-5p, and ROCK2. METHODS To study expression level of MHRT, clinical gastric cancer samples, gastric cancer cell lines, adjacent normal tissues, and gastric epithelial cell lines were used. Additionally, apoptosis, proliferation, and invasion of gastric cancer cells were studied with or without downregulation of MHRT and miR-4529-5p. RESULTS We identified that MHRT was ectopically expressed in gastric cancer tissues and cell lines. Interestingly, similar to the anti-apoptotic role of MHRT in cardiomyocytes, our data illustrated that MHRT inhibits apoptosis of gastric cancer cells. Moreover, we found that MHRT promotes proliferation and invasion of gastric cancer cells in vitro. Importantly, our data revealed that MHRT regulates the expression of miR-4529-5p via direct binding. Additionally, functional experiments illustrated that miR-4529-5p is particularly responsible for MHRT-mediated regulation of apoptosis. Besides, ROCK2 was identified as a downstream target of miR-4529-5p. Additionally, upregulated MHRT promotes the expression of ROCK2 by inhibiting miR-4529-5p. CONCLUSION Our data illustrated a MHRT/miR-4529-5p/ROCK2 regulatory axis that contributes to the tumorigenesis of gastric cancer and provided potential therapeutic targets for precise gastric cancer treatment.
Collapse
|
122
|
Yang F, Hu A, Li D, Wang J, Guo Y, Liu Y, Li H, Chen Y, Wang X, Huang K, Zheng L, Tong Q. Circ-HuR suppresses HuR expression and gastric cancer progression by inhibiting CNBP transactivation. Mol Cancer 2019; 18:158. [PMID: 31718709 PMCID: PMC6852727 DOI: 10.1186/s12943-019-1094-z] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/29/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs), a subclass of non-coding RNAs, play essential roles in tumorigenesis and aggressiveness. Our previous study has identified that circAGO2 drives gastric cancer progression through activating human antigen R (HuR), a protein stabilizing AU-rich element-containing mRNAs. However, the functions and underlying mechanisms of circRNAs derived from HuR in gastric cancer progression remain elusive. METHODS CircRNAs derived from HuR were detected by real-time quantitative RT-PCR and validated by Sanger sequencing. Biotin-labeled RNA pull-down, mass spectrometry, RNA immunoprecipitation, RNA electrophoretic mobility shift, and in vitro binding assays were applied to identify proteins interacting with circRNA. Gene expression regulation was observed by chromatin immunoprecipitation, dual-luciferase assay, real-time quantitative RT-PCR, and western blot assays. Gain- and loss-of-function studies were performed to observe the impacts of circRNA and its protein partner on the growth, invasion, and metastasis of gastric cancer cells in vitro and in vivo. RESULTS Circ-HuR (hsa_circ_0049027) was predominantly detected in the nucleus, and was down-regulated in gastric cancer tissues and cell lines. Ectopic expression of circ-HuR suppressed the growth, invasion, and metastasis of gastric cancer cells in vitro and in vivo. Mechanistically, circ-HuR interacted with CCHC-type zinc finger nucleic acid binding protein (CNBP), and subsequently restrained its binding to HuR promoter, resulting in down-regulation of HuR and repression of tumor progression. CONCLUSIONS Circ-HuR serves as a tumor suppressor to inhibit CNBP-facilitated HuR expression and gastric cancer progression, indicating a potential therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Feng Yang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022 People’s Republic of China
| | - Anpei Hu
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022 People’s Republic of China
| | - Dan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022 People’s Republic of China
| | - Jianqun Wang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022 People’s Republic of China
| | - Yanhua Guo
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022 People’s Republic of China
| | - Yang Liu
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022 People’s Republic of China
| | - Hongjun Li
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022 People’s Republic of China
| | - Yajun Chen
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022 People’s Republic of China
| | - Xiaojing Wang
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022 People’s Republic of China
| | - Kai Huang
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022 People’s Republic of China
| | - Liduan Zheng
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022 People’s Republic of China
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022 People’s Republic of China
| | - Qiangsong Tong
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022 People’s Republic of China
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022 People’s Republic of China
| |
Collapse
|
123
|
Gaffo E, Boldrin E, Dal Molin A, Bresolin S, Bonizzato A, Trentin L, Frasson C, Debatin KM, Meyer LH, Te Kronnie G, Bortoluzzi S. Circular RNA differential expression in blood cell populations and exploration of circRNA deregulation in pediatric acute lymphoblastic leukemia. Sci Rep 2019; 9:14670. [PMID: 31605010 PMCID: PMC6789028 DOI: 10.1038/s41598-019-50864-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/19/2019] [Indexed: 12/21/2022] Open
Abstract
Circular RNAs (circRNAs) are abundantly expressed in the haematopoietic compartment, but knowledge on their diversity among blood cell types is still limited. Nevertheless, emerging data indicate an array of circRNA functions exerted through interactions with other RNAs and proteins, by translation into peptides, and circRNA involvement as regulatory molecules in many biological processes and cancer mechanisms. Interestingly, the role of specific circRNAs in leukemogenesis has been disclosed by a few studies, mostly in acute myeloid leukemia. In this study, circRNA expression in B-cells, T-cells and monocytes of healthy subjects is described, including putative new circRNA genes. Expression comparison considered 6,228 circRNAs and highlighted cell population-specific expression and exon usage patterns. Differential expression has been confirmed by qRT-PCR for circRNAs specific of B-cells (circPAX5, circAFF3, circIL4R, and circSETBP1) or T-cells (circIKZF1, circTNIK, circTXK, and circFBXW7), and for circRNAs from intronic (circBCL2) and intergenic regions that were overexpressed in lymphocytes. Starting from this resource of circRNA expression in mature blood cell populations, targeted examination identified striking and generalized upregulated expression of circPAX5, circPVT1 and circHIPK3 in pediatric B-precursor acute lymphoblastic leukemia, and disclosed circRNAs with variable expression across cytogenetic subtypes.
Collapse
Affiliation(s)
- Enrico Gaffo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Elena Boldrin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Anna Dal Molin
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Silvia Bresolin
- Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Annagiulia Bonizzato
- Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Luca Trentin
- Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Chiara Frasson
- Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Lueder H Meyer
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Geertruij Te Kronnie
- Department of Women's and Children's Health, University of Padova, Padova, Italy
| | | |
Collapse
|
124
|
Cheng Y, Sun H, Wang H, Jiang W, Tang W, Lu C, Zhang W, Chen Z, Lv C. Star Circular RNAs In Human Cancer: Progress And Perspectives. Onco Targets Ther 2019; 12:8249-8261. [PMID: 31632075 PMCID: PMC6789430 DOI: 10.2147/ott.s215390] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 09/20/2019] [Indexed: 12/14/2022] Open
Abstract
Circular RNAs (circRNAs) are a recently discovered subclass of non-coding RNAs (ncRNAs) characterized by a covalently closed loop structure created by reverse splicing. Because they do not have a 5' cap structure and a 3' poly A tail, circRNAs have higher stability, abundance and evolutionary conservation than linear RNA between species. These features produce various potential biological functions of circRNAs, such as miRNA sponges, RNA-binding proteins that form RNA protein complexes. In recent years, more and more studies have shown that circRNAs play a vital role in the occurrence and development of human diseases. At the same time, their enormous potential as a biomarker and therapeutic target is also evolving. The purpose of this review is to summarize existing cancer-associated circRNAs and to try to find circRNAs that are abnormally expressed in many cancers. Therefore, we reviewed previous circRNAs studies related to cancer and selected them by statistics. The eight circRNAs that have the highest frequency in different cancers or involve key pathways are called star circRNAs. Here, we review the classification, features, and functions of emerging star circRNAs, with particular attention to the role of circRNAs in various cancers.
Collapse
Affiliation(s)
- Ye Cheng
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Hanzhi Sun
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Hanjin Wang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Wei Jiang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Weiwei Tang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Chen Lu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Wenling Zhang
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Ziyi Chen
- Department of General Surgery, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu, People’s Republic of China
| | - Chengyu Lv
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| |
Collapse
|
125
|
Zhang C, Qian H, Liu K, Zhao W, Wang L. A Feedback Loop Regulation Of LINC01433 And YAP Promotes Malignant Behavior In Gastric Cancer Cells. Onco Targets Ther 2019; 12:7949-7962. [PMID: 31632054 PMCID: PMC6778481 DOI: 10.2147/ott.s222903] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/01/2019] [Indexed: 12/14/2022] Open
Abstract
Background Gastric cancer (GC) is one of the most common cancers and the second leading cause of cancer-related death worldwide. Long noncoding RNAs (lncRNAs) are associated with GC development and progression. However, the functional roles and underlying mechanism of LINC01433 on GC progression remain elusive. Methods Firstly, the expression of LINC01433 was examined in 76 pairs of primary GC and corresponding adjacent non-tumorous tissues. Next, overexpression and knockdown experiments were conducted in GC cells to explore the effect of LINC01433 on the malignant behaviors of GC cells. Then, the interaction between LINC01433 and YAP was detected by RNA immunoprecipitation (RIP) and RNA pull-down assays. Results We found that LINC01433 was significantly upregulated in GC tissues and cell lines and correlated with poor prognosis. Through gain- and loss-of-function experiments, we demonstrated that LINC01433 promoted proliferation, migration, invasion and chemotherapy resistance in GC cells. Further mechanistic investigation revealed that LINC01433 could stabilize oncoprotein YAP through enhancing the interaction between deubiquitinase USP9X and YAP. LINC01433 decreased the phosphorylation of YAP via suppressing YAP-LATS1 association. Intriguingly, YAP directly bound to LINC01433 promoter region and activated its transcription. Thus, LINC01433 and YAP formed a positive feedback loop. Conclusion Collectively, our study demonstrates that the positive feedback loop between LINC01433 and YAP promotes GC progression, and implies that the LINC01433-YAP feedback loop may be a promising therapeutic target for GC treatment.
Collapse
Affiliation(s)
- Cao Zhang
- The Department of Gastrointestinal Surgery, General Hospital of Ningxia Medical University, Yinchuan City, The Ningxia Hui Autonomous Region, People's Republic of China
| | - Haiquan Qian
- The Department of Gastrointestinal Surgery, General Hospital of Ningxia Medical University, Yinchuan City, The Ningxia Hui Autonomous Region, People's Republic of China
| | - Ke Liu
- The Department of Gastrointestinal Surgery, General Hospital of Ningxia Medical University, Yinchuan City, The Ningxia Hui Autonomous Region, People's Republic of China
| | - Wei Zhao
- The Department of Gastrointestinal Surgery, General Hospital of Ningxia Medical University, Yinchuan City, The Ningxia Hui Autonomous Region, People's Republic of China
| | - Lei Wang
- The Department of Gastrointestinal Surgery, General Hospital of Ningxia Medical University, Yinchuan City, The Ningxia Hui Autonomous Region, People's Republic of China
| |
Collapse
|
126
|
Liu L, Yang X, Li NF, Lin L, Luo H. Circ_0015756 promotes proliferation, invasion and migration by microRNA-7-dependent inhibition of FAK in hepatocellular carcinoma. Cell Cycle 2019; 18:2939-2953. [PMID: 31522588 DOI: 10.1080/15384101.2019.1664223] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: Hepatocellular carcinoma (HCC) afflicts more than half a million people each year worldwide. It was reported that circ_0015756 was up-regulated in HCC, but the mechanism did not extensively studied. Methods: we collected 24 paired cancerous and noncancerous liver tissues surgically resected from HCC patients. HCC cell proliferation, invasion, migration and apoptosis in vitro were evaluated using MTT assay, Transwell assay, scratch test and Annexin-V/PI staining respectively. Interactions between circ_0015756 and miR-7, miR-7 and FAK were further validated by the luciferase reporter assay. Tumor xenografts of HCC cells with circ_0015756 knockdown were established in nude mice. Results: The expression level of circ_0015756 was increased and the expression level of miR-7 was diminished in cancerous liver tissues relative to noncancerous liver tissues. Circ_0015756 knockdown was shown to increase the expression of miR-7, reduce the proliferation, invasion, migration and resistance to apoptosis, and down-regulate the expression of FAK in HCC. We found miR-7 impaired expression of FAK to inhibit HCC cells, suggesting that miR-7 is responsible for the dysfunction of FAK. Importantly, we showed circ_0015756 could up-regulate FAK via targeting miR-7. These in vitro findings were reproduced in vivo that circ_0015756 knockdown decreased HCC xenograft growth. Conclusion: Our present study reveals a model of HCC development that is composed of circ_0015756, miR-7 and FAK. Modulation of their levels exhibits a promise in the treatment of HCC. Abbreviations: HCC: hepatocellular carcinoma; circRNAs: circular RNAs; miRNA/miR: microRNA; miR-7: microRNA-7; FAK: focal adhesion kinase; KLF-4: kruppel like factor 4; DKK1: dickkopf WNT signaling pathway inhibitor 1; ccRCC: clear cell renal cell carcinoma; PI3K: phosphoinositide 3-kinase; Ct: comparative threshold cycle; RPMI: Roswell Park Memorial Institute; FBS: fetal bovine serum; RT: reverse transcription; qPCR: quantitative polymerase chain reaction; RIPA: radioimmunoprecipitation assay; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis; PVDF: polyvinylidene difluoride; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; MTT: 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; DMSO: dimethyl sulfoxide; DMEM: Dulbecco's modified Eagle's medium; PI: propidium iodide; SPF: specific pathogen-free; SD: standard deviation; p-Akt: phosphorylated-Akt; shRNAs: small hairpin RNAs; 3'UTR: 3'-untranslated regions.
Collapse
Affiliation(s)
- Ling Liu
- Department of General Surgery, Xiangya Hospital, Central South University , Changsha , P.R.China
| | - Xin Yang
- Department of General Surgery, The Second Xiangya Hospital, Central South University , Changsha , P.R.China
| | - Nian-Feng Li
- Department of General Surgery, Xiangya Hospital, Central South University , Changsha , P.R.China
| | - Ling Lin
- Department of General Surgery, Xiangya Hospital, Central South University , Changsha , P.R.China
| | - Hui Luo
- Department of General Surgery, Xiangya Hospital, Central South University , Changsha , P.R.China
| |
Collapse
|
127
|
Sun S, Wang W, Luo X, Li Y, Liu B, Li X, Zhang B, Han S, Li X. Circular RNA circ-ADD3 inhibits hepatocellular carcinoma metastasis through facilitating EZH2 degradation via CDK1-mediated ubiquitination. Am J Cancer Res 2019; 9:1695-1707. [PMID: 31497351 PMCID: PMC6726993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023] Open
Abstract
Emerging evidence suggests that circular RNA (circRNA) plays a fundamental role in tumorigenesis. However, its contribution to hepatocellular carcinoma (HCC) malignancy remains largely unknown. Here, we performed circRNA microarray expression profile in four paired HCC and normal tissues, and found that circ-ADD3, a novel circRNA derived from linear ADD3 exon 4 to exon 12, was significantly downregulated in HCC, which was further validated in 112 matched HCC and paracancerous tissues. High circ-ADD3 expression was negatively correlated with vascular invasion, intrahepatic metastasis as well as distant metastasis. Moreover, it was identified as an effective biomarker for diagnosis and prognosis of HCC. Functionally, exogenous expression of circ-ADD3 dramatically weakened HCC cell invasion and metastasis both in vitro and in vivo. Mechanistically, circ-ADD3 was capable of reinforcing the interaction between CDK1 and EZH2, resulting in increased EZH2 ubiquitination and subsequent degradation via phosphorylation at Thr-345 and Thr-487 sites. The decreased EZH2 markedly increased the expression of a cohort of anti-metastatic genes, including circ-ADD3, by reducing H3K27me3 levels on their promoter regions, which formed a regulatory circuit, thereby dampening HCC metastasis. Taken together, our findings unveil the essential role of circ-ADD3 in inhibiting HCC metastasis through regulation of EZH2 stability.
Collapse
Affiliation(s)
- Suofeng Sun
- Department of Gastroenterology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou UniversityZhengzhou 450003, Henan, China
| | - Wei Wang
- Department of Gastroenterology, Changhai Hospital, Second Military Medical UniversityShanghai, China
| | - Xiaoying Luo
- Department of Microbiome Laboratory, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhou, China
| | - Yuan Li
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital Affiliated of Henan University of Traditional Chinese MedicineZhengzhou, Henan, China
| | - Bowei Liu
- Department of Gastroenterology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou UniversityZhengzhou 450003, Henan, China
| | - Xiaofang Li
- Department of Gastroenterology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou UniversityZhengzhou 450003, Henan, China
| | - Bingyong Zhang
- Department of Gastroenterology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou UniversityZhengzhou 450003, Henan, China
| | - Shuangyin Han
- Department of Gastroenterology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou UniversityZhengzhou 450003, Henan, China
| | - Xiuling Li
- Department of Gastroenterology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou UniversityZhengzhou 450003, Henan, China
| |
Collapse
|
128
|
Qi SX, Sun H, Liu H, Yu J, Jiang ZY, Yan P. Role and mechanism of circ-PRKCI in hepatocellular carcinoma. World J Gastroenterol 2019; 25:1964-1974. [PMID: 31086464 PMCID: PMC6487381 DOI: 10.3748/wjg.v25.i16.1964] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The circular RNA circ-PRKCI is an endogenous non-coding RNA that forms a covalently closed ring after reverse splicing, which plays a key role in the occurrence and development of multiple digestive system tumors.
AIM To investigate the role and mechanism of circ-PRKCI in the occurrence and development of hepatocellular carcinoma (HCC).
METHODS This study used real-time polymerase chain reaction to detect the expression of circ-PRKCI in tumor tissues, tumor adjacent tissues, and blood in patients with HCC and other digestive system tumor cells. A series of functional tests were performed to explore whether circ-PRKCI affects the growth of HCC cells and what is its mechanism in HCC. Meanwhile, fluorescence in situ hybridization was used to detect the subcellular localization of circ-PRKCI. Survival analysis was performed to predict the correlation between circ-PRKCI and the prognosis of HCC. Chi-square test and t-test were performed for statistical analyses.
RESULTS The level of circ-PRKCI was significantly higher in HCC tissues than in tumor adjacent tissues, and in HCC cell lines than in cells lines of esophageal, liver, stomach, and colon cancers. A series of functional tests showed that circ-PRKCI substantially inhibited cell apoptosis and promoted cell invasion. It was found that circ-PRKCI can act as the sponge of miRNA-545 to reduce the expression of AKT3 protein. Moreover, the result of survival analysis showed that circ-PRKCI target gene E2F7 can reduce liver cancer patients’ survival rate. And clinical data suggested that the distribution of circ-PRKCI rose with the depth of invasion, lymph node metastasis, distant metastasis, and TNM stage, indicating that circ-PRKCI may affect the survival and prognosis of patients with HCC by regulating E2E7.
CONCLUSION This study explores the role and mechanism of circ-PRKCI in HCC, which provides a new research direction and theoretical basis for the treatment of HCC.
Collapse
Affiliation(s)
- Su-Xia Qi
- Emergency Department, Qingdao Municipal Hospital (Group), Qingdao 266000, Shandong Province, China
| | - Hui Sun
- Department of Clinical Laboratory, Qingdao Municipal Hospital (Group), Qingdao 266000, Shandong Province, China
| | - Hui Liu
- Department of Clinical Laboratory, Qingdao Women's and Children's Hospital, Qingdao 266034, Shandong Province, China
| | - Jing Yu
- Emergency Department, Qingdao Municipal Hospital (Group), Qingdao 266000, Shandong Province, China
| | - Zhi-Yong Jiang
- Department of Clinical Laboratory, Qingdao Haici Medical Group, Qingdao 266034, Shandong Province, China
| | - Ping Yan
- Emergency Department, Qingdao Municipal Hospital (Group), Qingdao 266000, Shandong Province, China
| |
Collapse
|
129
|
Xie B, Zhao Z, Liu Q, Wang X, Ma Z, Li H. CircRNA has_circ_0078710 acts as the sponge of microRNA-31 involved in hepatocellular carcinoma progression. Gene 2019; 683:253-261. [DOI: 10.1016/j.gene.2018.10.043] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/11/2018] [Accepted: 10/16/2018] [Indexed: 01/05/2023]
|