101
|
Karabiyik C, Fernandes R, Figueiredo FR, Socodato R, Brakebusch C, Lambertsen KL, Relvas JB, Santos SD. Neuronal Rho GTPase Rac1 elimination confers neuroprotection in a mouse model of permanent ischemic stroke. Brain Pathol 2017; 28:569-580. [PMID: 28960571 DOI: 10.1111/bpa.12562] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 09/21/2017] [Indexed: 01/08/2023] Open
Abstract
The Rho GTPase Rac1 is a multifunctional protein involved in distinct pathways ranging from development to pathology. The aim of the present study was to unravel the contribution of neuronal Rac1 in regulating the response to brain injury induced by permanent focal cerebral ischemia (pMCAO). Our results show that pMCAO significantly increased total Rac1 levels in wild type mice, mainly through rising nuclear Rac1, while a reduction in Rac1 activation was observed. Such changes preceded cell death induced by excitotoxic stress. Pharmacological inhibition of Rac1 in primary neuronal cortical cells prevented the increase in oxidative stress induced after overactivation of glutamate receptors. However, this was not sufficient to prevent the associated neuronal cell death. In contrast, RNAi-mediated knock down of Rac1 in primary cortical neurons prevented cell death elicited by glutamate excitotoxicity and decreased the activity of NADPH oxidase. To test whether in vivo down regulation of neuronal Rac1 was neuroprotective after pMCAO, we used tamoxifen-inducible neuron-specific conditional Rac1-knockout mice. We observed a significant 50% decrease in brain infarct volume of knockout mice and a concomitant increase in HIF-1α expression compared to littermate control mice, demonstrating that ablation of Rac1 in neurons is neuroprotective. Transmission electron microscopy performed in the ischemic brain showed that lysosomes in the infarct of Rac1- knockout mice were preserved at similar levels to those of non-infarcted tissue, while littermate mice displayed a decrease in the number of lysosomes, further corroborating the notion that Rac1 ablation in neurons is neuroprotective. Our results demonstrate that Rac1 plays important roles in the ischemic pathological cascade and that modulation of its levels is of therapeutic interest.
Collapse
Affiliation(s)
- Cansu Karabiyik
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Glial Cell Biology, IBMC- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense C, Denmark
| | - Rui Fernandes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,HEMS, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Francisco Rosário Figueiredo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,HEMS, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Renato Socodato
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Glial Cell Biology, IBMC- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Cord Brakebusch
- Biotech Research and Innovation Center, University of Copenhagen, Denmark
| | - Kate Lykke Lambertsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense C, Denmark.,Department of Neurology, Odense University Hospital, Odence C, Denmark.,BRIDGE - Brain Research - Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - João Bettencourt Relvas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Glial Cell Biology, IBMC- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Sofia Duque Santos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Glial Cell Biology, IBMC- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| |
Collapse
|
102
|
Rac Attack: Modulation of the Small GTPase Rac in Inflammatory Bowel Disease and Thiopurine Therapy. Mol Diagn Ther 2017; 20:551-557. [PMID: 27604084 PMCID: PMC5107185 DOI: 10.1007/s40291-016-0232-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The incidence and prevalence of inflammatory bowel disease (IBD) are increasing. Although the etiology of IBD is unknown, it is thought that genetically susceptible individuals display an inappropriate inflammatory response to commensal microbes, resulting in intestinal tissue damage. Key proteins involved in regulating the immune response, and thus in inflammation, are the small triphosphate-binding protein Rac and its regulatory network. Recent data suggest these proteins to be involved in (dys)regulation of the characteristic inflammatory processes in IBD. Moreover, Rac-gene variants have been identified as susceptibility risk factors for IBD, and Rac1 GTPase signaling has been shown to be strongly suppressed in non-inflamed mucosa compared with inflamed colonic mucosa in IBD. In addition, first-line immunosuppressive treatment for IBD includes thiopurine therapy, and its immunosuppressive effect is primarily ascribed to Rac1 suppression. In this review, we focus on Rac modification and its potential role in the development of IBD, Rac as the molecular therapeutic target in current thiopurine therapy, and the modulation of the Rac signal transduction pathway as a promising novel therapeutic strategy.
Collapse
|
103
|
Cabrera M, Echeverria E, Lenicov FR, Cardama G, Gonzalez N, Davio C, Fernández N, Menna PL. Pharmacological Rac1 inhibitors with selective apoptotic activity in human acute leukemic cell lines. Oncotarget 2017; 8:98509-98523. [PMID: 29228706 PMCID: PMC5716746 DOI: 10.18632/oncotarget.21533] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 07/18/2017] [Indexed: 01/01/2023] Open
Abstract
Rac1 GTPase has long been recognized as a critical regulatory protein in different cellular and molecular processes involved in cancer progression, including acute myeloid leukemia. Here we show the antitumoral activity of ZINC69391 and 1A-116, two chemically-related Rac1 pharmacological inhibitors, on a panel of four leukemic cell lines representing different levels of maturation. Importantly, we show that the main mechanism involved in the antitumoral effect triggered by the Rac1 inhibitors comprises the induction of the mitochondrial or intrinsic apoptotic pathway. Interestingly, Rac1 inhibition selectively induced apoptosis on patient-derived leukemia cells but not on normal mononuclear cells. These results show the potential therapeutic benefits of targeting Rac1 pathway in hematopoietic malignancies.
Collapse
Affiliation(s)
- Maia Cabrera
- Instituto de Investigaciones Farmacológicas, Facultad de Farmacia y Bioquímica (ININFA-UBA CONICET), Buenos Aires, Argentina
| | - Emiliana Echeverria
- Instituto de Investigaciones Farmacológicas, Facultad de Farmacia y Bioquímica (ININFA-UBA CONICET), Buenos Aires, Argentina
| | - Federico Remes Lenicov
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Facultad de Medicina, (INBIRS-UBA-CONICET), Buenos Aires, Argentina
| | - Georgina Cardama
- Laboratorio de Oncología Molecular, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Nazareno Gonzalez
- Laboratorio de Oncología Molecular, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Carlos Davio
- Instituto de Investigaciones Farmacológicas, Facultad de Farmacia y Bioquímica (ININFA-UBA CONICET), Buenos Aires, Argentina
| | - Natalia Fernández
- Instituto de Investigaciones Farmacológicas, Facultad de Farmacia y Bioquímica (ININFA-UBA CONICET), Buenos Aires, Argentina
| | - Pablo Lorenzano Menna
- Laboratorio de Oncología Molecular, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| |
Collapse
|
104
|
Kazanietz MG, Caloca MJ. The Rac GTPase in Cancer: From Old Concepts to New Paradigms. Cancer Res 2017; 77:5445-5451. [PMID: 28807941 DOI: 10.1158/0008-5472.can-17-1456] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/29/2017] [Accepted: 08/01/2017] [Indexed: 01/24/2023]
Abstract
Rho family GTPases are critical regulators of cellular functions that play important roles in cancer progression. Aberrant activity of Rho small G-proteins, particularly Rac1 and their regulators, is a hallmark of cancer and contributes to the tumorigenic and metastatic phenotypes of cancer cells. This review examines the multiple mechanisms leading to Rac1 hyperactivation, particularly focusing on emerging paradigms that involve gain-of-function mutations in Rac and guanine nucleotide exchange factors, defects in Rac1 degradation, and mislocalization of Rac signaling components. The unexpected pro-oncogenic functions of Rac GTPase-activating proteins also challenged the dogma that these negative Rac regulators solely act as tumor suppressors. The potential contribution of Rac hyperactivation to resistance to anticancer agents, including targeted therapies, as well as to the suppression of antitumor immune response, highlights the critical need to develop therapeutic strategies to target the Rac pathway in a clinical setting. Cancer Res; 77(20); 5445-51. ©2017 AACR.
Collapse
Affiliation(s)
- Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Maria J Caloca
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, Valladolid, Spain.
| |
Collapse
|
105
|
Cardama GA, Gonzalez N, Maggio J, Menna PL, Gomez DE. Rho GTPases as therapeutic targets in cancer (Review). Int J Oncol 2017; 51:1025-1034. [PMID: 28848995 PMCID: PMC5592879 DOI: 10.3892/ijo.2017.4093] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/17/2017] [Indexed: 12/20/2022] Open
Abstract
Rho GTPases are key molecular switches controlling the transduction of external signals to cytoplasmic and nuclear effectors. In the last few years, the development of genetic and pharmacological tools has allowed a more precise definition of the specific roles of Rho GTPases in cancer. The aim of the present review is to describe the cellular functions regulated by these proteins with focus in deregulated signals present in malignant tumors. Finally, we describe the state of the art in search of different experimental therapeutic strategies with Rho GTPases as molecular targets.
Collapse
Affiliation(s)
- G A Cardama
- Laboratory of Molecular Oncology, Department of Science and Technology, Quilmes National University, Bernal B1876BXD, Buenos Aires, Argentina
| | - N Gonzalez
- Laboratory of Molecular Oncology, Department of Science and Technology, Quilmes National University, Bernal B1876BXD, Buenos Aires, Argentina
| | - J Maggio
- Laboratory of Molecular Oncology, Department of Science and Technology, Quilmes National University, Bernal B1876BXD, Buenos Aires, Argentina
| | - P Lorenzano Menna
- Laboratory of Molecular Oncology, Department of Science and Technology, Quilmes National University, Bernal B1876BXD, Buenos Aires, Argentina
| | - D E Gomez
- Laboratory of Molecular Oncology, Department of Science and Technology, Quilmes National University, Bernal B1876BXD, Buenos Aires, Argentina
| |
Collapse
|
106
|
Kowluru A. Tiam1/Vav2-Rac1 axis: A tug-of-war between islet function and dysfunction. Biochem Pharmacol 2017; 132:9-17. [PMID: 28202288 DOI: 10.1016/j.bcp.2017.02.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 02/07/2017] [Indexed: 10/20/2022]
Abstract
Glucose-stimulated insulin secretion [GSIS] from the islet β-cell involves a well-orchestrated interplay between metabolic and cationic events. It is well established that intracellular generation of adenine and guanine nucleotide triphosphates [e.g., ATP and GTP] represents one of the requisite signaling steps in GSIS. The small molecular mass GTP-binding proteins [G-proteins; e.g., Rac1 and Cdc42] have been shown to regulate islet β-cell function including actin cytoskeletal remodeling and fusion of insulin granules with the plasma membrane for GSIS to occur. In this context, several regulatory factors for these G-proteins have been identified in the pancreatic β-cell; these include guanine nucleotide exchange factors [GEFs] and guanine nucleotide dissociation inhibitors [GDI]. Recent pharmacological and molecular biological evidence identified Tiam1 and Vav2 as GEFs for Rac1 in promoting physiological insulin secretion. Paradoxically, emerging evidence in multiple cell types, including the islet β-cell, suggests key roles for Rac1 in the onset of cellular dysfunction under conditions of metabolic stress and diabetes. Furthermore, functional inactivation of either Tiam1 or Vav2 appears to attenuate sustained activation of Rac1 and its downstream signaling events [activation of stress kinases] under conditions of metabolic stress. Together, these findings suggest both "friendly" and "non-friendly" roles for Tiam1/Vav2-Rac1 signaling axis in islet β-cell in health and diabetes. Our current understanding of the field and the knowledge gaps that exist in this area of islet biology are heighted herein. Furthermore, potential caveats in the specificity and selectivity of pharmacological inhibitors that are available currently are discussed in this Commentary.
Collapse
Affiliation(s)
- Anjaneyulu Kowluru
- Beta-Cell Biochemistry Laboratory, John D. Dingell VA Medical Center, and Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
107
|
Tunduguru R, Thurmond DC. Promoting Glucose Transporter-4 Vesicle Trafficking along Cytoskeletal Tracks: PAK-Ing Them Out. Front Endocrinol (Lausanne) 2017; 8:329. [PMID: 29209279 PMCID: PMC5701999 DOI: 10.3389/fendo.2017.00329] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/06/2017] [Indexed: 12/27/2022] Open
Abstract
Glucose is the principal cellular energy source in humans and maintenance of glucose homeostasis is critical for survival. Glucose uptake into peripheral skeletal muscle and adipose tissues requires the trafficking of vesicles containing glucose transporter-4 (GLUT4) from the intracellular storage compartments to the cell surface. Trafficking of GLUT4 storage vesicles is initiated via the canonical insulin signaling cascade in skeletal muscle and fat cells, as well as via exercise-induced contraction in muscle cells. Recent studies have elucidated steps in the signaling cascades that involve remodeling of the cytoskeleton, a process that underpins the mechanical movement of GLUT4 vesicles. This review is focused upon an alternate phosphoinositide-3 kinase-dependent pathway involving Ras-related C3 botulinum toxin substrate 1 signaling through the p21-activated kinase p21-activated kinase 1 and showcases related signaling events that co-regulate both the depolymerization and re-polymerization of filamentous actin. These new insights provide an enriched understanding into the process of glucose transport and yield potential new targets for interventions aimed to improve insulin sensitivity and remediate insulin resistance, pre-diabetes, and the progression to type 2 diabetes.
Collapse
Affiliation(s)
- Ragadeepthi Tunduguru
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute of City of Hope, Duarte, CA, United States
| | - Debbie C. Thurmond
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute of City of Hope, Duarte, CA, United States
- *Correspondence: Debbie C. Thurmond,
| |
Collapse
|