101
|
Gutting T, Burgermeister E, Härtel N, Ebert MP. Checkpoints and beyond - Immunotherapy in colorectal cancer. Semin Cancer Biol 2018; 55:78-89. [PMID: 29716829 DOI: 10.1016/j.semcancer.2018.04.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 04/03/2018] [Accepted: 04/10/2018] [Indexed: 02/06/2023]
Abstract
Immunotherapy is the latest revolution in cancer therapy. It continues to show impressive results in malignancies like melanoma and others. At least so far, effects are modest in colorectal cancer (CRC) and only a subset of patients benefits from already approved checkpoint inhibitors. In this review, we discuss major hurdles of immunotherapy like the immunosuppressive niche and low immunogenicity of CRC next to current achievements of checkpoint inhibitors, interleukin treatment and adoptive cell transfer (dendritic cells/cytokine induced killer cells, tumor infiltrating lymphocytes, chimeric antigen receptor cells, T cell receptor transfer) in pre-clinical models and clinical trials. We intensively examine approaches to overcome low immunogenicity by combination of different therapies and address future strategies of therapy as well as the need of predictive factors in this emerging field of precision medicine.
Collapse
Affiliation(s)
- Tobias Gutting
- Department of Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, University Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Elke Burgermeister
- Department of Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, University Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Nicolai Härtel
- Department of Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, University Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; Heilig-Geist Hospital Bensheim, Rodensteinstraße 94, 64625 Bensheim, Germany
| | - Matthias P Ebert
- Department of Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, University Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| |
Collapse
|
102
|
Decreased miR-320a promotes invasion and metastasis of tumor budding cells in tongue squamous cell carcinoma. Oncotarget 2018; 7:65744-65757. [PMID: 27582550 PMCID: PMC5323189 DOI: 10.18632/oncotarget.11612] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/15/2016] [Indexed: 12/12/2022] Open
Abstract
We aimed to determine the specific miRNA profile of tumor budding cells and investigate the potential role of miR-320a in invasion and metastasis of tongue squamous cell carcinoma (TSCC). We collected tumor budding cells and paired central tumor samples from five TSCC specimens with laser capture microdissection and examined the specimens using a miRNA microarray. The specific miRNA signature of tumor budding cells was identified. We found that miR-320a was dramatically decreased in tumor budding cells. Knockdown of miR-320a significantly enhanced migration and invasion of TSCC cell lines. Suz12 was shown to be a direct target of miR-320a. Similar results were also observed in nude mouse models. Multivariate analysis indicated that miR-320a was an independent prognostic factor. Kaplan–Meier analysis demonstrated that decreased miR-320a and high intensity of tumor budding were correlated with poor survival rate, especially in the subgroup with high-intensity tumor budding and low expression of miR-320a. We concluded that decreased expression of miR-320a could promote invasion and metastasis of tumor budding cells by targeting Suz12 in TSCC. A combination of tumor budding and miR-320a may serve as an index to identify an aggressive sub-population of TSCC cells with high metastatic potential.
Collapse
|
103
|
Karpinski P, Rossowska J, Sasiadek MM. Immunological landscape of consensus clusters in colorectal cancer. Oncotarget 2017; 8:105299-105311. [PMID: 29285252 PMCID: PMC5739639 DOI: 10.18632/oncotarget.22169] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/20/2017] [Indexed: 12/30/2022] Open
Abstract
Recent, large-scale expression–based subtyping has advanced our understanding of the genomic landscape of colorectal cancer (CRC) and resulted in a consensus molecular classification that enables the categorization of most CRC tumors into one of four consensus molecular subtypes (CMS). Currently, major progress in characterization of immune landscape of tumor-associated microenvironment has been made especially with respect to microsatellite status of CRCs. While these studies profoundly improved the understanding of molecular and immunological profile of CRCs heterogeneity less is known about repertoire of the tumor infiltrating immune cells of each CMS. In order to comprehensively characterize the immune landscape of CRC we re-analyzed a total of 15 CRC genome-wide expression data sets encompassing 1597 tumors and 125 normal adjacent colon tissues. After quality filtering, CRC clusters were discovered using a combination of multiple clustering algorithms and multiple validity metrics. CIBERSORT algorithm was used to compute relative proportions of 22 human leukocyte subpopulations across CRC clusters and normal colon tissue. Subsequently, differential expression specific to tumor epithelial cells was calculated to characterize mechanisms of tumor escape from immune surveillance occurring in particular CRC clusters. Our results not only characterize the common and cluster-specific influx of immune cells into CRCs but also identify several deregulated gene targets that may contribute to improvement of immunotherapeutic strategies in CRC.
Collapse
Affiliation(s)
- Pawel Karpinski
- Department of Genetics, Wroclaw Medical University, Wroclaw, Poland
| | - Joanna Rossowska
- L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | | |
Collapse
|
104
|
Li S, Xu F, Zhang J, Wang L, Zheng Y, Wu X, Wang J, Huang Q, Lai M. Tumor-associated macrophages remodeling EMT and predicting survival in colorectal carcinoma. Oncoimmunology 2017; 7:e1380765. [PMID: 29416940 DOI: 10.1080/2162402x.2017.1380765] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/09/2017] [Accepted: 09/13/2017] [Indexed: 12/23/2022] Open
Abstract
The immune contexture, a composition of the tumor microenvironment, plays multiple important roles in cancer stem cell (CSC) and epithelial-mesenchymal transition (EMT), and hence critically influences tumor initiation, progression and patient outcome. Tumor-associated macrophages (TAMs) are abundant in immune contexture, however their roles in CSC, EMT and prognosis of colorectal cancer (CRC) have not been elucidated. In 419 colorectal carcinomas, immune cell types (CD68+ macrophages, CD3+, CD4+ or CD8+ T lymphocytes, CD20+ B lymphocytes), EMT markers (E-cadherin and Snail) as well as the stem cell marker (CD44v6) were detected in tumor center (TC) and tumor invasive front (TF) respectively by immunohistochemistry. Tumor buds, that represent EMT phenotype, were also counted. It was found CD68+ macrophages were the most infiltrating immune cells in CRC. By correlation analysis, more CD68+TF macrophages were associated with more CD44v6 expression (p < 0.001), lower SnailTF expression (p = 0.08) and fewer tumor buds (p < 0.001). More CD68+TF macrophages were significantly related to more CD3+TF T lymphocytes (p = 0.002), CD8+TF T lymphocytes (p < 0.001) and CD20+TF B lymphocytes counts (p = 0.004). Strong CD68+TF macrophages infiltration also predicted long term overall survival. CRC patients with more tumor buds had worse survival. However, strong CD68+TF macrophages infiltration could reverse the unfavorable results since patients with more tumor buds but increasing CD68+TF macrophages infiltration had the favorable outcome, similar to lower tumor buds groups. This study provided direct morphological evidence that tumor-associated macrophages in the invasive front play critical roles in fighting with the unfavorable results of tumor buds, thus resulting favorable outcomes for CRC patients.
Collapse
Affiliation(s)
- Si Li
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fangying Xu
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jing Zhang
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lili Wang
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yang Zheng
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xuesong Wu
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jing Wang
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qiong Huang
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Maode Lai
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
105
|
Cook KL, Soto-Pantoja DR. "UPRegulation" of CD47 by the endoplasmic reticulum stress pathway controls anti-tumor immune responses. Biomark Res 2017; 5:26. [PMID: 28815041 PMCID: PMC5557514 DOI: 10.1186/s40364-017-0105-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/31/2017] [Indexed: 01/22/2023] Open
Abstract
We recently demonstrated that targeting the unfolded protein response (UPR) protein GRP78 down-regulates CD47 expression, resulting in increased tumor macrophage infiltration and inhibited resistance to anti-estrogen therapy. We now show new data indicating that anti-estrogen therapy regulates CD47 expression and implicates its ligand, thrombospondin-1, in regulation of tumor macrophage infiltration. Moreover, GRP78 and CD47 co-expression is associated with poor prognosis in breast cancer patients, suggesting the existence of crosstalk between UPR and immunity that regulates therapeutic responses in breast cancer.
Collapse
Affiliation(s)
- Katherine L Cook
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA.,Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA.,Wake Forest Baptist Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| | - David R Soto-Pantoja
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA.,Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA.,Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA.,Wake Forest Baptist Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| |
Collapse
|