101
|
Shapiro GI, LoRusso P, Dowlati A, T Do K, Jacobson CA, Vaishampayan U, Weise A, Caimi PF, Eder JP, French CA, Labriola-Tompkins E, Boisserie F, Pierceall WE, Zhi J, Passe S, DeMario M, Kornacker M, Armand P. A Phase 1 study of RO6870810, a novel bromodomain and extra-terminal protein inhibitor, in patients with NUT carcinoma, other solid tumours, or diffuse large B-cell lymphoma. Br J Cancer 2020; 124:744-753. [PMID: 33311588 PMCID: PMC7884382 DOI: 10.1038/s41416-020-01180-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/19/2020] [Accepted: 11/05/2020] [Indexed: 01/09/2023] Open
Abstract
Background Bromodomain and extra-terminal (BET) proteins are epigenetic readers that can drive carcinogenesis and therapy resistance. RO6870810 is a novel, small-molecule BET inhibitor. Methods We conducted a Phase 1 study of RO6870810 administered subcutaneously for 21 or 14 days of 28- or 21-day cycles, respectively, in patients with the nuclear protein of the testis carcinoma (NC), other solid tumours, or diffuse large B-cell lymphoma (DLBCL) with MYC deregulation. Results Fatigue (42%), decreased appetite (35%) and injection-site erythema (35%) were the most common treatment-related adverse events. Pharmacokinetic parameters demonstrated linearity over the dose range tested and support once-daily dosing. Pharmacodynamic assessments demonstrated sustained decreases in CD11b levels in peripheral blood mononuclear cells. Objective response rates were 25% (2/8), 2% (1/47) and 11% (2/19) for patients with NC, other solid tumours and DLBCL, respectively. Responding tumours had evidence of deregulated MYC expression. Conclusions This trial establishes the safety, favourable pharmacokinetics, evidence of target engagement and preliminary single-agent activity of RO6870810. Responses in patients with NC, other solid tumours and DLBCL provide proof-of-principle for BET inhibition in MYC-driven cancers. The results support further exploration of RO6870810 as monotherapy and in combinations. Clinical trials registration NCT01987362.
Collapse
Affiliation(s)
- Geoffrey I Shapiro
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Patricia LoRusso
- Early Phase Clinical Trials Program, Yale University Medical Center, New Haven, CT, USA
| | - Afshin Dowlati
- Department of Medicine-Hematology and Oncology, University Hospitals Seidman Cancer Center, Cleveland, OH, USA
| | - Khanh T Do
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Caron A Jacobson
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Amy Weise
- Medical Oncology, Karmanos Cancer Institute, Detroit, MI, USA
| | - Paolo F Caimi
- Department of Medicine-Hematology and Oncology, University Hospitals Seidman Cancer Center, Cleveland, OH, USA
| | - Joseph Paul Eder
- Early Phase Clinical Trials Program, Yale University Medical Center, New Haven, CT, USA
| | - Christopher A French
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Emily Labriola-Tompkins
- Roche Pharma Research and Early Development, Roche Innovation Center New York, New York, NY, USA
| | - Frédéric Boisserie
- Roche Pharma Research and Early Development, Roche Innovation Center New York, New York, NY, USA
| | - William E Pierceall
- Roche Pharma Research and Early Development, Roche Innovation Center New York, New York, NY, USA
| | - Jianguo Zhi
- Roche Pharma Research and Early Development, Roche Innovation Center New York, New York, NY, USA
| | - Sharon Passe
- Roche Pharma Research and Early Development, Roche Innovation Center New York, New York, NY, USA
| | - Mark DeMario
- Roche Pharma Research and Early Development, Roche Innovation Center New York, New York, NY, USA
| | - Martin Kornacker
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Philippe Armand
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
102
|
Stoica AF, Chang CH, Pauklin S. Molecular Therapeutics of Pancreatic Ductal Adenocarcinoma: Targeted Pathways and the Role of Cancer Stem Cells. Trends Pharmacol Sci 2020; 41:977-993. [PMID: 33092892 DOI: 10.1016/j.tips.2020.09.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/01/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers in humans due to late detection and highly metastatic characteristics. PDAC cells vary in their tumorigenic capabilities with the presence of a subset of PDAC cells known as pancreatic cancer stem cells (CSCs), which are more resistant to currently used therapeutics. Here, we describe the role of CSCs and tumour stroma in developing therapeutic strategies for PDAC and suggest that developmental plasticity could be considered a hallmark of cancers. We provide an overview of the molecular targets in PDAC treatments, including targeted therapies of cellular processes such as proliferation, evasion of growth suppressors, activating metastasis, and metabolic effects. Since PDAC is an inflammation-driven cancer, we also revisit therapeutic strategies targeting inflammation and immunotherapy. Lastly, we suggest that targeting epigenetic mechanisms opens therapeutic routes for heterogeneous cancer cell populations, including CSCs.
Collapse
Affiliation(s)
- Andrei-Florian Stoica
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Oxford OX3 7LD, UK
| | - Chao-Hui Chang
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Oxford OX3 7LD, UK
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Oxford OX3 7LD, UK.
| |
Collapse
|
103
|
Li Z, Lim SL, Tao Y, Li X, Xie Y, Yang C, Zhang Z, Jiang Y, Zhang X, Cao X, Wang H, Qian G, Wu Y, Li M, Fang F, Liu Y, Fu M, Ding X, Zhu Z, Lv H, Lu J, Xiao S, Hu S, Pan J. PROTAC Bromodomain Inhibitor ARV-825 Displays Anti-Tumor Activity in Neuroblastoma by Repressing Expression of MYCN or c-Myc. Front Oncol 2020; 10:574525. [PMID: 33324552 PMCID: PMC7726414 DOI: 10.3389/fonc.2020.574525] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
Neuroblastoma (NB) is one of the most common solid tumors in childhood. To date, targeting MYCN, a well-established driver gene in high-risk neuroblastoma, is still challenging. In recent years, inhibition of bromodomain and extra terminal (BET) proteins shows great potential in multiple of Myc-driven tumors. ARV-825 is a novel BET inhibitor using proteolysis-targeting chimera (PROTAC) technology which degrades target proteins by the proteasome. In this study, we investigated the effect of ARV-825 in neuroblastoma in vitro and in vivo. Our results showed that ARV-825 treatment robustly induced proliferative suppression, cell cycle arrest, and apoptosis in NB cells. Moreover, ARV-825 efficiently depleted BET protein expression, subsequently repressing the expression of MYCN or c-Myc. In the NB xenograft model, ARV-825 profoundly reduced tumor growth and led to the downregulation of BRD4 and MYCN expression in mice. Taken together, these findings provide evidence that PROTAC BET inhibitor is an efficient way to achieve MYCN/c-Myc manipulation, and ARV-825 can be used as a potential therapeutic strategy for the treatment of neuroblastoma.
Collapse
Affiliation(s)
- Zhiheng Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China.,Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Su Lin Lim
- Department of Internal Medicine, Saint Michael's Medical Center, Newark, NJ, United States
| | - Yanfang Tao
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Xiaolu Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Yi Xie
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Chun Yang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Zimu Zhang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - You Jiang
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, China
| | - Xianbing Zhang
- Department of Pediatric Surgery, The First People's Hospital of Kunshan, Suzhou, China
| | - Xu Cao
- Department of Pediatric Surgery, Children's Hospital of Soochow University, Suzhou, China
| | - Hairong Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Guanghui Qian
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Yi Wu
- Department of Pathology, Children's Hospital of Soochow University, Suzhou, China
| | - Mei Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Fang Fang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Ying Liu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Mingcui Fu
- Department of Pediatric Surgery, Children's Hospital of Soochow University, Suzhou, China
| | - Xin Ding
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, China
| | - Zhenghong Zhu
- Department of Burn and Plastic Surgery, Children's Hospital of Soochow University, Suzhou, China
| | - Haitao Lv
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, China
| | - Jun Lu
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, China
| | - Sheng Xiao
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Shaoyan Hu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China.,Department of Hematology, Children's Hospital of Soochow University, Suzhou, China
| | - Jian Pan
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
104
|
Genthon A, Killian M, Mertz P, Cathebras P, Gimenez De Mestral S, Guyotat D, Chalayer E. [Myelofibrosis: A review]. Rev Med Interne 2020; 42:101-109. [PMID: 33243417 DOI: 10.1016/j.revmed.2020.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 11/28/2022]
Abstract
Myelofibrosis is a BCR-ABL1-negative chronic myeloproliferative neoplasm that includes primary myelofibrosis, post-polycythemia vera myelofibrosis, and post-essential thrombocythemia myelofibrosis. It is characterized by stem cell-derived clonal proliferation that is often, but not always, accompanied by somatic mutations, which are classified into driver mutations (JAK2, CALR, or MPL), subclonal mutations and fibrosis on bone marrow biopsy. Myelofibrosis commonly demonstrates splenomegaly, constitutional symptoms, anemia, thrombocytosis, or thrombocytopenia. Patients may also be asymptomatic. Complications as thromboembolic or hemorrhagic events can reveal the disease. Primary myelofibrosis is the least common myeloproliferative neoplasm but is associated with poor survival and acute leukemic transformation. In contrast to the significant progress made in understanding the disease's pathogenesis, treatment for myelofibrosis remains largely palliative. The JAK2 inhibitor, ruxolitinib is not sufficient in eliminating the underlying myeloid progenitor clone, as disease inevitably returns with therapy discontinuation. Allogeneic hematopoietic stem cell transplantation is the only therapeutic option that offers potential cure. The development of novel treatment strategies aimed at slowing or even reversing disease progression, prolonging patient survival and preventing evolution to blast-phase are still lacking.
Collapse
Affiliation(s)
- A Genthon
- Service d'hématologie clinique et de thérapie cellulaire, hôpital Saint-Antoine, AP-HP, Paris, France; Médecine Sorbonne université, Paris, France
| | - M Killian
- Service de médecine interne, hôpital Nord, CHU de Saint-Étienne, 42055 Saint-Étienne cedex 02, France
| | - P Mertz
- Service de rhumatologie, hôpitaux universitaires de Strasbourg, Strasbourg, France; Inserm UMR_S1109, laboratoire d'immunorhumatologie moléculaire, Centre national de référence des maladies systémiques et autoimmunes rares Est Sud-Ouest (RESO), université de Strasbourg, 67000 Strasbourg, France
| | - P Cathebras
- Service de médecine interne, hôpital Nord, CHU de Saint-Étienne, 42055 Saint-Étienne cedex 02, France
| | - S Gimenez De Mestral
- Pathology department, Sorbonne université, hôpital Saint-Antoine, AP-HP, 75012 Paris, France
| | - D Guyotat
- Département d'hématologie et thérapie cellulaire, institut de cancérologie Lucien-Neuwirth, Saint-Étienne, France
| | - E Chalayer
- Département d'hématologie et thérapie cellulaire, institut de cancérologie Lucien-Neuwirth, Saint-Étienne, France; Inserm, SAINBIOSE, U1059, dysfonction vasculaire et hémostase, université Jean-Monnet, Saint-Étienne, France.
| |
Collapse
|
105
|
Lee D, Lee DY, Hwang YS, Seo HR, Lee SA, Kwon J. The Bromodomain Inhibitor PFI-3 Sensitizes Cancer Cells to DNA Damage by Targeting SWI/SNF. Mol Cancer Res 2020; 19:900-912. [PMID: 33208498 DOI: 10.1158/1541-7786.mcr-20-0289] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 09/17/2020] [Accepted: 11/13/2020] [Indexed: 11/16/2022]
Abstract
Many chemotherapeutic drugs produce double-strand breaks (DSB) on cancer cell DNA, thereby inducing cell death. However, the DNA damage response (DDR) enables cancer cells to overcome DNA damage and escape cell death, often leading to therapeutic resistance and unsuccessful outcomes. It is therefore important to develop inhibitors that target DDR proteins to render cancer cells hypersensitive to DNA damage. Here, we investigated the applicability of PFI-3, a recently developed bromodomain inhibitor specifically targeting the SWI/SNF chromatin remodeler that functions to promote DSB repair, in cancer treatment. We verified that PFI-3 effectively blocks chromatin binding of its target bromodomains and dissociates the corresponding SWI/SNF proteins from chromatin. We then found that, while having little toxicity as a single agent, PFI-3 synergistically sensitizes several human cancer cell lines to DNA damage induced by chemotherapeutic drugs such as doxorubicin. This PFI-3 activity occurs only for the cancer cells that require SWI/SNF for DNA repair. Our mechanism studies show that PFI-3 exerts the DNA damage-sensitizing effect by directly blocking SWI/SNF's chromatin binding, which leads to defects in DSB repair and aberrations in damage checkpoints, eventually resulting in increase of cell death primarily via necrosis and senescence. This work therefore demonstrates the activity of PFI-3 to sensitize cancer cells to DNA damage and its mechanism of action via SWI/SNF targeting, providing an experimental rationale for developing PFI-3 as a sensitizing agent in cancer chemotherapy. IMPLICATIONS: This study, revealing the activity of PFI-3 to sensitize cancer cells to chemotherapeutic drugs, provides an experimental rationale for developing this bromodomain inhibitor as a sensitizing agent in cancer chemotherapy.
Collapse
Affiliation(s)
- Daye Lee
- Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Republic of South Korea
| | - Da-Yeon Lee
- Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Republic of South Korea
| | - You-Son Hwang
- Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Republic of South Korea
| | - Hye-Ran Seo
- Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Republic of South Korea
| | - Shin-Ai Lee
- Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Republic of South Korea
| | - Jongbum Kwon
- Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Republic of South Korea.
| |
Collapse
|
106
|
Chen NC, Borthakur G, Pemmaraju N. Bromodomain and extra-terminal (BET) inhibitors in treating myeloid neoplasms. Leuk Lymphoma 2020; 62:528-537. [DOI: 10.1080/10428194.2020.1842399] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Natalie Cheng Chen
- Department of Internal Medicine, The University of Texas School of Health Sciences at Houston, Houston, TX, USA
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naveen Pemmaraju
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
107
|
Zaib S, Khan I. Synthetic and medicinal chemistry of phthalazines: Recent developments, opportunities and challenges. Bioorg Chem 2020; 105:104425. [PMID: 33157344 DOI: 10.1016/j.bioorg.2020.104425] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/22/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022]
Abstract
Fused diaza-heterocycles constitute the core structure of numerous bioactive natural products and effective therapeutic drugs. Among them, phthalazines have been recognized as remarkable structural leads in medicinal chemistry due to their wide application in pharmaceutical and agrochemical industries. Accessing such challenging pharmaceutical agents/drug candidates with high chemical complexity through synthetically efficient approaches remains an attractive goal in the contemporary medicinal chemistry and drug discovery arena. In this review, we focus on the recent developments in the synthetic routes towards the generation of phthalazine-based active pharmaceutical ingredients and their biological potential against various targets. The general reaction scope of these innovative and easily accessible strategies was emphasized focusing on the functional group tolerance, substrate and coupling partner compatibility/limitation, the choice of catalyst, and product diversification. These processes were also accompanied by the mechanistic insights where deemed appropriate to demonstrate meaningful information. Moreover, the rapid examination of the structure-activity relationship analyses around the phthalazine core enabled by the pharmacophore replacement/integration revealed the generation of robust, efficient, and more selective compounds with pronounced biological effects. A large variety of in silico methods and ADME profiling tools were also employed to provide a global appraisal of the pharmacokinetics profile of diaza-heterocycles. Thus, the discovery of new structural leads offers the promise of improving treatments for various tropical diseases such as tuberculosis, leishmaniasis, malaria, Chagas disease, among many others including various cancers, atherosclerosis, HIV, inflammatory, and cardiovascular diseases. We hope this review would serve as an informative collection of structurally diverse molecules enabling the generation of mature, high-quality, and innovative routes to support the drug discovery endeavors.
Collapse
Affiliation(s)
- Sumera Zaib
- Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore 54590, Pakistan
| | - Imtiaz Khan
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.
| |
Collapse
|
108
|
Vincenzi M, Mercurio FA, Leone M. Protein Interaction Domains and Post-Translational Modifications: Structural Features and Drug Discovery Applications. Curr Med Chem 2020; 27:6306-6355. [DOI: 10.2174/0929867326666190620101637] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/16/2019] [Accepted: 05/22/2019] [Indexed: 12/15/2022]
Abstract
Background:
Many pathways regarding healthy cells and/or linked to diseases onset and progression depend on large assemblies including multi-protein complexes. Protein-protein interactions may occur through a vast array of modules known as protein interaction domains (PIDs).
Objective:
This review concerns with PIDs recognizing post-translationally modified peptide sequences and intends to provide the scientific community with state of art knowledge on their 3D structures, binding topologies and potential applications in the drug discovery field.
Method:
Several databases, such as the Pfam (Protein family), the SMART (Simple Modular Architecture Research Tool) and the PDB (Protein Data Bank), were searched to look for different domain families and gain structural information on protein complexes in which particular PIDs are involved. Recent literature on PIDs and related drug discovery campaigns was retrieved through Pubmed and analyzed.
Results and Conclusion:
PIDs are rather versatile as concerning their binding preferences. Many of them recognize specifically only determined amino acid stretches with post-translational modifications, a few others are able to interact with several post-translationally modified sequences or with unmodified ones. Many PIDs can be linked to different diseases including cancer. The tremendous amount of available structural data led to the structure-based design of several molecules targeting protein-protein interactions mediated by PIDs, including peptides, peptidomimetics and small compounds. More studies are needed to fully role out, among different families, PIDs that can be considered reliable therapeutic targets, however, attacking PIDs rather than catalytic domains of a particular protein may represent a route to obtain selective inhibitors.
Collapse
Affiliation(s)
- Marian Vincenzi
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via Mezzocannone 16, 80134 Naples, Italy
| | - Flavia Anna Mercurio
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via Mezzocannone 16, 80134 Naples, Italy
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via Mezzocannone 16, 80134 Naples, Italy
| |
Collapse
|
109
|
Histone Deacetylase Inhibitors as Multitarget-Directed Epi-Drugs in Blocking PI3K Oncogenic Signaling: A Polypharmacology Approach. Int J Mol Sci 2020; 21:ijms21218198. [PMID: 33147762 PMCID: PMC7662987 DOI: 10.3390/ijms21218198] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/29/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
Genetic mutations and aberrant epigenetic alterations are the triggers for carcinogenesis. The emergence of the drugs targeting epigenetic aberrations has provided a better outlook for cancer treatment. Histone deacetylases (HDACs) are epigenetic modifiers playing critical roles in numerous key biological functions. Inappropriate expression of HDACs and dysregulation of PI3K signaling pathway are common aberrations observed in human diseases, particularly in cancers. Histone deacetylase inhibitors (HDACIs) are a class of epigenetic small-molecular therapeutics exhibiting promising applications in the treatment of hematological and solid malignancies, and in non-neoplastic diseases. Although HDACIs as single agents exhibit synergy by inhibiting HDAC and the PI3K pathway, resistance to HDACIs is frequently encountered due to activation of compensatory survival pathway. Targeted simultaneous inhibition of both HDACs and PI3Ks with their respective inhibitors in combination displayed synergistic therapeutic efficacy and encouraged the development of a single HDAC-PI3K hybrid molecule via polypharmacology strategy. This review provides an overview of HDACs and the evolution of HDACs-based epigenetic therapeutic approaches targeting the PI3K pathway.
Collapse
|
110
|
Horn V, Jongkees SAK, van Ingen H. Mimicking the Nucleosomal Context in Peptide-Based Binders of a H3K36me Reader Increases Binding Affinity While Altering the Binding Mode. Molecules 2020; 25:molecules25214951. [PMID: 33114657 PMCID: PMC7662849 DOI: 10.3390/molecules25214951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 11/29/2022] Open
Abstract
Targeting of proteins in the histone modification machinery has emerged as a promising new direction to fight disease. The search for compounds that inhibit proteins that readout histone modification has led to several new epigenetic drugs, mostly for proteins involved in recognition of acetylated lysines. However, this approach proved to be a challenging task for methyllysine readers, which typically feature shallow binding pockets. Moreover, reader proteins of trimethyllysine K36 on the histone H3 (H3K36me3) not only bind the methyllysine but also the nucleosomal DNA. Here, we sought to find peptide-based binders of H3K36me3 reader PSIP1, which relies on DNA interactions to tightly bind H3K36me3 modified nucleosomes. We designed several peptides that mimic the nucleosomal context of H3K36me3 recognition by including negatively charged Glu-rich regions. Using a detailed NMR analysis, we find that addition of negative charges boosts binding affinity up to 50-fold while decreasing binding to the trimethyllysine binding pocket. Since screening and selection of compounds for reader domains is typically based solely on affinity measurements due to their lack of enzymatic activity, our case highlights the need to carefully control for the binding mode, in particular for the challenging case of H3K36me3 readers.
Collapse
Affiliation(s)
- Velten Horn
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502 Leiden, The Netherlands;
| | - Seino A. K. Jongkees
- Chemical Biology and Drug Discovery Group, Utrecht University, P.O. Box 80082 Utrecht, The Netherlands;
| | - Hugo van Ingen
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502 Leiden, The Netherlands;
- NMR Group, Bijvoet Centre for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Correspondence: ; Tel.: +31-30-253-9934
| |
Collapse
|
111
|
Synergic Crosstalk between Inflammation, Oxidative Stress, and Genomic Alterations in BCR-ABL-Negative Myeloproliferative Neoplasm. Antioxidants (Basel) 2020; 9:antiox9111037. [PMID: 33114087 PMCID: PMC7690801 DOI: 10.3390/antiox9111037] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/06/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
Philadelphia-negative chronic myeloproliferative neoplasms (MPNs) have recently been revealed to be related to chronic inflammation, oxidative stress, and the accumulation of reactive oxygen species. It has been proposed that MPNs represent a human inflammation model for tumor advancement, in which long-lasting inflammation serves as the driving element from early tumor stage (over polycythemia vera) to the later myelofibrotic cancer stage. It has been theorized that the starting event for acquired stem cell alteration may occur after a chronic inflammation stimulus with consequent myelopoietic drive, producing a genetic stem cell insult. When this occurs, the clone itself constantly produces inflammatory components in the bone marrow; these elements further cause clonal expansion. In BCR-ABL1-negative MPNs, the driver mutations include JAK 2, MPL, and CALR. Transcriptomic studies of hematopoietic stem cells from subjects with driver mutations have demonstrated the upregulation of inflammation-related genes capable of provoking the development of an inflammatory state. The possibility of acting on the inflammatory state as a therapeutic approach in MPNs appears promising, in which an intervention operating on the pathways that control the synthesis of cytokines and oxidative stress could be effective in reducing the possibility of leukemic progression and onset of complications.
Collapse
|
112
|
Abstract
Large DNA-encoded libraries of cyclic peptides are emerging as powerful sources of molecules to tackle challenging drug targets. The structural and functional diversity contained within these libraries is, however, little explored. Here we demonstrate that one such library contains members that use unexpectedly diverse mechanisms to recognize the same surface on the same target proteins with high affinity and specificity. This range of binding modes is much larger than observed in natural ligands of the same proteins, demonstrating the power and versatility of the technology. Our data also reveal opportunities for the development of more sophisticated approaches to achieving specificity when trying to selectively target one member of a family of closely related proteins. Cyclic peptide library screening technologies show immense promise for identifying drug leads and chemical probes for challenging targets. However, the structural and functional diversity encoded within such libraries is largely undefined. We have systematically profiled the affinity, selectivity, and structural features of library-derived cyclic peptides selected to recognize three closely related targets: the acetyllysine-binding bromodomain proteins BRD2, -3, and -4. We report affinities as low as 100 pM and specificities of up to 106-fold. Crystal structures of 13 peptide–bromodomain complexes reveal remarkable diversity in both structure and binding mode, including both α-helical and β-sheet structures as well as bivalent binding modes. The peptides can also exhibit a high degree of structural preorganization. Our data demonstrate the enormous potential within these libraries to provide diverse binding modes against a single target, which underpins their capacity to yield highly potent and selective ligands.
Collapse
|
113
|
Maser T, Zagorski J, Kelly S, Ostrander A, Goodyke A, Nagulapally A, Bond J, Park Y, Saulnier Sholler G. The MDM2 inhibitor CGM097 combined with the BET inhibitor OTX015 induces cell death and inhibits tumor growth in models of neuroblastoma. Cancer Med 2020; 9:8144-8158. [PMID: 33034426 PMCID: PMC7643634 DOI: 10.1002/cam4.3407] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 07/03/2020] [Accepted: 07/05/2020] [Indexed: 01/04/2023] Open
Abstract
Background Neuroblastoma (NB) is the most common extracranial solid tumor in infants and children, with amplification of the oncogene MYCN being a hallmark of high‐risk disease and poor prognosis. Although less frequent, overexpression of MYC is similarly an indicator of poor prognosis. Most NB tumors initially respond to chemotherapy, however, most will relapse, resulting in chemoresistant disease. After relapse, there is growing evidence of p53 inactivation. MYC/MYCN and MDM2 have been shown to interact and contribute to NB growth and disease progression. MDM2 inhibitors and Bromodomain and Extra‐Terminal domain (BET) inhibitors have both shown promise in treating NB by increasing the expression of p53 and decreasing MYC/MYCN expression, respectively. Our study focuses on the combined treatment of a MDM2 inhibitor (CGM097) with a BET inhibitor (OTX015) in neuroblastoma. Methods Two p53 wild‐type and two p53 mutant established neuroblastoma cells lines were used to test this combination. Ray design assays were used to test whether this combination was synergistically cytotoxic to NB cells. Western blots were performed to check signaling pathways of interest after drug treatment. IncuCyte imaging and flow cytometry were utilized to quantify the apoptotic and cytostatic effects of these drugs on NB cells. In vivo studies were carried out to test the antitumor effect of this combination in a living host. Results The combination of CGM097 and OTX015 resulted in p53 activation, decreased expression of MYC family proteins and a subsequent synergistic increase in NB cell death. Conclusion This study warrants further investigation into the combination of MDM2 inhibitors and BET inhibitors for the treatment in NB.
Collapse
Affiliation(s)
- Tyler Maser
- Pediatric Oncology Translational Research Program, Helen DeVos Children's Hospital, Grand Rapids, MI, USA
| | - Joseph Zagorski
- Pediatric Oncology Translational Research Program, Helen DeVos Children's Hospital, Grand Rapids, MI, USA
| | - Shannon Kelly
- Pediatric Oncology Translational Research Program, Helen DeVos Children's Hospital, Grand Rapids, MI, USA
| | - Anna Ostrander
- Pediatric Oncology Translational Research Program, Helen DeVos Children's Hospital, Grand Rapids, MI, USA
| | - Austin Goodyke
- Pediatric Oncology Translational Research Program, Helen DeVos Children's Hospital, Grand Rapids, MI, USA
| | - Abhinav Nagulapally
- Pediatric Oncology Translational Research Program, Helen DeVos Children's Hospital, Grand Rapids, MI, USA
| | - Jeffrey Bond
- Pediatric Oncology Translational Research Program, Helen DeVos Children's Hospital, Grand Rapids, MI, USA
| | - Yeonhee Park
- Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Giselle Saulnier Sholler
- Pediatric Oncology Translational Research Program, Helen DeVos Children's Hospital, Grand Rapids, MI, USA.,College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| |
Collapse
|
114
|
French SL, Vijey P, Karhohs KW, Wilkie AR, Horin LJ, Ray A, Posorske B, Carpenter AE, Machlus KR, Italiano JE. High-content, label-free analysis of proplatelet production from megakaryocytes. J Thromb Haemost 2020; 18:2701-2711. [PMID: 32662223 PMCID: PMC7988437 DOI: 10.1111/jth.15012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 07/03/2020] [Accepted: 07/09/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND The mechanisms that regulate platelet biogenesis remain unclear; factors that trigger megakaryocytes (MKs) to initiate platelet production are poorly understood. Platelet formation begins with proplatelets, which are cellular extensions originating from the MK cell body. OBJECTIVES Proplatelet formation is an asynchronous and dynamic process that poses unique challenges for researchers to accurately capture and analyze. We have designed an open-source, high-content, high-throughput, label-free analysis platform. METHODS Phase-contrast images of live, primary MKs are captured over a 24-hour period. Pixel-based machine-learning classification done by ilastik generates probability maps of key cellular features (circular MKs and branching proplatelets), which are processed by a customized CellProfiler pipeline to identify and filter structures of interest based on morphology. A subsequent reinforcement classification, by CellProfiler Analyst, improves the detection of cellular structures. RESULTS This workflow yields the percent of proplatelet production, area, count of proplatelets and MKs, and other statistics including skeletonization information for measuring proplatelet branching and length. We propose using a combination of these analyzed metrics, in particular the area measurements of MKs and proplatelets, when assessing in vitro proplatelet production. Accuracy was validated against manually counted images and an existing algorithm. We then used the new platform to test compounds known to cause thrombocytopenia, including bromodomain inhibitors, and uncovered previously unrecognized effects of drugs on proplatelet formation, thus demonstrating the utility of our analysis platform. CONCLUSION This advance in creating unbiased data analysis will increase the scale and scope of proplatelet production studies and potentially serve as a valuable resource for investigating molecular mechanisms of thrombocytopenia.
Collapse
Affiliation(s)
- Shauna L. French
- Division of Hematology, Brigham and Women’s Hospital; Boston, MA, USA 02115
- Department of Medicine, Harvard Medical School; Boston, MA, USA 02115
| | - Prakrith Vijey
- Division of Hematology, Brigham and Women’s Hospital; Boston, MA, USA 02115
| | - Kyle W. Karhohs
- Imaging Platform, Broad Institute of Harvard and MIT; Cambridge, MA, USA 02142
| | - Adrian R. Wilkie
- Division of Hematology, Brigham and Women’s Hospital; Boston, MA, USA 02115
- Department of Medicine, Harvard Medical School; Boston, MA, USA 02115
| | - Lillian J. Horin
- Department of Medicine, Harvard Medical School; Boston, MA, USA 02115
- Department of Systems Biology, Harvard Medical School; Boston, MA, USA 02115
| | - Anjana Ray
- Division of Hematology, Brigham and Women’s Hospital; Boston, MA, USA 02115
| | - Benjamin Posorske
- Division of Hematology, Brigham and Women’s Hospital; Boston, MA, USA 02115
| | - Anne E. Carpenter
- Imaging Platform, Broad Institute of Harvard and MIT; Cambridge, MA, USA 02142
| | - Kellie R. Machlus
- Division of Hematology, Brigham and Women’s Hospital; Boston, MA, USA 02115
- Department of Medicine, Harvard Medical School; Boston, MA, USA 02115
| | - Joseph E. Italiano
- Division of Hematology, Brigham and Women’s Hospital; Boston, MA, USA 02115
- Department of Medicine, Harvard Medical School; Boston, MA, USA 02115
- Vascular Biology Program, Department of Surgery; Boston Children’s Hospital; Boston, MA, USA 02115
| |
Collapse
|
115
|
Duan Q, Huang FL, Li SJ, Chen KZ, Gong L, Qi J, Yang ZH, Yang TL, Li F, Li CQ. BET proteins inhibitor JQ-1 impaired the extinction of remote auditory fear memory: An effect mediated by insulin like growth factor 2. Neuropharmacology 2020; 177:108255. [DOI: 10.1016/j.neuropharm.2020.108255] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/10/2020] [Accepted: 07/25/2020] [Indexed: 12/11/2022]
|
116
|
Park SG, Lee D, Seo HR, Lee SA, Kwon J. Cytotoxic activity of bromodomain inhibitor NVS-CECR2-1 on human cancer cells. Sci Rep 2020; 10:16330. [PMID: 33004947 PMCID: PMC7529788 DOI: 10.1038/s41598-020-73500-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023] Open
Abstract
Bromodomain (BRD), a protein module that recognizes acetylated lysine residues on histones and other proteins, has recently emerged as a promising therapeutic target for human diseases such as cancer. While most of the studies have been focused on inhibitors against BRDs of the bromo- and extra-terminal domain (BET) family proteins, non-BET family BRD inhibitors remain largely unexplored. Here, we investigated a potential anticancer activity of the recently developed non-BET family BRD inhibitor NVS-CECR2-1 that targets the cat eye syndrome chromosome region, candidate 2 (CECR2). We show that NVS-CECR2-1 inhibits chromatin binding of CECR2 BRD and displaces CECR2 from chromatin within cells. NVS-CECR2-1 exhibits cytotoxic activity against various human cancer cells, killing SW48 colon cancer cells in particular with a submicromolar half maximum inhibition value mainly by inducing apoptosis. The sensitivity of the cancer cells to NVS-CECR2-1 is reduced by CECR2 depletion, suggesting that NVS-CECR2-1 exerts its activity by targeting CECR2. Interestingly, our data show that NVS-CECR2-1 also kills cancer cells by CECR2-independent mechanism. This study reports for the first time the cancer cell cytotoxic activity for NVS-CECR2-1 and provides a possibility of this BRD inhibitor to be developed as an anticancer therapeutic agent.
Collapse
Affiliation(s)
- Seul Gi Park
- Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Daye Lee
- Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Hye-Ran Seo
- Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Shin-Ai Lee
- Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea.,Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892-4263, USA
| | - Jongbum Kwon
- Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea.
| |
Collapse
|
117
|
Mita MM, Mita AC. Bromodomain inhibitors a decade later: a promise unfulfilled? Br J Cancer 2020; 123:1713-1714. [PMID: 32989227 PMCID: PMC7722711 DOI: 10.1038/s41416-020-01079-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/04/2020] [Accepted: 09/04/2020] [Indexed: 12/19/2022] Open
Abstract
Over the last decade, bromodomain inhibitors have emerged as a promising class of anticancer drugs. However, the clinical progress of these agents has faced significant obstacles, which precluded their regulatory approval. This editorial will review the challenges and opportunities associated with the development of bromodomain inhibitors.
Collapse
Affiliation(s)
- Monica M Mita
- The Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alain C Mita
- The Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
118
|
A review on kinases phosphorylating the carboxyl-terminal domain of RNA polymerase II-Biological functions and inhibitors. Bioorg Chem 2020; 104:104318. [PMID: 33142427 DOI: 10.1016/j.bioorg.2020.104318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/18/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022]
Abstract
RNA polymerase II (RNA Pol II) plays a major role in gene transcription for eukaryote. One of the major modes of regulation in eukaryotes is the phosphorylation of the carboxyl-terminal domain (CTD) of RNA Pol II. The current study found that the phosphorylation of Ser2, Ser5, Ser7, Thr4 and Tyr1 among the heptapeptide repeats of CTD plays a key role in the transcription process. We therefore review the biological functions and inhibitors of kinases that phosphorylate these amino acid residues including transcriptional cyclin-dependent protein kinases (CDKs), bromodomain-containing protein 4 (BRD4), Polo-like kinases 3 (Plk3) and Abelson murine leukemia viral oncogene 1 and 2 (c-Abl1/2).
Collapse
|
119
|
Sugihara E, Hashimoto N, Osuka S, Shimizu T, Ueno S, Okazaki S, Yaguchi T, Kawakami Y, Kosaki K, Sato TA, Okamoto S, Saya H. The Inhibitor of Apoptosis Protein Livin Confers Resistance to Fas-Mediated Immune Cytotoxicity in Refractory Lymphoma. Cancer Res 2020; 80:4439-4450. [PMID: 32928920 DOI: 10.1158/0008-5472.can-19-3993] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 07/09/2020] [Accepted: 08/26/2020] [Indexed: 11/16/2022]
Abstract
Death receptor Fas-mediated apoptosis not only eliminates nonspecific and autoreactive B cells but also plays a major role in antitumor immunity. However, the possible mechanisms underlying impairment of Fas-mediated induction of apoptosis during lymphomagenesis remain unknown. In this study, we employed our developed syngeneic lymphoma model to demonstrate that downregulation of Fas is required for both lymphoma development and lymphoma cell survival to evade immune cytotoxicity. CD40 signal activation significantly restored Fas expression and thereby induced apoptosis after Fas ligand treatment in both mouse and human lymphoma cells. Nevertheless, certain human lymphoma cell lines were found to be resistant to Fas-mediated apoptosis, with Livin (melanoma inhibitor of apoptosis protein; ML-IAP) identified as a driver of such resistance. High expression of Livin and low expression of Fas were associated with poor prognosis in patients with aggressive non-Hodgkin's lymphoma. Livin expression was tightly driven by bromodomain and extraterminal (BET) proteins BRD4 and BRD2, suggesting that Livin expression is epigenetically regulated in refractory lymphoma cells to protect them from Fas-mediated apoptosis. Accordingly, the combination of CD40-mediated Fas restoration with targeting of the BET proteins-Livin axis may serve as a promising immunotherapeutic strategy for refractory B-cell lymphoma. SIGNIFICANCE: These findings yield insights into identifying risk factors in refractory lymphoma and provide a promising therapy for tumors resistant to Fas-mediated antitumor immunity. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/20/4439/F1.large.jpg.
Collapse
Affiliation(s)
- Eiji Sugihara
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan. .,Research and Development Center for Precision Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Norisato Hashimoto
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan.,Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Satoru Osuka
- Department of Neurosurgery, Wallace Tumor Institute, University of Alabama at Birmingham, Birmingham, Alabama
| | - Takatsune Shimizu
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan.,Department of Pathophysiology, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Tokyo, Japan
| | - Sayaka Ueno
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan.,Section of Translational Research, Hyogo Cancer Center, Hyogo, Japan
| | - Shogo Okazaki
- Division of Development and Aging, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Tomonori Yaguchi
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Yutaka Kawakami
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan.,Department of Immunology, School of Medicine, International University of Health and Welfare, Tokyo, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Taka-Aki Sato
- Research and Development Center for Precision Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shinichiro Okamoto
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
120
|
BRD4/8/9 are prognostic biomarkers and associated with immune infiltrates in hepatocellular carcinoma. Aging (Albany NY) 2020; 12:17541-17567. [PMID: 32927435 PMCID: PMC7521508 DOI: 10.18632/aging.103768] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/29/2020] [Indexed: 01/24/2023]
Abstract
Bromodomain (BRD)-containing proteins are a class of epigenetic readers with unique recognition for N-acetyl-lysine in histones and functions of gene transcription and chromatin modification, known to be critical in various cancers. However, little is known about the roles of distinct BRD-containing protein genes in hepatocellular carcinoma (HCC). Most recently, we investigated the transcriptional and survival data of BRD1, BRD2, BRD3, BRD4, BRD7, BRD8, BRD9 in HCC patients through ONCOMINE, UALCAN, Human Protein Atlas, GEPIA, cBioPortal, STRING, TIMER databases. BRD1/2/3/4/7/8/9 were over-expressed in HCC and were significantly associated with clinical cancer stages and pathological tumor grades. High mRNA expressions of BRD4/8/9 were promising candidate biomarkers in HCC patients. The rate of sequence alternations in BRD1/2/3/4/7/8/9 was relatively high (52%) in HCC patients, and the genetic alternations were correlated with shorter overall survival and disease-free survival in HCC patients. Additionally, the mRNA expression levels of individual BRD genes were significantly positively associated with the immune infiltrating levels of B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells. And the associations between BRD1/2/3/4/7/8/9 and diverse immune marker sets showed a significance. Overall, these results indicated that BRD4/8/9 could be potential prognostic markers and druggable epigenetic targets in HCC patients.
Collapse
|
121
|
Discovery of selective inhibitors for cyclic AMP response element-binding protein: a combined ligand and structure-based resources pipeline. Anticancer Drugs 2020; 30:363-373. [PMID: 30499778 DOI: 10.1097/cad.0000000000000727] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bromodomains are epigenetic readers of acetyl-lysine involved in chromatin remodeling and transcriptional regulations. Over the past few years, extensive research has been carried out to discover small-molecule inhibitors against bromodomains to treat various diseases. Cyclic AMP response element-binding protein (CREBBP) bromodomain has emerged as a hot target for cancer therapy. This study aims at discovering new inhibitors against CREBBP bromodomain using ligand-based molecular docking. A library of 2168 lead-like compounds were docked into the Kac binding site of CREBBP bromodomain. On the basis of the energy score and interaction analysis, six compounds were selected. In order to validate the stability of these six protein-ligand complexes 20 ns molecular dynamics simulations and principal component analyses were carried out. Based on the different analyses these six compounds may provide valuable information for developing CREBBP selective inhibitors.
Collapse
|
122
|
Peedicayil J. Pharmacoepigenetics and Pharmacoepigenomics: An Overview. Curr Drug Discov Technol 2020; 16:392-399. [PMID: 29676232 DOI: 10.2174/1570163815666180419154633] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND The rapid and major advances being made in epigenetics are impacting pharmacology, giving rise to new sub-disciplines in pharmacology, pharmacoepigenetics, the study of the epigenetic basis of variation in response to drugs; and pharmacoepigenomics, the application of pharmacoepigenetics on a genome-wide scale. METHODS This article highlights the following aspects of pharmacoepigenetics and pharmacoepigenomics: epigenetic therapy, the role of epigenetics in pharmacokinetics, the relevance of epigenetics to adverse drug reactions, personalized medicine, drug addiction, and drug resistance, and the use of epigenetic biomarkers in drug therapy. RESULTS Epigenetics is having an increasing impact on several areas of pharmacology. CONCLUSION Pharmacoepigenetics and pharmacoepigenomics are new sub-disciplines in pharmacology and are likely to have an increasing impact on the use of drugs in clinical practice.
Collapse
Affiliation(s)
- Jacob Peedicayil
- Department of Pharmacology & Clinical Pharmacology, Christian Medical College, Vellore, India
| |
Collapse
|
123
|
Neganova ME, Klochkov SG, Aleksandrova YR, Aliev G. Histone modifications in epigenetic regulation of cancer: Perspectives and achieved progress. Semin Cancer Biol 2020; 83:452-471. [PMID: 32814115 DOI: 10.1016/j.semcancer.2020.07.015] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
Epigenetic changes associated with histone modifications play an important role in the emergence and maintenance of the phenotype of various cancer types. In contrast to direct mutations in the main DNA sequence, these changes are reversible, which makes the development of inhibitors of enzymes of post-translational histone modifications one of the most promising strategies for the creation of anticancer drugs. To date, a wide variety of histone modifications have been found that play an important role in the regulation of chromatin state, gene expression, and other nuclear events. This review examines the main features of the most common and studied epigenetic histone modifications with a proven role in the pathogenesis of a wide range of malignant neoplasms: acetylation / deacetylation and methylation / demethylation of histone proteins, as well as the role of enzymes of the HAT / HDAC and HMT / HDMT families in the development of oncological pathologies. The data on the relationship between histone modifications and certain types of cancer are presented and discussed. Special attention is devoted to the consideration of various strategies for the development of epigenetic inhibitors. The main directions of the development of inhibitors of histone modifications are analyzed and effective strategies for their creation are identified and discussed. The most promising strategy is the use of multitarget drugs, which will affect multiple molecular targets of cancer. A critical analysis of the current status of approved epigenetic anticancer drugs has also been performed.
Collapse
Affiliation(s)
- Margarita E Neganova
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 1, Severnii pr., Chernogolovka, 142432, Russian Federation
| | - Sergey G Klochkov
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 1, Severnii pr., Chernogolovka, 142432, Russian Federation
| | - Yulia R Aleksandrova
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 1, Severnii pr., Chernogolovka, 142432, Russian Federation
| | - Gjumrakch Aliev
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 1, Severnii pr., Chernogolovka, 142432, Russian Federation.,I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow, 119991, Russian Federation.,Laboratory of Cellular Pathology, Federal State Budgetary Institution «Research Institute of Human Morphology», 3, Tsyurupy Str., Moscow, 117418, Russian Federation.,GALLY International Research Institute, 7733 Louis Pasteur Drive, #330, San Antonio, TX, 78229, USA.
| |
Collapse
|
124
|
Fahrner JA, Bjornsson HT. Mendelian disorders of the epigenetic machinery: postnatal malleability and therapeutic prospects. Hum Mol Genet 2020; 28:R254-R264. [PMID: 31595951 DOI: 10.1093/hmg/ddz174] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 12/14/2022] Open
Abstract
The epigenetic machinery in conjunction with the transcriptional machinery is responsible for maintaining genome-wide chromatin states and dynamically regulating gene expression. Mendelian disorders of the epigenetic machinery (MDEMs) are genetic disorders resulting from mutations in components of the epigenetic apparatus. Though individually rare, MDEMs have emerged as a collectively common etiology for intellectual disability (ID) and growth disruption. Studies in model organisms and humans have demonstrated dosage sensitivity of this gene group with haploinsufficiency as a predominant disease mechanism. The epigenetic machinery consists of three enzymatic components (writers, erasers and chromatin remodelers) as well as one non-enzymatic group (readers). A tally of the entire census of such factors revealed that although multiple enzymatic activities never coexist within a single component, individual enzymatic activities often coexist with a reader domain. This group of disorders disrupts both the chromatin and transcription states of target genes downstream of the given component but also DNA methylation on a global scale. Elucidation of these global epigenetic changes may inform our understanding of disease pathogenesis and have diagnostic utility. Moreover, many therapies targeting epigenetic marks already exist, and some have proven successful in treating cancer. This, along with the recent observation that neurological dysfunction in these disorders may in fact be treatable in postnatal life, suggests that the scientific community should prioritize this group as a potentially treatable cause of ID. Here we summarize the recent expansion and major characteristics of MDEMs, as well as the unique therapeutic prospects for this group of disorders.
Collapse
Affiliation(s)
- Jill A Fahrner
- McKusick-Nathans Institute of Genetic Medicine, 21205.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hans T Bjornsson
- McKusick-Nathans Institute of Genetic Medicine, 21205.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Landspitali University Hospital, Reykjavik 101, Iceland.,Faculty of Medicine, University of Iceland, Reykjavik 101, Iceland
| |
Collapse
|
125
|
Turky A, Bayoumi AH, Ghiaty A, El-Azab AS, A-M Abdel-Aziz A, Abulkhair HS. Design, synthesis, and antitumor activity of novel compounds based on 1,2,4-triazolophthalazine scaffold: Apoptosis-inductive and PCAF-inhibitory effects. Bioorg Chem 2020; 101:104019. [PMID: 32615465 DOI: 10.1016/j.bioorg.2020.104019] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/03/2020] [Accepted: 06/12/2020] [Indexed: 01/07/2023]
Abstract
The antitumor activity of newly synthesised triazolophthalazines (L-45 analogues) 10-32 was evaluated in human hepatocellular carcinoma (HePG-2), breast cancer (MCF-7), prostate cancer (PC3), and colorectal carcinoma (HCT-116) cells. Compounds 17, 18, 25, and 32 showed potent antitumor activity (IC50, 2.83-13.97 μM), similar to doxorubicin (IC50, 4.17-8.87 μM) and afatinib (IC50, 5.4-11.4 μM). HePG2 was inhibited by compounds 10, 17, 18, 25, 26, and 32 (IC50, 3.06-10.5 μM), similar to doxorubicin (IC50, 4.50 μM) and afatinib (IC50, 5.4 μM). HCT-116 and MCF-7 were susceptible to compounds 10, 17, 18, 25, and 32 (IC50, 2.83-10.36 and 5.69-11.36 μM, respectively), similar to doxorubicin and afatinib (IC50 = 5.23 and 4.17, and 11.4 and 7.1 μM, respectively). Compounds 17, 25, and 32 exerted potent activities against PC3 (IC50, 7.56-12.28 μM) compared with doxorubicin (IC50, 8.87 µM) and afatinib (IC50 7.7 μM). Compounds 17 and 32 were the strongest PCAF inhibitors (IC50, 5.31 and 10.30 μM, respectively) and compounds 18 and 25 exhibited modest IC50 values (17.09 and 32.96 μM, respectively) compared with bromosporine (IC50, 5.00 μM). Compound 17 was cytotoxic to HePG2 cells (IC50, 3.06 μM), inducing apoptosis in the pre-G phase and arresting the cell cycle in the G2/M phase. Molecular docking for the most active PCAF inhibitors (17 and 32) was performed.
Collapse
Affiliation(s)
- Abdallah Turky
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Nasr City 11884, Cairo, Egypt
| | - Ashraf H Bayoumi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Nasr City 11884, Cairo, Egypt
| | - Adel Ghiaty
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Nasr City 11884, Cairo, Egypt
| | - Adel S El-Azab
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Alaa A-M Abdel-Aziz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
| | - Hamada S Abulkhair
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Nasr City 11884, Cairo, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University - Egypt, International Costal Road, New Damietta, Egypt.
| |
Collapse
|
126
|
Xu S, Fan L, Jeon HY, Zhang F, Cui X, Mickle MB, Peng G, Hussain A, Fazli L, Gleave ME, Dong X, Qi J. p300-Mediated Acetylation of Histone Demethylase JMJD1A Prevents Its Degradation by Ubiquitin Ligase STUB1 and Enhances Its Activity in Prostate Cancer. Cancer Res 2020; 80:3074-3087. [PMID: 32522824 DOI: 10.1158/0008-5472.can-20-0233] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/05/2020] [Accepted: 06/04/2020] [Indexed: 01/24/2023]
Abstract
The androgen receptor (AR) pathway plays a central role in the development of castration-resistant prostate cancer (CRPC). The histone demethylase JMJD1A has been shown to regulate activities of AR and c-Myc transcription factors and promote prostate cancer progression. Here, we report that JMJD1A protein stability is controlled by the ubiquitin ligase STUB1. High levels of JMJD1A were strongly correlated with low STUB1 levels in human CRPC specimens. STUB1 inhibited AR activity, AR-V7 levels, and prostate cancer cell growth partly through degradation of JMJD1A. Furthermore, the acetyltransferase p300 acetylated JMJD1A at lysine (K) 421, a modification that recruits the BET family member BRD4 to block JMJD1A degradation and promote JMJD1A recruitment to AR targets. Increased levels of both total and K421-acetylated JMJD1A were observed in prostate cancer cells as they developed resistance to the AR antagonist enzalutamide. Treatment of prostate cancer cells with either p300 or BET inhibitors destabilized JMJD1A, and enzalutamide-resistant prostate cancer cells were more sensitive than parental cells to these inhibitors. Together, our findings identify a critical role for acetylation of JMJD1A in regulating JMJD1A stability and AR activity in CRPC. These newly identified mechanisms controlling JMJD1A protein stability provide potential druggable targets to encourage the development of additional therapies for advanced prostate cancer. SIGNIFICANCE: Identification of mechanisms regulating JMJD1A protein stability reveals new strategies to destabilize JMJD1A and concomitantly inhibit AR activities as potential prostate cancer therapy.
Collapse
Affiliation(s)
- Songhui Xu
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
| | - Lingling Fan
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
| | - Hee-Young Jeon
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
| | - Fengbo Zhang
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland.,Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaolu Cui
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland.,Department of Urology, First Hospital of China Medical University, Shenyang, China
| | - McKayla B Mickle
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
| | - Guihong Peng
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
| | - Arif Hussain
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland.,Baltimore VA Medical Center, Baltimore, Maryland
| | - Ladan Fazli
- Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Martin E Gleave
- Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xuesen Dong
- Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jianfei Qi
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland. .,Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
| |
Collapse
|
127
|
Kulka LAM, Fangmann PV, Panfilova D, Olzscha H. Impact of HDAC Inhibitors on Protein Quality Control Systems: Consequences for Precision Medicine in Malignant Disease. Front Cell Dev Biol 2020; 8:425. [PMID: 32582706 PMCID: PMC7291789 DOI: 10.3389/fcell.2020.00425] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/07/2020] [Indexed: 12/21/2022] Open
Abstract
Lysine acetylation is one of the major posttranslational modifications (PTM) in human cells and thus needs to be tightly regulated by the writers of this process, the histone acetyl transferases (HAT), and the erasers, the histone deacetylases (HDAC). Acetylation plays a crucial role in cell signaling, cell cycle control and in epigenetic regulation of gene expression. Bromodomain (BRD)-containing proteins are readers of the acetylation mark, enabling them to transduce the modification signal. HDAC inhibitors (HDACi) have been proven to be efficient in hematologic malignancies with four of them being approved by the FDA. However, the mechanisms by which HDACi exert their cytotoxicity are only partly resolved. It is likely that HDACi alter the acetylation pattern of cytoplasmic proteins, contributing to their anti-cancer potential. Recently, it has been demonstrated that various protein quality control (PQC) systems are involved in recognizing the altered acetylation pattern upon HDACi treatment. In particular, molecular chaperones, the ubiquitin proteasome system (UPS) and autophagy are able to sense the structurally changed proteins, providing additional targets. Recent clinical studies of novel HDACi have proven that proteins of the UPS may serve as biomarkers for stratifying patient groups under HDACi regimes. In addition, members of the PQC systems have been shown to modify the epigenetic readout of HDACi treated cells and alter proteostasis in the nucleus, thus contributing to changing gene expression profiles. Bromodomain (BRD)-containing proteins seem to play a potent role in transducing the signaling process initiating apoptosis, and many clinical trials are under way to test BRD inhibitors. Finally, it has been demonstrated that HDACi treatment leads to protein misfolding and aggregation, which may explain the effect of panobinostat, the latest FDA approved HDACi, in combination with the proteasome inhibitor bortezomib in multiple myeloma. Therefore, proteins of these PQC systems provide valuable targets for precision medicine in cancer. In this review, we give an overview of the impact of HDACi treatment on PQC systems and their implications for malignant disease. We exemplify the development of novel HDACi and how affected proteins belonging to PQC can be used to determine molecular signatures and utilized in precision medicine.
Collapse
Affiliation(s)
- Linda Anna Michelle Kulka
- Medical Faculty, Institute of Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Pia-Victoria Fangmann
- Medical Faculty, Institute of Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Diana Panfilova
- Medical Faculty, Institute of Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Heidi Olzscha
- Medical Faculty, Institute of Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
128
|
Laham-Karam N, Pinto GP, Poso A, Kokkonen P. Transcription and Translation Inhibitors in Cancer Treatment. Front Chem 2020; 8:276. [PMID: 32373584 PMCID: PMC7186406 DOI: 10.3389/fchem.2020.00276] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
Transcription and translation are fundamental cellular processes that govern the protein production of cells. These processes are generally up regulated in cancer cells, to maintain the enhanced metabolism and proliferative state of these cells. As such cancerous cells can be susceptible to transcription and translation inhibitors. There are numerous druggable proteins involved in transcription and translation which make lucrative targets for cancer drug development. In addition to proteins, recent years have shown that the "undruggable" transcription factors and RNA molecules can also be targeted to hamper the transcription or translation in cancer. In this review, we summarize the properties and function of the transcription and translation inhibitors that have been tested and developed, focusing on the advances of the last 5 years. To complement this, we also discuss some of the recent advances in targeting oncogenes tightly controlling transcription including transcription factors and KRAS. In addition to natural and synthetic compounds, we review DNA and RNA based approaches to develop cancer drugs. Finally, we conclude with the outlook to the future of the development of transcription and translation inhibitors.
Collapse
Affiliation(s)
- Nihay Laham-Karam
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Gaspar P. Pinto
- International Clinical Research Center, St. Anne University Hospital, Brno, Czechia
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czechia
| | - Antti Poso
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
- University Hospital Tübingen, Department of Internal Medicine VIII, University of Tübingen, Tübingen, Germany
| | - Piia Kokkonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
129
|
Kozako T, Itoh Y, Honda SI, Suzuki T. Epigenetic Control Using Small Molecules in Cancer. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/978-3-030-32857-3_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
130
|
Bai P, Lu X, Lan Y, Chen Z, Patnaik D, Fiedler S, Striar R, Haggarty SJ, Wang C. Radiosynthesis and in vivo evaluation of a new positron emission tomography radiotracer targeting bromodomain and extra-terminal domain (BET) family proteins. Nucl Med Biol 2020; 84-85:96-101. [PMID: 32320910 DOI: 10.1016/j.nucmedbio.2020.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/02/2020] [Accepted: 04/07/2020] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Bromodomain and extra-terminal domain (BET) family proteins play a vital role in the epigenetic regulation process by interacting with acetylated lysine (Ac-K) residues in histones. BET inhibitors have become promising candidates to treat various diseases through the inhibition of the interaction between BET bromodomains and Ac-K of histone tails. With a molecular imaging probe, noninvasive imaging such as positron emission tomography (PET) can visualize the distribution and roles of BET family proteins in vivo and enlighten our understanding of BET protein function in both healthy and diseased tissue. METHODS We radiolabeled the potent BET inhibitor INCB054329 by N-methylation to make [11C]PB003 as a BET PET radiotracer. The bioactivity evaluation of unlabeled PB003 in vitro was performed to confirm its binding affinity for BRDs, then the PET/CT imaging in rodents was performed to evaluate the bioactivity of [11C]PB003 in vivo. RESULTS In our in vitro evaluation, PB003 showed a high BET binding affinity for BRDs (Kd = 2 nM, 1.2 nM, and 1.2 nM for BRD2, BRD3, and BRD4, respectively). In vivo PET/CT imaging demonstrated that [11C]PB003 has favorable uptake with appropriate kinetics and distributions in main peripheral organs. Besides, the blockade of [11C]PB003 binding was found in our blocking study which indicated the specificity of [11C]PB003. However, the BBB penetration and brain uptake of [11C]PB003 was limited, with only a maximum 0.2% injected dose/g at ~2 min post-injection. CONCLUSION The imaging results in rodents in vivo demonstrate that [11C]PB003 binds to BET with high selectivity and specificity and has favorable uptake in peripheral organs. However, the low brain uptake of [11C]PB003 limits the visualization of brain regions indicating the efforts are still needed to discover the new BET imaging probes for brain visualization.
Collapse
Affiliation(s)
- Ping Bai
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiaoxia Lu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Yu Lan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Zude Chen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Debasis Patnaik
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Stephanie Fiedler
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Robin Striar
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Stephen J Haggarty
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
131
|
Piha-Paul SA, Hann CL, French CA, Cousin S, Braña I, Cassier PA, Moreno V, de Bono JS, Harward SD, Ferron-Brady G, Barbash O, Wyce A, Wu Y, Horner T, Annan M, Parr NJ, Prinjha RK, Carpenter CL, Hilton J, Hong DS, Haas NB, Markowski MC, Dhar A, O’Dwyer PJ, Shapiro GI. Phase 1 Study of Molibresib (GSK525762), a Bromodomain and Extra-Terminal Domain Protein Inhibitor, in NUT Carcinoma and Other Solid Tumors. JNCI Cancer Spectr 2020; 4:pkz093. [PMID: 32328561 PMCID: PMC7165800 DOI: 10.1093/jncics/pkz093] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/21/2019] [Accepted: 10/31/2019] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Bromodomain and extra-terminal domain proteins are promising epigenetic anticancer drug targets. This first-in-human study evaluated the safety, recommended phase II dose, pharmacokinetics, pharmacodynamics, and preliminary antitumor activity of the bromodomain and extra-terminal domain inhibitor molibresib (GSK525762) in patients with nuclear protein in testis (NUT) carcinoma (NC) and other solid tumors. METHODS This was a phase I and II, open-label, dose-escalation study. Molibresib was administered orally once daily. Single-patient dose escalation (from 2 mg/d) was conducted until the first instance of grade 2 or higher drug-related toxicity, followed by a 3 + 3 design. Pharmacokinetic parameters were obtained during weeks 1 and 3. Circulating monocyte chemoattractant protein-1 levels were measured as a pharmacodynamic biomarker. RESULTS Sixty-five patients received molibresib. During dose escalation, 11% experienced dose-limiting toxicities, including six instances of grade 4 thrombocytopenia, all with molibresib 60-100 mg. The most frequent treatment-related adverse events of any grade were thrombocytopenia (51%) and gastrointestinal events, including nausea, vomiting, diarrhea, decreased appetite, and dysgeusia (22%-42%), anemia (22%), and fatigue (20%). Molibresib demonstrated an acceptable safety profile up to 100 mg; 80 mg once daily was selected as the recommended phase II dose. Following single and repeat dosing, molibresib showed rapid absorption and elimination (maximum plasma concentration: 2 hours; t1/2: 3-7 hours). Dose-dependent reductions in circulating monocyte chemoattractant protein-1 levels were observed. Among 19 patients with NC, four achieved either confirmed or unconfirmed partial response, eight had stable disease as best response, and four were progression-free for more than 6 months. CONCLUSIONS Once-daily molibresib was tolerated at doses demonstrating target engagement. Preliminary data indicate proof-of-concept in NC.
Collapse
Affiliation(s)
| | | | - Christopher A French
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Sophie Cousin
- Medical Oncology, Institute Bergonié, Bordeaux, France
| | - Irene Braña
- Medical Oncology Department, Vall d’Hebron University Hospital, Barcelona, Spain
| | | | - Victor Moreno
- Medical Oncology, START Madrid-FJD, Fundación Jiménez Díaz Hospital, Madrid, Spain
| | - Johann S de Bono
- The Institute of Cancer Research and Royal Marsden Hospital, London, UK
| | | | | | | | | | | | | | | | | | - Rabinder K Prinjha
- Division of Medical Oncology, Ottawa Hospital Cancer Centre, Ottawa, ON, Canada
| | | | - John Hilton
- Division of Medical Oncology, Ottawa Hospital Cancer Centre, Ottawa, ON, Canada
| | | | - Naomi B Haas
- Abramson Cancer Center at University of Pennsylvania, Philadelphia, PA
| | | | | | | | - Geoffrey I Shapiro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
132
|
Kaur J, Daoud A, Eblen ST. Targeting Chromatin Remodeling for Cancer Therapy. Curr Mol Pharmacol 2020; 12:215-229. [PMID: 30767757 PMCID: PMC6875867 DOI: 10.2174/1874467212666190215112915] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/25/2019] [Accepted: 01/31/2019] [Indexed: 12/31/2022]
Abstract
Background: Epigenetic alterations comprise key regulatory events that dynamically alter gene expression and their deregulation is commonly linked to the pathogenesis of various diseases, including cancer. Unlike DNA mutations, epigenetic alterations involve modifications to proteins and nucleic acids that regulate chromatin structure without affecting the underlying DNA sequence, altering the accessibility of the transcriptional machinery to the DNA, thus modulating gene expression. In cancer cells, this often involves the silencing of tumor suppressor genes or the increased expression of genes involved in oncogenesis. Advances in laboratory medicine have made it possible to map critical epigenetic events, including histone modifications and DNA methylation, on a genome-wide scale. Like the identification of genetic mutations, mapping of changes to the epigenetic landscape has increased our understanding of cancer progression. However, in contrast to irreversible genetic mutations, epigenetic modifications are flexible and dynamic, thereby making them promising therapeutic targets. Ongoing studies are evaluating the use of epigenetic drugs in chemotherapy sensitization and immune system modulation. With the preclinical success of drugs that modify epigenetics, along with the FDA approval of epigenetic drugs including the DNA methyltransferase 1 (DNMT1) inhibitor 5-azacitidine and the histone deacetylase (HDAC) inhibitor vorinostat, there has been a rise in the number of drugs that target epigenetic modulators over recent years. Conclusion: We provide an overview of epigenetic modulations, particularly those involved in cancer, and discuss the recent advances in drug development that target these chromatin-modifying events, primarily focusing on novel strategies to regulate the epigenome.
Collapse
Affiliation(s)
- Jasmine Kaur
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Abdelkader Daoud
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Scott T Eblen
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, United States
| |
Collapse
|
133
|
Role of BET Inhibitors in Triple Negative Breast Cancers. Cancers (Basel) 2020; 12:cancers12040784. [PMID: 32218352 PMCID: PMC7226117 DOI: 10.3390/cancers12040784] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 12/20/2022] Open
Abstract
Bromodomain and extraterminal domain (BET) proteins have evolved as key multifunctional super-regulators that control gene expression. These proteins have been shown to upregulate transcriptional machinery leading to over expression of genes involved in cell proliferation and carcinogenesis. Based on favorable preclinical evidence of BET inhibitors in various cancer models; currently, 26 clinical trials are underway in various stages of study on various hematological and solid organ cancers. Unfortunately, preliminary evidence for these clinical studies does not support the application of BET inhibitors as monotherapy in cancer treatment. Furthermore, the combinatorial efficiency of BET inhibitors with other chemo-and immunotherapeutic agents remain elusive. In this review, we will provide a concise summary of the molecular basis and preliminary clinical outcomes of BET inhibitors in cancer therapy, with special focus on triple negative breast cancer.
Collapse
|
134
|
Mendez FM, Núñez FJ, Garcia-Fabiani MB, Haase S, Carney S, Gauss JC, Becher OJ, Lowenstein PR, Castro MG. Epigenetic reprogramming and chromatin accessibility in pediatric diffuse intrinsic pontine gliomas: a neural developmental disease. Neuro Oncol 2020; 22:195-206. [PMID: 32078691 PMCID: PMC7032633 DOI: 10.1093/neuonc/noz218] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) is a rare but deadly pediatric brainstem tumor. To date, there is no effective therapy for DIPG. Transcriptomic analyses have revealed DIPGs have a distinct profile from other pediatric high-grade gliomas occurring in the cerebral hemispheres. These unique genomic characteristics coupled with the younger median age group suggest that DIPG has a developmental origin. The most frequent mutation in DIPG is a lysine to methionine (K27M) mutation that occurs on H3F3A and HIST1H3B/C, genes encoding histone variants. The K27M mutation disrupts methylation by polycomb repressive complex 2 on histone H3 at lysine 27, leading to global hypomethylation. Histone 3 lysine 27 trimethylation is an important developmental regulator controlling gene expression. This review discusses the developmental and epigenetic mechanisms driving disease progression in DIPG, as well as the profound therapeutic implications of epigenetic programming.
Collapse
Affiliation(s)
- Flor M Mendez
- Department of Cell and Developmental Biology and Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Felipe J Núñez
- Department of Cell and Developmental Biology and Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Maria B Garcia-Fabiani
- Department of Cell and Developmental Biology and Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Santiago Haase
- Department of Cell and Developmental Biology and Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Stephen Carney
- Department of Cell and Developmental Biology and Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Jessica C Gauss
- Department of Cell and Developmental Biology and Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Oren J Becher
- Department of Pediatrics, Northwestern University, Chicago, Illinois
- Ann & Robert Lurie Children’s Hospital of Chicago, Division of Hematology-Oncology and Stem Cell Transplant, Chicago, Illinois
| | - Pedro R Lowenstein
- Department of Cell and Developmental Biology and Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Maria G Castro
- Department of Cell and Developmental Biology and Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
135
|
Jiao F, Han T, Yuan C, Liang Y, Cui J, Zhuo M, Wang L. Caveolin-2 is regulated by BRD4 and contributes to cell growth in pancreatic cancer. Cancer Cell Int 2020; 20:55. [PMID: 32099528 PMCID: PMC7029443 DOI: 10.1186/s12935-020-1135-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/04/2020] [Indexed: 02/07/2023] Open
Abstract
Background The bromodomain and extra-terminal domain (BET) family of proteins, especially BRD4 play an important role in epigenetic regulation, and are essential for cell survival and also are promising anticancer targets. This study aims to analyze the effect of BRD4 on the cell growth and progression of pancreatic cancer and novel mechanisms involved. Methods Expression of BRD4 in pancreatic cancer and paired adjacent noncancerous tissues from 76 patients was analyzed by western blotting, immunohistochemistry, and real time PCR. Its correlation with the clinicopathological characteristics and prognosis of pancreatic cancer patients was analyzed. The effects of BRD4 on the cell proliferation were detected by colony formation assay and sulforhodamine B assay. Migration and invasion were determined by Transwell assays, and the effect of BRD4 on subcutaneous tumor formation was verified in nude mice. Cell cycle analysis was detected by flow cytometry. The potential downstream targets of BRD4 and related molecular mechanisms were clarified by RNA sequencing, chromatin immunoprecipitation and dual luciferase reporter assay. Results BRD4 was overexpressed in pancreatic cancer. Biological results showed that BRD4 functioned as tumor promoter, facilitated cell proliferation, migration and invasion in vitro and in vivo. Further, caveolin-2 was selected as the downstream gene of BRD4 by RNA sequencing. Caveolin-2 overexpression can partially reverse the decreased cell growth ability caused by BRD4 knockdown, but did not affect cell migration and invasion. Chromatin immunoprecipitation assay and dual luciferase reporter assay revealed BRD4 could bind to the promoter region of caveolin-2 and upregulate caveolin-2 expression. Clinical data further indicated a positive correlation between BRD4 and caveolin-2 expression. BRD4 (high)/caveolin-2 (high) correlated with shorter overall survival of patients with pancreatic cancer. Multivariate analysis revealed that both BRD4 and caveolin-2 were independent factors. Conclusions Our findings reveal the oncogenic effects of BRD4 in pancreatic cancer and elucidate a possible mechanism by which BRD4 and caveolin-2 act to enhance cell growth. Targeting the BRD4-caveolin-2 interaction by development of BET inhibitors will be a therapeutic strategy for pancreatic cancer.
Collapse
Affiliation(s)
- Feng Jiao
- 1Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Road, Shanghai, 200127 China
| | - Ting Han
- 1Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Road, Shanghai, 200127 China
| | - Cuncun Yuan
- 2Department of Pathology, Fudan University Eye Ear Nose and Throat Hospital, 83 Fenyang Road, Shanghai, 201114 China
| | - Yiyi Liang
- 1Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Road, Shanghai, 200127 China
| | - Jiujie Cui
- 1Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Road, Shanghai, 200127 China
| | - Meng Zhuo
- 1Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Road, Shanghai, 200127 China
| | - Liwei Wang
- 1Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Road, Shanghai, 200127 China
| |
Collapse
|
136
|
Wang S, Shen D, Zhao L, Yuan X, Cheng J, Yu B, Zheng Y, Liu H. Discovery of [1,2,4]triazolo[1,5-a]pyrimidine derivatives as new bromodomain-containing protein 4 (BRD4) inhibitors. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.08.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
137
|
Small Molecules Targeting the Specific Domains of Histone-Mark Readers in Cancer Therapy. Molecules 2020; 25:molecules25030578. [PMID: 32013155 PMCID: PMC7037402 DOI: 10.3390/molecules25030578] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 12/11/2022] Open
Abstract
Epigenetic modifications (or epigenetic tags) on DNA and histones not only alter the chromatin structure, but also provide a recognition platform for subsequent protein recruitment and enable them to acquire executive instructions to carry out specific intracellular biological processes. In cells, different epigenetic-tags on DNA and histones are often recognized by the specific domains in proteins (readers), such as bromodomain (BRD), chromodomain (CHD), plant homeodomain (PHD), Tudor domain, Pro-Trp-Trp-Pro (PWWP) domain and malignant brain tumor (MBT) domain. Recent accumulating data reveal that abnormal intracellular histone modifications (histone marks) caused by tumors can be modulated by small molecule-mediated changes in the activity of the above domains, suggesting that small molecules targeting histone-mark reader domains may be the trend of new anticancer drug development. Here, we summarize the protein domains involved in histone-mark recognition, and introduce recent research findings about small molecules targeting histone-mark readers in cancer therapy.
Collapse
|
138
|
van Dijk AD, de Bont ESJM, Kornblau SM. Targeted therapy in acute myeloid leukemia: current status and new insights from a proteomic perspective. Expert Rev Proteomics 2020; 17:1-10. [PMID: 31945303 DOI: 10.1080/14789450.2020.1717951] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: The biological heterogeneity of acute myeloid leukemia (AML) complicates personalized medicine. Individual prognosis is typically based on the presence of chromosomal and genetic lesions. Nevertheless, these classifications often lack a priori information about response to therapy. Since the protein expression landscape reflects the functional activity state of cells, we hypothesize that analyzing this can be used for the identification of protein activity markers to provide better risk stratification as well as may provide targeted therapeutic guidance in AML.Areas covered: Herein, we review recently new adopted drugs in the treatment for AML and discuss how quantitative proteomic techniques may contribute to better therapeutic selection in AML.Expert commentary: The net functional state of the cell is defined by the activity of protein within all the pathways that are active in the cell. Recognition of the proteomic profile of the leukemic blast could, therefore, complement current classification systems by providing a better a priori description of what pathways are important within a cell as a guide to the selection of therapy for the patient.
Collapse
Affiliation(s)
- Anneke D van Dijk
- Division of Pediatric Oncology/Hematology, Department of Pediatrics, University Medical Center Groningen, Groningen, the Netherlands
| | - Eveline S J M de Bont
- Division of Pediatric Oncology/Hematology, Department of Pediatrics, University Medical Center Groningen, Groningen, the Netherlands
| | - Steven M Kornblau
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
139
|
Abstract
Introduction: T-cell lymphomas represent a broad group of malignant T-cell neoplasms with marked molecular, clinical, and biologic heterogeneity. Survival rates after conventional chemotherapy regimens are poor for most subtypes and new therapies are needed. Rapidly expanding knowledge in the field of epigenomics and the development of an increasing number of epigenetic-modifying agents have created new opportunities for epigenetic therapies for patients with this complex group of diseases.Areas covered: The present review summarizes current knowledge on epigenetic alterations in T-cell lymphomas, availability, and mechanisms of action of epigenetic-modifying agents, results of clinical trials of epigenetic therapies in T-cell lymphomas, status of FDA approval, and biomarker approaches to guide therapy. Promising future directions are discussed.Expert opinion: Mutations in epigenetic-modifying genes are among the most common genetic alterations in T-cell lymphomas, highlighting the potential for epigenetic therapies to improve management of this group of diseases. Single-agent efficacy is well documented, leading to FDA approval for several indications, but overall response rates and durability of responses remain modest. Critical next steps for the field include optimizing combination therapies that incorporate epigenetic-modifying agents and developing predictive biomarkers that help guide patient and drug selection.
Collapse
Affiliation(s)
- Nada Ahmed
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.,Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Andrew L Feldman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
140
|
Lu T, Lu W, Luo C. A patent review of BRD4 inhibitors (2013-2019). Expert Opin Ther Pat 2020; 30:57-81. [PMID: 31815566 DOI: 10.1080/13543776.2020.1702645] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023]
Abstract
Introduction: The bromodomain-containing protein 4 (BRD4), a member of the bromodomain and extra-terminal (BET) family, functions as an 'epigenetic reader' that binds to acetylated lysine (KAc) residues on histone tails sophisticatedly regulating chromatin structure and gene expression. Recently, emerging evidence demonstrates that BRD4 plays a significant role in the occurrence and progression of several malignant human diseases especially cancers, making it a hot target in cancer therapy.Areas covered: This review mainly summarizes the patents of BRD4 inhibitors that have been authorized from 2013 to 2019. The patents are mostly described in terms of chemical structures, molecular mechanisms of action, pharmacological activities and potential clinical applications, including combination therapies. The development of BRD4 inhibitors in the clinical phase has been highlighted. Prospects for further development of more selective BRD4 inhibitors are provided.Expert opinion: In 2013-2019, several previously known chemical scaffolds have been further developed and disclosed. Although many small molecule BRD4 inhibitors with high potency and diverse scaffolds have been developed, the selectivity of most BRD4 inhibitors still needs to be improved. Therefore, the development of more selective small molecule inhibitors or combined use of drugs such as immunotherapy may provide new ideas for drug development.
Collapse
Affiliation(s)
- Tian Lu
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wenchao Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Department of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Cheng Luo
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Department of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
141
|
Maggisano V, Celano M, Malivindi R, Barone I, Cosco D, Mio C, Mignogna C, Panza S, Damante G, Fresta M, Andò S, Russo D, Catalano S, Bulotta S. Nanoparticles Loaded with the BET Inhibitor JQ1 Block the Growth of Triple Negative Breast Cancer Cells In Vitro and In Vivo. Cancers (Basel) 2019; 12:cancers12010091. [PMID: 31905936 PMCID: PMC7016573 DOI: 10.3390/cancers12010091] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/20/2019] [Accepted: 12/24/2019] [Indexed: 12/24/2022] Open
Abstract
Inhibition of bromo-and extra-terminal domain (BET) proteins, epigenetic regulators of genes involved in cell viability, has been efficiently tested in preclinical models of triple negative breast cancer (TNBC). However, the use of the selective BET-inhibitor JQ1 on humans is limited by its very short half-life. Herein, we developed, characterized and tested a novel formulation of nanoparticles containing JQ1 (N-JQ1) against TNBC in vitro and in vivo. N-JQ1, prepared using the nanoprecipitation method of preformedpoly-lactid-co-glycolic acid in an aqueous solution containing JQ1 and poloxamer-188 as a stabilizer, presented a high physico-chemical stability. Treatment of MDA-MB 157 and MDA-MB 231 TNBC cells with N-JQ1 determined a significant decrease in cell viability, adhesion and migration. Intra-peritoneal administration (5 days/week for two weeks) of N-JQ1 in nude mice hosting a xenograft TNBC after flank injection of MDA-MB-231 cells determined a great reduction in the growth and vascularity of the neoplasm. Moreover, the treatment resulted in a minimal infiltration of nearby tissues. Finally, the encapsulation of JQ1 in nanoparticles improved the anticancer efficacy of this epigenetic compound against TNBC in vitro and in vivo, opening the way to test it in the treatment of TNBC.
Collapse
Affiliation(s)
- Valentina Maggisano
- Department of Health Sciences, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (V.M.); (M.C.); (D.C.); (M.F.); (S.B.)
| | - Marilena Celano
- Department of Health Sciences, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (V.M.); (M.C.); (D.C.); (M.F.); (S.B.)
| | - Rocco Malivindi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Cosenza, Italy; (R.M.); (I.B.); (S.P.); (S.A.)
| | - Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Cosenza, Italy; (R.M.); (I.B.); (S.P.); (S.A.)
| | - Donato Cosco
- Department of Health Sciences, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (V.M.); (M.C.); (D.C.); (M.F.); (S.B.)
| | - Catia Mio
- Department of Medical Area, University of Udine, 33100 Udine, Italy; (C.M.); (G.D.)
| | - Chiara Mignogna
- Interdepartmental Service Center, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy;
| | - Salvatore Panza
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Cosenza, Italy; (R.M.); (I.B.); (S.P.); (S.A.)
| | - Giuseppe Damante
- Department of Medical Area, University of Udine, 33100 Udine, Italy; (C.M.); (G.D.)
| | - Massimo Fresta
- Department of Health Sciences, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (V.M.); (M.C.); (D.C.); (M.F.); (S.B.)
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Cosenza, Italy; (R.M.); (I.B.); (S.P.); (S.A.)
| | - Diego Russo
- Department of Health Sciences, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (V.M.); (M.C.); (D.C.); (M.F.); (S.B.)
- Correspondence: (D.R.); (S.C.); Tel.: +39-09613694224 (D.R.); +39-0984496207 (S.C.)
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Cosenza, Italy; (R.M.); (I.B.); (S.P.); (S.A.)
- Correspondence: (D.R.); (S.C.); Tel.: +39-09613694224 (D.R.); +39-0984496207 (S.C.)
| | - Stefania Bulotta
- Department of Health Sciences, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (V.M.); (M.C.); (D.C.); (M.F.); (S.B.)
| |
Collapse
|
142
|
Hassell-Hart S, Runcie A, Krojer T, Doyle J, Lineham E, Ocasio CA, Neto BAD, Fedorov O, Marsh G, Maple H, Felix R, Banks R, Ciulli A, Picaud S, Filippakopoulos P, von Delft F, Brennan P, Stewart HJS, Chevassut TJ, Walker M, Austin C, Morley S, Spencer J. Synthesis and Biological Investigation of (+)-JD1, an Organometallic BET Bromodomain Inhibitor. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00750] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Storm Hassell-Hart
- Chemistry Department, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, U.K
| | - Andrew Runcie
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, James Black Centre, Dow Street, Dundee DD1 5EH Scotland, U.K
| | - Tobias Krojer
- Structural Genomics Consortium (SGC), University of Oxford, Oxford OX3 7DQ, U.K
| | - Jordan Doyle
- Chemistry Department, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, U.K
| | - Ella Lineham
- Biochemistry Department, School of Life Sciences, University of Sussex, Brighton BN1 9QQ, U.K
| | - Cory A. Ocasio
- Chemistry Department, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, U.K
| | - Brenno A. D. Neto
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy
Ribeiro, Brasília, Q3 Distrito Federal 70904-970, Brazil
| | - Oleg Fedorov
- Structural Genomics Consortium (SGC), University of Oxford, Oxford OX3 7DQ, U.K
| | - Graham Marsh
- Bio-Techne (Tocris), The Watkins Building, Atlantic Road,
Avonmouth, Bristol BS11 9QD, U.K
| | - Hannah Maple
- Bio-Techne (Tocris), The Watkins Building, Atlantic Road,
Avonmouth, Bristol BS11 9QD, U.K
| | - Robert Felix
- Bio-Techne (Tocris), The Watkins Building, Atlantic Road,
Avonmouth, Bristol BS11 9QD, U.K
| | - Rebecca Banks
- Bio-Techne (Tocris), The Watkins Building, Atlantic Road,
Avonmouth, Bristol BS11 9QD, U.K
| | - Alessio Ciulli
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, James Black Centre, Dow Street, Dundee DD1 5EH Scotland, U.K
| | - Sarah Picaud
- Structural Genomics Consortium (SGC), University of Oxford, Oxford OX3 7DQ, U.K
| | | | - Frank von Delft
- Diamond Light Source (DLS), Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K
| | - Paul Brennan
- Structural Genomics Consortium (SGC), University of Oxford, Oxford OX3 7DQ, U.K
| | - Helen J. S. Stewart
- Brighton and Sussex Medical School, University of Sussex, Brighton BN1 9PS, U.K
| | | | - Martin Walker
- Eurofins Integrated Discovery UK Ltd., Fyfield Business & Research Park, Fyfield Road, Ongar, Essex CM5 0GS, U.K
| | - Carol Austin
- Eurofins Integrated Discovery UK Ltd., Fyfield Business & Research Park, Fyfield Road, Ongar, Essex CM5 0GS, U.K
| | - Simon Morley
- Biochemistry Department, School of Life Sciences, University of Sussex, Brighton BN1 9QQ, U.K
| | - John Spencer
- Chemistry Department, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, U.K
| |
Collapse
|
143
|
Yang Y, Chen P, Zhao L, Zhang F, Zhang H, Zhou J. Pharmacokinetics-Driven Optimization of 7-Methylimidazo[1,5- a]pyrazin-8(7H)-one as Novel BRD4 Inhibitors. ACS Med Chem Lett 2019; 10:1680-1685. [PMID: 31857846 DOI: 10.1021/acsmedchemlett.9b00474] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/26/2019] [Indexed: 12/22/2022] Open
Abstract
The BET bromodomain containing protein (BRD4) plays a key role in transcription regulation. Therefore, efforts to generate BRD4 inhibitors with excellent potency and DMPK properties are of clinical value. As a continuing work to improve the stability in in vitro metabolic experiments of liver microsomes of our previously reported 7-methylimidazo[1,5-a]pyrazin-8(7H)-one, our optimization of this poor pharmacokinetics focusing on the phenyl substituent is performed. Fortunately, compound 17 displayed subnanomolar potency (IC50 = 30 nM) against BRD4(1), and its liver microsome stability in human, rat, and mouse are more favorable than previously reported inhibitor 28. Compound 17 exhibited antitumor efficacy with no significant toxicity in xenograft models of pancreatic cancer. In addition, fluorescent probe and nuclei-specific dye were utilized to verify apoptosis-inducing of compound 17 via intranuclear potency in BXPC-3 cell line.
Collapse
Affiliation(s)
- Yifei Yang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Pan Chen
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Leilei Zhao
- Center of Drug Discovery, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing 210009, PR China
| | - Fangqing Zhang
- Center of Drug Discovery, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing 210009, PR China
| | - Huibin Zhang
- Center of Drug Discovery, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jinpei Zhou
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| |
Collapse
|
144
|
Johnson JA, Nicolaou CA, Kirberger SE, Pandey AK, Hu H, Pomerantz WCK. Evaluating the Advantages of Using 3D-Enriched Fragments for Targeting BET Bromodomains. ACS Med Chem Lett 2019; 10:1648-1654. [PMID: 31857841 DOI: 10.1021/acsmedchemlett.9b00414] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/22/2019] [Indexed: 02/08/2023] Open
Abstract
Fragment-based ligand discovery has been successful in targeting diverse proteins. Despite drug-like molecules having more 3D character, traditional fragment libraries are largely composed of flat, aromatic fragments. The use of 3D-enriched fragments for enhancing library diversity is underexplored especially against protein-protein interactions. Here, we evaluate using 3D-enriched fragments against bromodomains. Bromodomains are highly ligandable, but selectivity remains challenging, particularly for bromodomain and extraterminal (BET) family bromodomains. We screened a 3D-enriched fragment library against BRD4(D1) via 1H CPMG NMR with a protein-observed 19F NMR secondary assay. The screen led to 29% of the hits that are selective over two related bromodomains, BRDT(D1) and BPTF, and the identification of underrepresented chemical bromodomain inhibitor scaffolds. Initial structure-activity relationship studies guided by X-ray crystallography led to a ligand-efficient thiazepane, with good selectivity and affinity for BET bromodomains. These results suggest that the incorporation of 3D-enriched fragments to increase library diversity can benefit bromodomain screening.
Collapse
Affiliation(s)
- Jorden A. Johnson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christos A. Nicolaou
- Discovery Chemistry Research & Technologies, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Steven E. Kirberger
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Anil K. Pandey
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Haitao Hu
- Discovery Chemistry Research & Technologies, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - William C. K. Pomerantz
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
145
|
Drug Repurposing of Bromodomain Inhibitors as Potential Novel Therapeutic Leads for Lymphatic Filariasis Guided by Multispecies Transcriptomics. mSystems 2019; 4:4/6/e00596-19. [PMID: 31796568 PMCID: PMC6890932 DOI: 10.1128/msystems.00596-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The current treatment regimen for lymphatic filariasis is mostly microfilaricidal. In an effort to identify new drug candidates for lymphatic filariasis, we conducted a three-way transcriptomics/systems biology study of one of the causative agents of lymphatic filariasis, Brugia malayi, its Wolbachia endosymbiont wBm, and its vector host Aedes aegypti at 16 distinct B. malayi life stages. B. malayi upregulates the expression of bromodomain-containing proteins in the adult female, embryo, and microfilaria stages. In vitro, we find that the existing cancer therapeutic JQ1(+), which is a bromodomain and extraterminal protein inhibitor, has adulticidal activity in B. malayi. To better understand the transcriptomic interplay of organisms associated with lymphatic filariasis, we conducted multispecies transcriptome sequencing (RNA-Seq) on the filarial nematode Brugia malayi, its Wolbachia endosymbiont wBm, and its laboratory vector Aedes aegypti across the entire B. malayi life cycle. In wBm, transcription of the noncoding 6S RNA suggests that it may be a regulator of bacterial cell growth, as its transcript levels correlate with bacterial replication rates. For A. aegypti, the transcriptional response reflects the stress that B. malayi infection exerts on the mosquito with indicators of increased energy demand. In B. malayi, expression modules associated with adult female samples consistently contained an overrepresentation of genes involved in chromatin remodeling, such as the bromodomain-containing proteins. All bromodomain-containing proteins encoded by B. malayi were observed to be upregulated in the adult female, embryo, and microfilaria life stages, including 2 members of the bromodomain and extraterminal (BET) protein family. The BET inhibitor JQ1(+), originally developed as a cancer therapeutic, caused lethality of adult worms in vitro, suggesting that it may be a potential therapeutic that can be repurposed for treating lymphatic filariasis. IMPORTANCE The current treatment regimen for lymphatic filariasis is mostly microfilaricidal. In an effort to identify new drug candidates for lymphatic filariasis, we conducted a three-way transcriptomics/systems biology study of one of the causative agents of lymphatic filariasis, Brugia malayi, its Wolbachia endosymbiont wBm, and its vector host Aedes aegypti at 16 distinct B. malayi life stages. B. malayi upregulates the expression of bromodomain-containing proteins in the adult female, embryo, and microfilaria stages. In vitro, we find that the existing cancer therapeutic JQ1(+), which is a bromodomain and extraterminal protein inhibitor, has adulticidal activity in B. malayi.
Collapse
|
146
|
AUTACs: Cargo-Specific Degraders Using Selective Autophagy. Mol Cell 2019; 76:797-810.e10. [DOI: 10.1016/j.molcel.2019.09.009] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 07/09/2019] [Accepted: 09/04/2019] [Indexed: 12/24/2022]
|
147
|
Vincent A, Ouelkdite-Oumouchal A, Souidi M, Leclerc J, Neve B, Van Seuningen I. Colon cancer stemness as a reversible epigenetic state: Implications for anticancer therapies. World J Stem Cells 2019; 11:920-936. [PMID: 31768220 PMCID: PMC6851010 DOI: 10.4252/wjsc.v11.i11.920] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/29/2019] [Accepted: 09/11/2019] [Indexed: 02/06/2023] Open
Abstract
The recent discovery of cancer cell plasticity, i.e. their ability to reprogram into cancer stem cells (CSCs) either naturally or under chemotherapy and/or radiotherapy, has changed, once again, the way we consider cancer treatment. If cancer stemness is a reversible epigenetic state rather than a genetic identity, opportunities will arise for therapeutic strategies that remodel epigenetic landscapes of CSCs. However, the systematic use of DNA methyltransferase and histone deacetylase inhibitors, alone or in combination, in advanced solid tumors including colorectal cancers, regardless of their molecular subtypes, does not seem to be the best strategy. In this review, we first summarize the knowledge researchers have gathered on the epigenetic signatures of CSCs with the difficulty of isolating rare populations of cells. We raise questions about the relevant use of currently available epigenetic inhibitors (epidrugs) while the expression of numerous cancer stem cell markers are often repressed by epigenetic mechanisms. These markers include the three cluster of differentiation CD133, CD44 and CD166 that have been extensively used for the isolation of colon CSCs.and . Finally, we describe current treatment strategies using epidrugs, and we hypothesize that, using correlation tools comparing associations of relevant CSC markers with chromatin modifier expression, we could identify better candidates for epienzyme targeting.
Collapse
Affiliation(s)
- Audrey Vincent
- Lille University, Institut National de la Santé et de la Recherche Médicale, CHU Lille, UMR-S 1172-Jean-Pierre Aubert Research Center, Lille F-59000, France
| | - Aïcha Ouelkdite-Oumouchal
- Lille University, Institut National de la Santé et de la Recherche Médicale, CHU Lille, UMR-S 1172-Jean-Pierre Aubert Research Center, Lille F-59000, France
| | - Mouloud Souidi
- Lille University, Institut National de la Santé et de la Recherche Médicale, CHU Lille, UMR-S 1172-Jean-Pierre Aubert Research Center, Lille F-59000, France
| | - Julie Leclerc
- Lille University, Institut National de la Santé et de la Recherche Médicale, CHU Lille, UMR-S 1172-Jean-Pierre Aubert Research Center, Lille F-59000, France
- Department of Biochemistry and Molecular Biology, Lille University Hospital, Lille F-59000, France
| | - Bernadette Neve
- Lille University, Institut National de la Santé et de la Recherche Médicale, CHU Lille, UMR-S 1172-Jean-Pierre Aubert Research Center, Lille F-59000, France
| | - Isabelle Van Seuningen
- Lille University, Institut National de la Santé et de la Recherche Médicale, CHU Lille, UMR-S 1172-Jean-Pierre Aubert Research Center, Lille F-59000, France
| |
Collapse
|
148
|
Da Silva F, Bret G, Teixeira L, Gonzalez CF, Rognan D. Exhaustive Repertoire of Druggable Cavities at Protein-Protein Interfaces of Known Three-Dimensional Structure. J Med Chem 2019; 62:9732-9742. [PMID: 31603323 DOI: 10.1021/acs.jmedchem.9b01184] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein-protein interactions (PPIs) offer the unique opportunity to tailor ligands aimed at specifically stabilizing or disrupting the corresponding interfaces and providing a safer alternative to conventional ligands targeting monomeric macromolecules. Selecting biologically relevant protein-protein interfaces for either stabilization or disruption by small molecules is usually biology-driven on a case-by-case basis and does not follow a structural rationale that could be applied to an entire interactome. We herewith provide a first step to the latter goal by using a fully automated and structure-based workflow, applicable to any PPI of known three-dimensional (3D) structure, to identify and prioritize druggable cavities at and nearby PPIs of pharmacological interest. When applied to the entire Protein Data Bank, 164 514 druggable cavities were identified and classified in four groups (interfacial, rim, allosteric, orthosteric) according to their properties and spatial locations. Systematic comparison of PPI cavities with pockets deduced from druggable protein-ligand complexes shows almost no overlap in property space, suggesting that even the most druggable PPI cavities are unlikely to be addressed with conventional drug-like compound libraries. The archive is freely accessible at http://drugdesign.unistra.fr/ppiome .
Collapse
Affiliation(s)
- Franck Da Silva
- Laboratoire d'Innovation Thérapeutique , UMR 7200 CNRS-Université de Strasbourg , 67400 Illkirch , France
| | - Guillaume Bret
- Laboratoire d'Innovation Thérapeutique , UMR 7200 CNRS-Université de Strasbourg , 67400 Illkirch , France
| | - Leandro Teixeira
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences , University of Florida , Gainesville , Florida 32610-3610 , United States
| | - Claudio F Gonzalez
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences , University of Florida , Gainesville , Florida 32610-3610 , United States
| | - Didier Rognan
- Laboratoire d'Innovation Thérapeutique , UMR 7200 CNRS-Université de Strasbourg , 67400 Illkirch , France
| |
Collapse
|
149
|
Hanly D, Esteller M, Berdasco M. Altered Long Non-coding RNA Expression in Cancer: Potential Biomarkers and Therapeutic Targets? ACTA ACUST UNITED AC 2019. [DOI: 10.1007/7355_2019_83] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
150
|
Inhibition of bromodomain and extraterminal domain reduces growth and invasive characteristics of chemoresistant ovarian carcinoma cells. Anticancer Drugs 2019; 29:1011-1020. [PMID: 30096128 DOI: 10.1097/cad.0000000000000681] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynecological malignancy worldwide. Development of chemoresistance and peritoneal dissemination are the major reasons for low survival rate in the patients. The bromodomain and extraterminal domain (BET) proteins are known as epigenetic 'readers,' and their inhibitors are novel epigenetic strategies for cancer treatment. Accumulating body of evidence indicates that epigenetic modifications have critical roles in development of EOC, and overexpression of the BET family is a key step in the induction of important oncogenes. Here, we examined the mechanistic activity of I-BET151, a pan-inhibitor of the BET family, in therapy-resistant EOC cells. Our findings showed that I-BET151 diminished cell growth, clonogenic potential, and induced apoptosis. I-BET151 inhibited cell proliferation through down-modulation of FOXM1 and its targets aurora kinase B and cyclin B1. I-BET151 attenuated migration and invasion of the EOC cells by down-regulation of epithelial-mesenchymal transition markers fibronectin, ZEB2, and N-cadherin. I-BET151 synergistically enhanced cisplatin chemosensitivity by down-regulation of survivin and Bcl-2. Our data provide insights into the mechanistic activity of I-BET151 and suggest that BET inhibition has potential as a therapeutic strategy in therapy-resistant EOC. Further in vivo investigations on the therapeutic potential of I-BET151 in EOC are warranted.
Collapse
|