101
|
Pereira Gomes I, Aparecida Duarte J, Chaves Maia AL, Rubello D, Townsend DM, Branco de Barros AL, Leite EA. Thermosensitive Nanosystems Associated with Hyperthermia for Cancer Treatment. Pharmaceuticals (Basel) 2019; 12:E171. [PMID: 31775273 PMCID: PMC6958340 DOI: 10.3390/ph12040171] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/20/2022] Open
Abstract
Conventional chemotherapy regimens have limitations due to serious adverse effects. Targeted drug delivery systems to reduce systemic toxicity are a powerful drug development platform. Encapsulation of antitumor drug(s) in thermosensitive nanocarriers is an emerging approach with a promise to improve uptake and increase therapeutic efficacy, as they can be activated by hyperthermia selectively at the tumor site. In this review, we focus on thermosensitive nanosystems associated with hyperthermia for the treatment of cancer, in preclinical and clinical use.
Collapse
Affiliation(s)
- Isabela Pereira Gomes
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31279-901 Belo Horizonte, Brazil
| | | | - Ana Luiza Chaves Maia
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31279-901 Belo Horizonte, Brazil
| | - Domenico Rubello
- Department of Nuclear Medicine, Radiology, Neuroradiology, Medical Physics, Clinical Laboratory, Microbiology, Pathology, Trasfusional Medicine, Santa Maria della Misericordia Hospital, 45100 Rovigo, Italy
| | - Danyelle M. Townsend
- Department of Drug Discovery and Pharmaceutical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | - Elaine Amaral Leite
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31279-901 Belo Horizonte, Brazil
| |
Collapse
|
102
|
Kancharla S, Canales E, Alexandridis P. Perfluorooctanoate in Aqueous Urea Solutions: Micelle Formation, Structure, and Microenvironment. Int J Mol Sci 2019; 20:E5761. [PMID: 31744078 PMCID: PMC6888096 DOI: 10.3390/ijms20225761] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 11/30/2022] Open
Abstract
Fluorinated surfactants are used in a wide range of applications that involve aqueous solvents incorporating various additives. The presence of organic compounds such as urea is expected to affect the self-assembly of fluorinated surfactants, however, very little is known about this. We investigated the effect of urea on the micellization in water of the common fluorinated surfactant ammonium perfluorooctanoate (APFO), and on the structure and microenvironment of the micelles that APFO forms. Addition of urea to aqueous APFO solution decreased the critical micellization concentration (CMC) and increased the counterion dissociation. The observed increase in surface area per APFO headgroup and decrease in packing density at the micelle surface suggest the localization of urea at the micelle surface in a manner that reduces headgroup repulsions. Micropolarity data further support this picture. The results presented here indicate that significant differences exist between urea effects on fluorinated surfactant and on hydrocarbon surfactant micellization in aqueous solution. For example, the CMC of sodium dodecyl sulfate (SDS) increased with urea addition, while the increase in surface area per headgroup and packing density of SDS with urea addition are much lower than those observed for APFO. This study informs fluorinated surfactant fate and transport in the environment, and also applications involving aqueous media in which urea or similar additives are present.
Collapse
Affiliation(s)
| | | | - Paschalis Alexandridis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260, USA; (S.K.); (E.C.)
| |
Collapse
|
103
|
König N, Willner L, Lund R. Structure and thermodynamics of mixed polymeric micelles with crystalline cores: tuning properties via co-assembly. SOFT MATTER 2019; 15:7777-7786. [PMID: 31482169 DOI: 10.1039/c9sm01452g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We investigate micelles formed by mixtures of n-alkyl-poly(ethylene oxide) block copolymers, Cn-PEO, with different alkyl block lengths in aqueous solution. This model system has previously been used to shed light on the interplay between exchange kinetics and crystallinity in self-assembling systems [König et al., Phys. Rev. Lett., 2019, 122, 078001]. Now we report on the structure and thermodynamics of these micelles by combining results from small-angle X-ray scattering, differential scanning calorimetry and volumetric measurements. We show that mixed micelles are formed despite the fact that length-mismatched n-alkanes of similar weights in bulk tend to demix below the crystallization temperature. Instead, the system exhibits similar properties as single-component micelles but with a modulated melting region. Interestingly, the melting point depression due to self-confinement within the micellar core can be approximately described by a generalized Gibbs-Thomson equation, similar to single-component micelles [Zinn et al. Phys. Rev. Lett., 2014, 113, 238305]. Furthermore, we find a novel scaling law for these micelles where, at least for larger n, the aggregation number scales with the third power of the length of the hydrophobic block, Nagg ∝ n3. Possibly, there might be a cross-over from the conventional Nagg ∝ n2 behaviour around n ≈ 19. However, the reason for such a transition as well as the strong n dependence remains a challenge and requires more theoretical work.
Collapse
Affiliation(s)
- Nico König
- Department of Chemistry, University of Oslo, Postboks 1033 Blindern, 0315 Oslo, Norway.
| | | | | |
Collapse
|
104
|
Mirgorodskaya AB, Kushnazarova RA, Lukashenko SS, Zakharova LY. Self-assembly of mixed systems based on nonionic and carbamate-bearing cationic surfactants as a tool for fabrication of biocompatible nanocontainers. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111407] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
105
|
Moquin A, Sturn J, Zhang I, Ji J, von Celsing R, Vali H, Maysinger D, Kakkar A. Unraveling Aqueous Self-Assembly of Telodendrimers to Shed Light on Their Efficacy in Drug Encapsulation. ACS APPLIED BIO MATERIALS 2019; 2:4515-4526. [DOI: 10.1021/acsabm.9b00643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Alexandre Moquin
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, Quebec H3G 1Y6, Canada
| | - Jessica Sturn
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Issan Zhang
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, Quebec H3G 1Y6, Canada
| | - Jeff Ji
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, Quebec H3G 1Y6, Canada
| | - Richard von Celsing
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Hojatollah Vali
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, Quebec H3A 0C7, Canada
| | - Dusica Maysinger
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, Quebec H3G 1Y6, Canada
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
106
|
Tablet Scoring: Current Practice, Fundamentals, and Knowledge Gaps. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9153066] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Oral solid dosage formulations and/or tablets have remained the preferred route of administration by both patients and health care practitioners. Oral tablets are easy to administer, they are non-invasive and cause less risk adversity. Because of the lack of commercially available tablet dose options, tablets are being split or partitioned by users. Tablet scoring refers to the breakage of a tablet to attain a desired efficacy dose and is an emerging concept in the pharmaceutical industry. The primary reason for the tablet scoring practice is to adjust the dose: dose tapering or dose titrating. Other reasons for tablet partitioning are to facilitate dose administration, particularly among the pediatric and the geriatric patient population, and to mitigating the high cost of prescription drugs. The scope of this review is to: (1) evaluate the advantages and inconveniences associated with tablet scoring/portioning, and (2) identify factors in the formulation and the manufacturing of tablets that influence tablet splitting. Whereas tablet partitioning has been a common practice, there is a lack of understanding regarding the fundamentals underpinning the performance of tablets with respect to splitting. Several factors can influence tablet partitioning: tablet size, shape, and thickness. A requirement has recently been set by the European Pharmacopoeia and the U.S. Food and Drug Administration for the uniformity of mass of subdivided tablets. For breaking ease, an in-vivo reference test and a routinely applicable in-vitro test need to be established.
Collapse
|
107
|
Bensabeh N, Moreno A, Roig A, Monaghan OR, Ronda JC, Cádiz V, Galià M, Howdle SM, Lligadas G, Percec V. Polyacrylates Derived from Biobased Ethyl Lactate Solvent via SET-LRP. Biomacromolecules 2019; 20:2135-2147. [PMID: 31013072 DOI: 10.1021/acs.biomac.9b00435] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The precise synthesis of polymers derived from alkyl lactate ester acrylates is reported for the first time. Kinetic experiments were conducted to demonstrate that Cu(0) wire-catalyzed single electron transfer-living radical polymerization (SET-LRP) in alcohols at 25 °C provides a green methodology for the LRP of this forgotten class of biobased monomers. The acrylic derivative of ethyl lactate (EL) solvent and homologous structures with methyl and n-butyl ester were polymerized with excellent control over molecular weight, molecular weight distribution, and chain-end functionality. Kinetics plots in conventional alcohols such as ethanol and methanol were first order in the monomer, with molecular weight increasing linearly with conversion. However, aqueous EL mixtures were found to be more suitable than pure EL to mediate the SET-LRP process. The near-quantitative monomer conversion and high bromine chain-end functionality, demonstrated by matrix-assisted laser desorption ionization time-of-flight analysis, further allowed the preparation of innovative biobased block copolymers containing rubbery poly(ethyl lactate acrylate) poly(ELA) sequences. For instance, the poly(ELA)- b-poly(glycerol acrylate) block copolymer self-assembled in water to form stable micelles with chiral lactic acid-derived block-forming micellar core as confirmed by the pyrene-probe-based fluorescence technique. Dynamic light scattering and transmission electron microscopy measurements revealed the nanosize spherical morphology for these biobased aggregates.
Collapse
Affiliation(s)
- Nabil Bensabeh
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry , University Rovira i Virgili , Tarragona 43003 , Spain
| | - Adrian Moreno
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry , University Rovira i Virgili , Tarragona 43003 , Spain
| | - Adrià Roig
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry , University Rovira i Virgili , Tarragona 43003 , Spain
| | - Olivia R Monaghan
- School of Chemistry , University of Nottingham , University Park Nottingham, NG7 2RD Nottingham , U.K
| | - Juan C Ronda
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry , University Rovira i Virgili , Tarragona 43003 , Spain
| | - Virginia Cádiz
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry , University Rovira i Virgili , Tarragona 43003 , Spain
| | - Marina Galià
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry , University Rovira i Virgili , Tarragona 43003 , Spain
| | - Steven M Howdle
- School of Chemistry , University of Nottingham , University Park Nottingham, NG7 2RD Nottingham , U.K
| | - Gerard Lligadas
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry , University Rovira i Virgili , Tarragona 43003 , Spain.,Roy & Diana Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104-6323 , United States
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104-6323 , United States
| |
Collapse
|
108
|
Bodratti AM, Cheng J, Kong SM, Chow MR, Tsianou M, Alexandridis P. Self‐Assembly of Polyethylene Glycol Ether Surfactants in Aqueous Solutions: The Effect of Linker between Alkyl and Ethoxylate. J SURFACTANTS DETERG 2019. [DOI: 10.1002/jsde.12284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Andrew M. Bodratti
- Department of Chemical and Biological EngineeringUniversity at Buffalo, The State University of New York (SUNY) Buffalo NY 14260‐4200 USA
| | - Junce Cheng
- Department of Chemical and Biological EngineeringUniversity at Buffalo, The State University of New York (SUNY) Buffalo NY 14260‐4200 USA
| | - Stephanie M. Kong
- Department of Chemical and Biological EngineeringUniversity at Buffalo, The State University of New York (SUNY) Buffalo NY 14260‐4200 USA
| | - Matthew R. Chow
- Department of Chemical and Biological EngineeringUniversity at Buffalo, The State University of New York (SUNY) Buffalo NY 14260‐4200 USA
| | - Marina Tsianou
- Department of Chemical and Biological EngineeringUniversity at Buffalo, The State University of New York (SUNY) Buffalo NY 14260‐4200 USA
| | - Paschalis Alexandridis
- Department of Chemical and Biological EngineeringUniversity at Buffalo, The State University of New York (SUNY) Buffalo NY 14260‐4200 USA
| |
Collapse
|