101
|
Liu X, Zhang L, Wang P, Li X, Qiu D, Li L, Zhang J, Hou X, Han L, Ge J, Li M, Gu L, Wang Q. Sirt3-dependent deacetylation of SOD2 plays a protective role against oxidative stress in oocytes from diabetic mice. Cell Cycle 2017; 16:1302-1308. [PMID: 28662362 DOI: 10.1080/15384101.2017.1320004] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Maternal diabetes has been demonstrated to adversely affect oocyte quality in mouse oocytes. However, the potential molecular mechanisms are poorly understood. Here, we established a type I diabetic mouse model and detected the increased reactive oxygen species (ROS) levels and decreased Sirt3 expression in oocytes from diabetic mice. Furthermore, we found that forced expression of Sirt3 in diabetic oocytes significantly attenuates such an excessive production of ROS. The acetylation status of lysine 68 of superoxide dismutase (SOD2K68) is dependent on Sirt3 in oocytes. In line with this, SOD2K68 acetylation levels were markedly increased in diabetic oocytes, and Sirt3 overexpression could effectively suppress this tendency. Importantly, the deacetylation-mimetic mutant SOD2K68R is capable of partly preventing the oxidative stress in oocytes from diabetic mice. In conclusion, our findings support a model where Sirt3 plays a protective role against oxidative stress in oocytes exposed to maternal diabetes through deacetylating SOD2K68.
Collapse
Affiliation(s)
- Xiaohui Liu
- a College of Animal Science & Technology , Nanjing Agricultural University , Nanjing.,b State Key Laboratory of Reproductive Medicine , Nanjing Medical University , Nanjing
| | | | - Pan Wang
- d Center for Reproductive Medicine , Peking University Third Hospital , Beijing , China
| | - Xiaoyan Li
- a College of Animal Science & Technology , Nanjing Agricultural University , Nanjing
| | - Danhong Qiu
- b State Key Laboratory of Reproductive Medicine , Nanjing Medical University , Nanjing
| | - Ling Li
- b State Key Laboratory of Reproductive Medicine , Nanjing Medical University , Nanjing
| | - Jiaqi Zhang
- b State Key Laboratory of Reproductive Medicine , Nanjing Medical University , Nanjing
| | - Xiaojing Hou
- b State Key Laboratory of Reproductive Medicine , Nanjing Medical University , Nanjing
| | - Longsen Han
- b State Key Laboratory of Reproductive Medicine , Nanjing Medical University , Nanjing
| | - Juan Ge
- b State Key Laboratory of Reproductive Medicine , Nanjing Medical University , Nanjing
| | - Mo Li
- d Center for Reproductive Medicine , Peking University Third Hospital , Beijing , China
| | - Ling Gu
- a College of Animal Science & Technology , Nanjing Agricultural University , Nanjing
| | - Qiang Wang
- b State Key Laboratory of Reproductive Medicine , Nanjing Medical University , Nanjing
| |
Collapse
|
102
|
Post DMB, Schilling B, Reinders LM, D’Souza AK, Ketterer MR, Kiel SJ, Chande AT, Apicella MA, Gibson BW. Identification and characterization of AckA-dependent protein acetylation in Neisseria gonorrhoeae. PLoS One 2017; 12:e0179621. [PMID: 28654654 PMCID: PMC5487020 DOI: 10.1371/journal.pone.0179621] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 06/01/2017] [Indexed: 11/18/2022] Open
Abstract
Neisseria gonorrhoeae, the causative agent of gonorrhea, has a number of factors known to contribute to pathogenesis; however, a full understanding of these processes and their regulation has proven to be elusive. Post-translational modifications (PTMs) of bacterial proteins are now recognized as one mechanism of protein regulation. In the present study, Western blot analyses, with an anti-acetyl-lysine antibody, indicated that a large number of gonococcal proteins are post-translationally modified. Previous work has shown that Nε-lysine acetylation can occur non-enzymatically with acetyl-phosphate (AcP) as the acetyl donor. In the current study, an acetate kinase mutant (1291ackA), which accumulates AcP, was generated in N. gonorrhoeae. Broth cultures of N. gonorrhoeae 1291wt and 1291ackA were grown, proteins extracted and digested, and peptides containing acetylated-lysines (K-acetyl) were affinity-enriched from both strains. Mass spectrometric analyses of these samples identified a total of 2686 unique acetylation sites. Label-free relative quantitation of the K-acetyl peptides derived from the ackA and wild-type (wt) strains demonstrated that 109 acetylation sites had an ackA/wt ratio>2 and p-values <0.05 in at least 2/3 of the biological replicates and were designated as “AckA-dependent”. Regulated K-acetyl sites were found in ribosomal proteins, central metabolism proteins, iron acquisition and regulation proteins, pilus assembly and regulation proteins, and a two-component response regulator. Since AckA is part of a metabolic pathway, comparative growth studies of the ackA mutant and wt strains were performed. The mutant showed a growth defect under aerobic conditions, an inability to grow anaerobically, and a defect in biofilm maturation. In conclusion, the current study identified AckA-dependent acetylation sites in N. gonorrhoeae and determined that these sites are found in a diverse group of proteins. This work lays the foundation for future studies focusing on specific acetylation sites that may have relevance in gonococcal pathogenesis and metabolism.
Collapse
Affiliation(s)
- Deborah M. B. Post
- Buck Institute for Research on Aging, Novato, California, United States of America
- * E-mail: (DMBP); (BWG)
| | - Birgit Schilling
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Lorri M. Reinders
- Buck Institute for Research on Aging, Novato, California, United States of America
| | | | - Margaret R. Ketterer
- Department of Microbiology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Steven J. Kiel
- Department of Microbiology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Aroon T. Chande
- Department of Microbiology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Michael A. Apicella
- Department of Microbiology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Bradford W. Gibson
- Buck Institute for Research on Aging, Novato, California, United States of America
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, United States of America
- * E-mail: (DMBP); (BWG)
| |
Collapse
|
103
|
Thapa D, Zhang M, Manning JR, Guimarães DA, Stoner MW, O'Doherty RM, Shiva S, Scott I. Acetylation of mitochondrial proteins by GCN5L1 promotes enhanced fatty acid oxidation in the heart. Am J Physiol Heart Circ Physiol 2017; 313:H265-H274. [PMID: 28526709 DOI: 10.1152/ajpheart.00752.2016] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 05/15/2017] [Accepted: 05/15/2017] [Indexed: 12/22/2022]
Abstract
Lysine acetylation is a reversible posttranslational modification and is particularly important in the regulation of mitochondrial metabolic enzymes. Acetylation uses acetyl-CoA derived from fuel metabolism as a cofactor, thereby linking nutrition to metabolic activity. In the present study, we investigated how mitochondrial acetylation status in the heart is controlled by food intake and how these changes affect mitochondrial metabolism. We found that there was a significant increase in cardiac mitochondrial protein acetylation in mice fed a long-term high-fat diet and that this change correlated with an increase in the abundance of the mitochondrial acetyltransferase-related protein GCN5L1. We showed that the acetylation status of several mitochondrial fatty acid oxidation enzymes (long-chain acyl-CoA dehydrogenase, short-chain acyl-CoA dehydrogenase, and hydroxyacyl-CoA dehydrogenase) and a pyruvate oxidation enzyme (pyruvate dehydrogenase) was significantly upregulated in high-fat diet-fed mice and that the increase in long-chain and short-chain acyl-CoA dehydrogenase acetylation correlated with increased enzymatic activity. Finally, we demonstrated that the acetylation of mitochondrial fatty acid oxidation proteins was decreased after GCN5L1 knockdown and that the reduced acetylation led to diminished fatty acid oxidation in cultured H9C2 cells. These data indicate that lysine acetylation promotes fatty acid oxidation in the heart and that this modification is regulated in part by the activity of GCN5L1.NEW & NOTEWORTHY Recent research has shown that acetylation of mitochondrial fatty acid oxidation enzymes has greatly contrasting effects on their activity in different tissues. Here, we provide new evidence that acetylation of cardiac mitochondrial fatty acid oxidation enzymes by GCN5L1 significantly upregulates their activity in diet-induced obese mice.
Collapse
Affiliation(s)
- Dharendra Thapa
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.,Vascular Medicine Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; and.,Center for Metabolism and Mitochondrial Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Manling Zhang
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.,Vascular Medicine Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; and.,Center for Metabolism and Mitochondrial Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Janet R Manning
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.,Vascular Medicine Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; and.,Center for Metabolism and Mitochondrial Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Danielle A Guimarães
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Vascular Medicine Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; and.,Center for Metabolism and Mitochondrial Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael W Stoner
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.,Vascular Medicine Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; and.,Center for Metabolism and Mitochondrial Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Robert M O'Doherty
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.,Center for Metabolism and Mitochondrial Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sruti Shiva
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Vascular Medicine Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; and.,Center for Metabolism and Mitochondrial Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Iain Scott
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; .,Vascular Medicine Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; and.,Center for Metabolism and Mitochondrial Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
104
|
Xu H, Zhou J, Lin S, Deng W, Zhang Y, Xue Y. PLMD: An updated data resource of protein lysine modifications. J Genet Genomics 2017; 44:243-250. [PMID: 28529077 DOI: 10.1016/j.jgg.2017.03.007] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/26/2017] [Accepted: 03/30/2017] [Indexed: 01/08/2023]
|
105
|
Liu TM, Shyh-Chang N. SIRT2 and glycolytic enzyme acetylation in pluripotent stem cells. Nat Cell Biol 2017; 19:412-414. [PMID: 28446816 DOI: 10.1038/ncb3522] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The metabolic transition from mitochondrial oxidative phosphorylation (OXPHOS) to glycolysis is critical for somatic reprogramming of induced pluripotent stem cells (iPSCs). SIRT2 has now been established as a previously unknown regulator of this metabolic transition during somatic reprogramming by controlling the acetylation status of glycolytic enzymes.
Collapse
Affiliation(s)
- Tong Ming Liu
- Genome Institute of Singapore, 60 Biopolis Street, 138675 Singapore
| | - Ng Shyh-Chang
- Genome Institute of Singapore, 60 Biopolis Street, 138675 Singapore
| |
Collapse
|
106
|
Cha Y, Han MJ, Cha HJ, Zoldan J, Burkart A, Jung JH, Jang Y, Kim CH, Jeong HC, Kim BG, Langer R, Kahn CR, Guarente L, Kim KS. Metabolic control of primed human pluripotent stem cell fate and function by the miR-200c-SIRT2 axis. Nat Cell Biol 2017; 19:445-456. [PMID: 28436968 DOI: 10.1038/ncb3517] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 03/20/2017] [Indexed: 12/19/2022]
Abstract
A hallmark of cancer cells is the metabolic switch from oxidative phosphorylation (OXPHOS) to glycolysis, a phenomenon referred to as the 'Warburg effect', which is also observed in primed human pluripotent stem cells (hPSCs). Here, we report that downregulation of SIRT2 and upregulation of SIRT1 is a molecular signature of primed hPSCs and that SIRT2 critically regulates metabolic reprogramming during induced pluripotency by targeting glycolytic enzymes including aldolase, glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, and enolase. Remarkably, knockdown of SIRT2 in human fibroblasts resulted in significantly decreased OXPHOS and increased glycolysis. In addition, we found that miR-200c-5p specifically targets SIRT2, downregulating its expression. Furthermore, SIRT2 overexpression in hPSCs significantly affected energy metabolism, altering stem cell functions such as pluripotent differentiation properties. Taken together, our results identify the miR-200c-SIRT2 axis as a key regulator of metabolic reprogramming (Warburg-like effect), via regulation of glycolytic enzymes, during human induced pluripotency and pluripotent stem cell function.
Collapse
Affiliation(s)
- Young Cha
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, Massachusetts 02478, USA
| | - Min-Joon Han
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, Massachusetts 02478, USA
| | - Hyuk-Jin Cha
- College of Natural Sciences, Department of Life Sciences, Sogang University, Seoul 04107, Korea
| | - Janet Zoldan
- Department of Chemical Engineering, David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts 02139, USA
| | - Alison Burkart
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Jin Hyuk Jung
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, Massachusetts 02478, USA
| | - Yongwoo Jang
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, Massachusetts 02478, USA
| | - Chun-Hyung Kim
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, Massachusetts 02478, USA
| | - Ho-Chang Jeong
- College of Natural Sciences, Department of Life Sciences, Sogang University, Seoul 04107, Korea
| | - Byung-Gyu Kim
- Center for Genomic Integrity Institute for Basic Science, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Robert Langer
- Department of Chemical Engineering, David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts 02139, USA
| | - C Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | - Kwang-Soo Kim
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, Massachusetts 02478, USA
| |
Collapse
|
107
|
Lee W, VanderVen BC, Walker S, Russell DG. Novel protein acetyltransferase, Rv2170, modulates carbon and energy metabolism in Mycobacterium tuberculosis. Sci Rep 2017; 7:72. [PMID: 28250431 PMCID: PMC5428333 DOI: 10.1038/s41598-017-00067-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 01/30/2017] [Indexed: 11/20/2022] Open
Abstract
Recent data indicate that the metabolism of Mycobacterium tuberculosis (Mtb) inside its host cell is heavily dependent on cholesterol and fatty acids. Mtb exhibits a unique capacity to co-metabolize different carbon sources and the products from these substrates are compartmentalized metabolically. Isocitrate lies at one of the key nodes of carbon metabolism and can feed into either the glyoxylate shunt (via isocitrate lyase) or the TCA cycle (via isocitrate dehydrogenase (ICDH) activity) and we sought to better understand the regulation at this junction. An isocitrate lyase-deficient mutant of Mtb (Δicl1) exhibited a delayed growth phenotype in stearic acid (C18 fatty acid) media and we isolated rescue mutants that had lost this growth delay. We found that mutations in the gene rv2170 promoted Mtb replication under these conditions and rescued the growth delay in a Δicl1 background. The Mtb Rv2170 protein shows lysine acetyltransferase activity, which is capable of post-translationally modifying lysine residues of the ICDH protein leading to a reduction in its enzymatic activity. Our data show that contrary to most bacteria that regulate ICDH activity through phosphorylation, Mtb is capable of regulating ICDH activity by acetylation. This mechanism of regulation is similar to that utilized for mammalian mitochondrial ICDH.
Collapse
Affiliation(s)
- Wonsik Lee
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, United States.,Department of Microbiology and Immunology, Harvard Medical School, Boston, Massachusetts, 02115, United States
| | - Brian C VanderVen
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, United States
| | - Suzanne Walker
- Department of Microbiology and Immunology, Harvard Medical School, Boston, Massachusetts, 02115, United States
| | - David G Russell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, United States.
| |
Collapse
|
108
|
Xing S, Meng X, Zhou L, Mujahid H, Zhao C, Zhang Y, Wang C, Peng Z. Proteome Profile of Starch Granules Purified from Rice (Oryza sativa) Endosperm. PLoS One 2016; 11:e0168467. [PMID: 27992503 PMCID: PMC5167393 DOI: 10.1371/journal.pone.0168467] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 12/01/2016] [Indexed: 01/16/2023] Open
Abstract
Starch is the most important food energy source in cereals. Many of the known enzymes involved in starch biosynthesis are partially or entirely granule-associated in the endosperm. Studying the proteome of rice starch granules is critical for us to further understand the mechanisms underlying starch biosynthesis and packaging of starch granules in rice amyloplasts, consequently for the improvement of rice grain quality. In this article, we developed a protocol to purify starch granules from mature rice endosperm and verified the quality of purified starch granules by microscopy observations, I2 staining, and Western blot analyses. In addition, we found the phenol extraction method was superior to Tris-HCl buffer extraction method with respect to the efficiency in recovery of starch granule associated proteins. LC-MS/MS analysis showed identification of already known starch granule associated proteins with high confidence. Several proteins reported to be involved in starch synthesis in prior genetic studies in plants were also shown to be enriched with starch granules, either directly or indirectly, in our studies. In addition, our results suggested that a few additional candidate proteins may also be involved in starch synthesis. Furthermore, our results indicated that some starch synthesis pathway proteins are subject to protein acetylation modification. GO analysis and KEGG pathway enrichment analysis showed that the identified proteins were mainly located in plastids and involved in carbohydrate metabolism. This study substantially advances the understanding of the starch granule associated proteome in rice and post translational regulation of some starch granule associated proteins.
Collapse
Affiliation(s)
- Shihai Xing
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, Nanjing, Jiangsu, China
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, Mississippi, United States of America
| | - Xiaoxi Meng
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, Mississippi, United States of America
| | - Lihui Zhou
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, Nanjing, Jiangsu, China
| | - Hana Mujahid
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, Mississippi, United States of America
| | - Chunfang Zhao
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, Nanjing, Jiangsu, China
| | - Yadong Zhang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, Nanjing, Jiangsu, China
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, Mississippi, United States of America
| | - Cailin Wang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, Nanjing, Jiangsu, China
| | - Zhaohua Peng
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, Mississippi, United States of America
| |
Collapse
|
109
|
Energy metabolism regulated by HDAC inhibitor attenuates cardiac injury in hemorrhagic rat model. Sci Rep 2016; 6:38219. [PMID: 27910887 PMCID: PMC5133557 DOI: 10.1038/srep38219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 11/07/2016] [Indexed: 12/11/2022] Open
Abstract
A disturbance of energy metabolism reduces cardiac function in acute severe hemorrhagic patients. Alternatively, adequate energy supply reduces heart failure and increases survival. However, the approach to regulating energy metabolism conductive to vital organs is limited, and the underlying molecular mechanism remains unknown. This study assesses the ability of histone deacetylase inhibitors (HDACIs) to preserve cardiac energy metabolism during lethal hemorrhagic injury. In the lethally hemorrhagic rat and hypoxic myocardial cells, energy metabolism and heart function were well maintained following HDACI treatment, as evident by continuous ATP production with normal cardiac contraction. Valproic acid (VPA) regulated the energy metabolism of hemorrhagic heart by reducing lactate synthesis and protecting the mitochondrial ultrastructure and respiration, which were attributable to the inhibition of lactate dehydrogenase A activity and the increased myeloid cell leukemia-1 (mcl-1) gene expression, ultimately facilitating ATP production and consumption. MCL-1, the key target of VPA, mediated this cardioprotective effect under acute severe hemorrhage conditions. Our results suggest that HDACIs promote cardioprotection by improving energy metabolism during hemorrhagic injury and could therefore be an effective strategy to counteract this process in the clinical setting.
Collapse
|
110
|
Thiagarajan D, Vedantham S, Ananthakrishnan R, Schmidt AM, Ramasamy R. Mechanisms of transcription factor acetylation and consequences in hearts. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1862:2221-2231. [PMID: 27543804 PMCID: PMC5159280 DOI: 10.1016/j.bbadis.2016.08.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 08/12/2016] [Accepted: 08/14/2016] [Indexed: 01/06/2023]
Abstract
Acetylation of proteins as a post-translational modification is gaining rapid acceptance as a cellular control mechanism on par with other protein modification mechanisms such as phosphorylation and ubiquitination. Through genetic manipulations and evolving proteomic technologies, identification and consequences of transcription factor acetylation is beginning to emerge. In this review, we summarize the field and discuss newly unfolding mechanisms and consequences of transcription factor acetylation in normal and stressed hearts. This article is part of a Special Issue entitled: The role of post-translational protein modifications on heart and vascular metabolism edited by Jason R.B. Dyck & Jan F.C. Glatz.
Collapse
Affiliation(s)
- Devi Thiagarajan
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, NYU Langone Medical Center, NY, New York 10016, United States
| | | | - Radha Ananthakrishnan
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, NYU Langone Medical Center, NY, New York 10016, United States
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, NYU Langone Medical Center, NY, New York 10016, United States
| | - Ravichandran Ramasamy
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, NYU Langone Medical Center, NY, New York 10016, United States.
| |
Collapse
|
111
|
Dalzon B, Diemer H, Collin-Faure V, Cianférani S, Rabilloud T, Aude-Garcia C. Culture medium associated changes in the core proteome of macrophages and in their responses to copper oxide nanoparticles. Proteomics 2016; 16:2864-2877. [DOI: 10.1002/pmic.201600052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 09/15/2016] [Accepted: 10/06/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Bastien Dalzon
- Laboratory of Chemistry and Biology of Metals; BIG/CBM, CEA Grenoble; Grenoble France
- Laboratory of Chemistry and Biology of Metals; University of Grenoble Alpes; Grenoble France
- Laboratory of Chemistry and Biology of Metals; CNRS UMR5249 Grenoble France
| | - Hélène Diemer
- BioOrganic Mass Spectrometry Laboratory (LSMBO); IPHC, Université de Strasbourg; Strasbourg France
- BioOrganic Mass Spectrometry Laboratory (LSMBO); CNRS UMR7178 Strasbourg France
| | - Véronique Collin-Faure
- Laboratory of Chemistry and Biology of Metals; BIG/CBM, CEA Grenoble; Grenoble France
- Laboratory of Chemistry and Biology of Metals; University of Grenoble Alpes; Grenoble France
- Laboratory of Chemistry and Biology of Metals; CNRS UMR5249 Grenoble France
| | - Sarah Cianférani
- BioOrganic Mass Spectrometry Laboratory (LSMBO); IPHC, Université de Strasbourg; Strasbourg France
- BioOrganic Mass Spectrometry Laboratory (LSMBO); CNRS UMR7178 Strasbourg France
| | - Thierry Rabilloud
- Laboratory of Chemistry and Biology of Metals; BIG/CBM, CEA Grenoble; Grenoble France
- Laboratory of Chemistry and Biology of Metals; University of Grenoble Alpes; Grenoble France
- Laboratory of Chemistry and Biology of Metals; CNRS UMR5249 Grenoble France
| | - Catherine Aude-Garcia
- Laboratory of Chemistry and Biology of Metals; BIG/CBM, CEA Grenoble; Grenoble France
- Laboratory of Chemistry and Biology of Metals; University of Grenoble Alpes; Grenoble France
- Laboratory of Chemistry and Biology of Metals; CNRS UMR5249 Grenoble France
| |
Collapse
|
112
|
Quantitative metabolic flux analysis reveals an unconventional pathway of fatty acid synthesis in cancer cells deficient for the mitochondrial citrate transport protein. Metab Eng 2016; 43:198-207. [PMID: 27856334 DOI: 10.1016/j.ymben.2016.11.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/13/2016] [Accepted: 11/07/2016] [Indexed: 11/23/2022]
Abstract
The mitochondrial citrate transport protein (CTP), encoded by SLC25A1, accommodates bidirectional trafficking of citrate between the mitochondria and cytosol, supporting lipid biosynthesis and redox homeostasis. Genetic CTP deficiency causes a fatal neurodevelopmental syndrome associated with the accumulation of L- and D-2-hydroxyglutaric acid, and elevated CTP expression is associated with poor prognosis in several types of cancer, emphasizing the importance of this transporter in multiple human pathologies. Here we describe the metabolic consequences of CTP deficiency in cancer cells. As expected from the phenotype of CTP-deficient humans, somatic CTP loss in cancer cells induces broad dysregulation of mitochondrial metabolism, resulting in accumulation of lactate and of the L- and D- enantiomers of 2-hydroxyglutarate (2HG) and depletion of TCA cycle intermediates. It also eliminates mitochondrial import of citrate from the cytosol. To quantify the impact of CTP deficiency on metabolic flux, cells were cultured with a set of 13C-glucose and 13C-glutamine tracers with resulting data integrated by metabolic flux analysis (MFA). CTP-deficient cells displayed a major restructuring of central carbon metabolism, including suppression of pyruvate dehydrogenase (PDH) and induction of glucose-dependent anaplerosis through pyruvate carboxylase (PC). We also observed an unusual lipogenic pathway in which carbon from glucose supplies mitochondrial production of alpha-ketoglutarate (AKG), which is then trafficked to the cytosol and used to supply reductive carboxylation by isocitrate dehydrogenase 1 (IDH1). The resulting citrate is cleaved to produce lipogenic acetyl-CoA, thereby completing a novel pathway of glucose-dependent reductive carboxylation. In CTP deficient cells, IDH1 inhibition suppresses lipogenesis from either glucose or glutamine, implicating IDH1 as a required component of fatty acid synthesis in states of CTP deficiency.
Collapse
|
113
|
Vidimar V, Gius D, Chakravarti D, Bulun SE, Wei JJ, Kim JJ. Dysfunctional MnSOD leads to redox dysregulation and activation of prosurvival AKT signaling in uterine leiomyomas. SCIENCE ADVANCES 2016; 2:e1601132. [PMID: 27847869 PMCID: PMC5099990 DOI: 10.1126/sciadv.1601132] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 10/05/2016] [Indexed: 06/06/2023]
Abstract
AKT signaling promotes cell growth and survival and is often dysregulated via multiple mechanisms in different types of cancer, including uterine leiomyomas (ULMs). ULMs are highly prevalent fibrotic tumors that arise from the smooth muscular layer of the uterus, the myometrium (MM). ULMs pose a major public health issue because they can cause severe morbidity and poor pregnancy outcomes. We investigate the mechanisms driving ULM growth and survival via aberrant activation of AKT. We demonstrate that an acetylation-mediated impairment of the manganese superoxide dismutase (MnSOD) activity is prevalent in ULM cells compared to the normal-matched MM from the same patients. This impairment increases the levels of superoxide and oxidative stress, which activate AKT via oxidative inactivation of the phosphatase and tensin homolog deleted on chromosome 10 (PTEN). Redox activation of AKT promotes ULM cell survival under conditions of moderate but persistent oxidative stress that are compatible with ULM's prooxidative microenvironment. Moreover, because of impaired MnSOD activity, ULM cells are sensitive to high levels of reactive oxygen species (ROS) and superoxide-generating compounds, resulting in decreased ULM cell viability. On the contrary, MM cells with functional MnSOD are more resistant to high levels of oxidants. This study demonstrates a causative role of acetylation-mediated MnSOD dysfunction in activating prosurvival AKT signaling in ULMs. The specific AKT and redox states of ULM cells provide a potential novel therapeutic rationale to selectively target ULM cells because of their defective ROS-scavenging system..
Collapse
Affiliation(s)
- Vania Vidimar
- Division of Reproductive Science and Medicine, Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL 60610, USA
| | - David Gius
- Department of Radiation Oncology, Northwestern University, Chicago, IL 60610, USA
| | - Debabrata Chakravarti
- Division of Reproductive Science and Medicine, Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL 60610, USA
| | - Serdar E. Bulun
- Division of Reproductive Science and Medicine, Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL 60610, USA
| | - Jian-Jun Wei
- Division of Reproductive Science and Medicine, Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL 60610, USA
- Department of Pathology, Northwestern University, Chicago, IL 60610, USA
| | - J. Julie Kim
- Division of Reproductive Science and Medicine, Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL 60610, USA
| |
Collapse
|
114
|
Lin HP, Cheng ZL, He RY, Song L, Tian MX, Zhou LS, Groh BS, Liu WR, Ji MB, Ding C, Shi YH, Guan KL, Ye D, Xiong Y. Destabilization of Fatty Acid Synthase by Acetylation Inhibits De Novo Lipogenesis and Tumor Cell Growth. Cancer Res 2016; 76:6924-6936. [PMID: 27758890 DOI: 10.1158/0008-5472.can-16-1597] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/25/2016] [Accepted: 09/15/2016] [Indexed: 11/16/2022]
Abstract
Fatty acid synthase (FASN) is the terminal enzyme in de novo lipogenesis and plays a key role in cell proliferation. Pharmacologic inhibitors of FASN are being evaluated in clinical trials for treatment of cancer, obesity, and other diseases. Here, we report a previously unknown mechanism of FASN regulation involving its acetylation by KAT8 and its deacetylation by HDAC3. FASN acetylation promoted its degradation via the ubiquitin-proteasome pathway. FASN acetylation enhanced its association with the E3 ubiquitin ligase TRIM21. Acetylation destabilized FASN and resulted in decreased de novo lipogenesis and tumor cell growth. FASN acetylation was frequently reduced in human hepatocellular carcinoma samples, which correlated with increased HDAC3 expression and FASN protein levels. Our results suggest opportunities to target FASN acetylation as an anticancer strategy. Cancer Res; 76(23); 6924-36. ©2016 AACR.
Collapse
Affiliation(s)
- Huai-Peng Lin
- Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhou-Li Cheng
- Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Ruo-Yu He
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, China
| | - Lei Song
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, National Center for National Center for Protein Science (The PHOENIX Center), Beijing, China
| | - Meng-Xin Tian
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Li-Sha Zhou
- Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Beezly S Groh
- Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Wei-Ren Liu
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Min-Biao Ji
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, China
| | - Chen Ding
- Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, National Center for National Center for Protein Science (The PHOENIX Center), Beijing, China
| | - Ying-Hong Shi
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Kun-Liang Guan
- Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China. .,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Dan Ye
- Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China. .,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yue Xiong
- Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China. .,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
115
|
Yoon SP, Kim J. Poly(ADP-ribose) polymerase 1 contributes to oxidative stress through downregulation of sirtuin 3 during cisplatin nephrotoxicity. Anat Cell Biol 2016; 49:165-176. [PMID: 27722009 PMCID: PMC5052225 DOI: 10.5115/acb.2016.49.3.165] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/08/2016] [Accepted: 09/08/2016] [Indexed: 12/21/2022] Open
Abstract
Enhanced oxidative stress is a hallmark of cisplatin nephrotoxicity, and inhibition of poly(ADP-ribose) polymerase 1 (PARP1) attenuates oxidative stress during cisplatin nephrotoxicity; however, the precise mechanisms behind its action remain elusive. Here, using an in vitro model of cisplatin-induced injury to human kidney proximal tubular cells, we demonstrated that the protective effect of PARP1 inhibition on oxidative stress is associated with sirtuin 3 (SIRT3) activation. Exposure to 400 µM cisplatin for 8 hours in cells decreased activity and expression of manganese superoxide dismutase (MnSOD), catalase, glutathione peroxidase (GPX), and SIRT3, while it increased their lysine acetylation. However, treatment with 1 µM PJ34 hydrochloride, a potent PARP1 inhibitor, restored activity and/or expression in those antioxidant enzymes, decreased lysine acetylation of those enzymes, and improved SIRT3 expression and activity in the cisplatin-injured cells. Using transfection with SIRT3 double nickase plasmids, SIRT3-deficient cells given cisplatin did not show the ameliorable effect of PARP1 inhibition on lysine acetylation and activity of antioxidant enzymes, including MnSOD, catalase and GPX. Furthermore, SIRT3 deficiency in cisplatin-injured cells prevented PARP1 inhibition-induced increase in forkhead box O3a transcriptional activity, and upregulation of MnSOD and catalase. Finally, loss of SIRT3 in cisplatin-exposed cells removed the protective effect of PARP1 inhibition against oxidative stress, represented by the concentration of lipid hydroperoxide and 8-hydroxy-2'-deoxyguanosine; and necrotic cell death represented by a percentage of propidium iodide–positively stained cells. Taken together, these results indicate that PARP1 inhibition protects kidney proximal tubular cells against oxidative stress through SIRT3 activation during cisplatin nephrotoxicity.
Collapse
Affiliation(s)
- Sang Pil Yoon
- Department of Anatomy, Jeju National University School of Medicine, Jeju, Korea
| | - Jinu Kim
- Department of Anatomy, Jeju National University School of Medicine, Jeju, Korea.; Department of Biomedicine and Drug Development, Jeju National University, Jeju, Korea
| |
Collapse
|
116
|
Masui K, Shibata N, Cavenee WK, Mischel PS. mTORC2 activity in brain cancer: Extracellular nutrients are required to maintain oncogenic signaling. Bioessays 2016; 38:839-44. [PMID: 27427440 PMCID: PMC5501721 DOI: 10.1002/bies.201600026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mutations in growth factor receptor signaling pathways are common in cancer cells, including the highly lethal brain tumor glioblastoma (GBM) where they drive tumor growth through mechanisms including altering the uptake and utilization of nutrients. However, the impact of changes in micro-environmental nutrient levels on oncogenic signaling, tumor growth, and drug resistance is not well understood. We recently tested the hypothesis that external nutrients promote GBM growth and treatment resistance by maintaining the activity of mechanistic target of rapamycin complex 2 (mTORC2), a critical intermediate of growth factor receptor signaling, suggesting that altered cellular metabolism is not only a consequence of oncogenic signaling, but also potentially an important determinant of its activity. Here, we describe the studies that corroborate the hypothesis and propose others that derive from them. Notably, this line of reasoning raises the possibility that systemic metabolism may contribute to responsiveness to targeted cancer therapies.
Collapse
Affiliation(s)
- Kenta Masui
- Department of Pathology, Tokyo Women’s Medical University, Tokyo, Japan
| | - Noriyuki Shibata
- Department of Pathology, Tokyo Women’s Medical University, Tokyo, Japan
| | - Webster K. Cavenee
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA, USA
| | - Paul S. Mischel
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
117
|
Li Y, Erickson JW, Stalnecker CA, Katt WP, Huang Q, Cerione RA, Ramachandran S. Mechanistic Basis of Glutaminase Activation: A KEY ENZYME THAT PROMOTES GLUTAMINE METABOLISM IN CANCER CELLS. J Biol Chem 2016; 291:20900-20910. [PMID: 27542409 DOI: 10.1074/jbc.m116.720268] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Indexed: 11/06/2022] Open
Abstract
Glutamine-derived carbon becomes available for anabolic biosynthesis in cancer cells via the hydrolysis of glutamine to glutamate, as catalyzed by GAC, a splice variant of kidney-type glutaminase (GLS). Thus, there is significant interest in understanding the regulation of GAC activity, with the suggestion being that higher order oligomerization is required for its activation. We used x-ray crystallography, together with site-directed mutagenesis, to determine the minimal enzymatic unit capable of robust catalytic activity. Mutagenesis of the helical interface between the two pairs of dimers comprising a GAC tetramer yielded a non-active, GAC dimer whose x-ray structure displays a stationary loop ("activation loop") essential for coupling the binding of allosteric activators like inorganic phosphate to catalytic activity. Further mutagenesis that removed constraints on the activation loop yielded a constitutively active dimer, providing clues regarding how the activation loop communicates with the active site, as well as with a peptide segment that serves as a "lid" to close off the active site following substrate binding. Our studies show that the formation of large GAC oligomers is not a pre-requisite for full enzymatic activity. They also offer a mechanism by which the binding of activators like inorganic phosphate enables the activation loop to communicate with the active site to ensure maximal rates of catalysis, and promotes the opening of the lid to achieve optimal product release. Moreover, these findings provide new insights into how other regulatory events might induce GAC activation within cancer cells.
Collapse
Affiliation(s)
- Yunxing Li
- From the Departments of Chemistry and Chemical Biology and
| | - Jon W Erickson
- From the Departments of Chemistry and Chemical Biology and
| | | | | | - Qingqiu Huang
- Cornell Lab for Accelerator-based Science, Cornell University, Ithaca, New York 14853
| | - Richard A Cerione
- From the Departments of Chemistry and Chemical Biology and Molecular Medicine,
| | | |
Collapse
|
118
|
Masui K, Cavenee WK, Mischel PS. mTORC2 and Metabolic Reprogramming in GBM: at the Interface of Genetics and Environment. Brain Pathol 2016; 25:755-9. [PMID: 26526943 DOI: 10.1111/bpa.12307] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 08/25/2015] [Indexed: 12/26/2022] Open
Abstract
Metabolic reprogramming is a central hallmark of cancer, enabling tumor cells to obtain the macromolecular precursors and energy needed for rapid tumor growth. Understanding how oncogenes coordinate altered signaling with metabolic reprogramming and how cancer cells harness cellular metabolism and its metabolites for their survival may yield new insights into tumor pathogenesis. Here, we review the recently identified central regulatory role for mTORC2, a downstream effector of many cancer-causing mutations, in metabolic reprogramming and cancer drug resistance in glioblastoma. We further consider the emerging concept that mTORC2 may connect genetics with environmental alterations in brain cancer.
Collapse
Affiliation(s)
- Kenta Masui
- Department of Pathology, Tokyo Women's Medical University, Tokyo, Japan
| | - Webster K Cavenee
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA
| | - Paul S Mischel
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA
| |
Collapse
|
119
|
Fukushima A, Lopaschuk GD. Acetylation control of cardiac fatty acid β-oxidation and energy metabolism in obesity, diabetes, and heart failure. Biochim Biophys Acta Mol Basis Dis 2016; 1862:2211-2220. [PMID: 27479696 DOI: 10.1016/j.bbadis.2016.07.020] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/22/2016] [Accepted: 07/25/2016] [Indexed: 12/31/2022]
Abstract
Alterations in cardiac energy metabolism are an important contributor to the cardiac pathology associated with obesity, diabetes, and heart failure. High rates of fatty acid β-oxidation with cardiac insulin resistance represent a cardiac metabolic hallmark of diabetes and obesity, while a marginal decrease in fatty acid oxidation and a prominent decrease in insulin-stimulated glucose oxidation are commonly seen in the early stages of heart failure. Alterations in post-translational control of energy metabolic processes have recently been identified as an important contributor to these metabolic changes. In particular, lysine acetylation of non-histone proteins, which controls a diverse family of mitochondrial metabolic pathways, contributes to the cardiac energy derangements seen in obesity, diabetes, and heart failure. Lysine acetylation is controlled both via acetyltransferases and deacetylases (sirtuins), as well as by non-enzymatic lysine acetylation due to increased acetyl CoA pool size or dysregulated nicotinamide adenine dinucleotide (NAD+) metabolism (which stimulates sirtuin activity). One of the important mitochondrial acetylation targets are the fatty acid β-oxidation enzymes, which contributes to alterations in cardiac substrate preference during the course of obesity, diabetes, and heart failure, and can ultimately lead to cardiac dysfunction in these disease states. This review will summarize the role of lysine acetylation and its regulatory control in the context of mitochondrial fatty acid β-oxidation. The functional contribution of cardiac protein lysine acetylation to the shift in cardiac energy substrate preference that occurs in obesity, diabetes, and especially in the early stages of heart failure will also be reviewed. This article is part of a Special Issue entitled: The role of post-translational protein modifications on heart and vascular metabolism edited by Jason R.B. Dyck & Jan F.C. Glatz.
Collapse
Affiliation(s)
- Arata Fukushima
- Cardiovascular Translational Science Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Gary D Lopaschuk
- Cardiovascular Translational Science Institute, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
120
|
Lysine acetylation in mitochondria: From inventory to function. Mitochondrion 2016; 33:58-71. [PMID: 27476757 DOI: 10.1016/j.mito.2016.07.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 12/12/2022]
Abstract
Cellular signaling pathways are regulated in a highly dynamic fashion in order to quickly adapt to distinct environmental conditions. Acetylation of lysine residues represents a central process that orchestrates cellular metabolism and signaling. In mitochondria, acetylation seems to be the most prevalent post-translational modification, presumably linked to the compartmentation and high turnover of acetyl-CoA in this organelle. Similarly, the elevated pH and the higher concentration of metabolites in mitochondria seem to favor non-enzymatic lysine modifications, as well as other acylations. Hence, elucidating the mechanisms for metabolic control of protein acetylation is crucial for our understanding of cellular processes. Recent advances in mass spectrometry-based proteomics have considerably increased our knowledge of the regulatory scope of acetylation. Here, we review the current knowledge and functional impact of mitochondrial protein acetylation across species. We first cover the experimental approaches to identify and analyze lysine acetylation on a global scale, we then explore both commonalities and specific differences of plant and animal acetylomes and the evolutionary conservation of protein acetylation, as well as its particular impact on metabolism and diseases. Important future directions and technical challenges are discussed, and it is pointed out that the transfer of knowledge between species and diseases, both in technology and biology, is of particular importance for further advancements in this field.
Collapse
|
121
|
Acetylome analysis reveals the involvement of lysine acetylation in diverse biological processes in Phytophthora sojae. Sci Rep 2016; 6:29897. [PMID: 27412925 PMCID: PMC4944153 DOI: 10.1038/srep29897] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/22/2016] [Indexed: 01/14/2023] Open
Abstract
Lysine acetylation is a dynamic and highly conserved post-translational modification that plays an important regulatory role in almost every aspects of cell metabolism in both eukaryotes and prokaryotes. Phytophthora sojae is one of the most important plant pathogens due to its huge economic impact. However, to date, little is known about the functions of lysine acetylation in this Phytopthora. Here, we conducted a lysine acetylome in P. sojae. Overall, 2197 lysine acetylation sites in 1150 proteins were identified. The modified proteins are involved in diverse biological processes and are localized to multiple cellular compartments. Importantly, 7 proteins involved in the pathogenicity or the secretion pathway of P. sojae were found to be acetylated. These data provide the first comprehensive view of the acetylome of P. sojae and serve as an important resource for functional analysis of lysine acetylation in plant pathogens.
Collapse
|
122
|
Yao B, Christian KM, He C, Jin P, Ming GL, Song H. Epigenetic mechanisms in neurogenesis. Nat Rev Neurosci 2016; 17:537-49. [PMID: 27334043 DOI: 10.1038/nrn.2016.70] [Citation(s) in RCA: 286] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the embryonic and adult brain, neural stem cells proliferate and give rise to neurons and glia through highly regulated processes. Epigenetic mechanisms - including DNA and histone modifications, as well as regulation by non-coding RNAs - have pivotal roles in different stages of neurogenesis. Aberrant epigenetic regulation also contributes to the pathogenesis of various brain disorders. Here, we review recent advances in our understanding of epigenetic regulation in neurogenesis and its dysregulation in brain disorders, including discussion of newly identified DNA cytosine modifications. We also briefly cover the emerging field of epitranscriptomics, which involves modifications of mRNAs and long non-coding RNAs.
Collapse
Affiliation(s)
- Bing Yao
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Atlanta, Georgia 30322, USA
| | - Kimberly M Christian
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, Maryland 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, Maryland 21205, USA
| | - Chuan He
- Department of Chemistry, Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA.,Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Atlanta, Georgia 30322, USA
| | - Guo-Li Ming
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, Maryland 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, Maryland 21205, USA.,The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, Maryland 21205, USA.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, Maryland 21205, USA
| | - Hongjun Song
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, Maryland 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, Maryland 21205, USA.,The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, Maryland 21205, USA
| |
Collapse
|
123
|
Orlandi I, Pellegrino Coppola D, Strippoli M, Ronzulli R, Vai M. Nicotinamide supplementation phenocopies SIR2 inactivation by modulating carbon metabolism and respiration during yeast chronological aging. Mech Ageing Dev 2016; 161:277-287. [PMID: 27320176 DOI: 10.1016/j.mad.2016.06.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 06/10/2016] [Accepted: 06/15/2016] [Indexed: 02/06/2023]
Abstract
Nicotinamide (NAM), a form of vitamin B3, is a byproduct and noncompetitive inhibitor of the deacetylation reaction catalyzed by Sirtuins. These represent a family of evolutionarily conserved NAD+-dependent deacetylases that are well-known critical regulators of metabolism and aging and whose founding member is Sir2 of Saccharomyces cerevisiae. Here, we investigated the effects of NAM supplementation in the context of yeast chronological aging, the established model for studying aging of postmitotic quiescent mammalian cells. Our data show that NAM supplementation at the diauxic shift results in a phenocopy of chronologically aging sir2Δ cells. In fact, NAM-supplemented cells display the same chronological lifespan extension both in expired medium and extreme Calorie Restriction. Furthermore, NAM allows the cells to push their metabolism toward the same outcomes of sir2Δ cells by elevating the level of the acetylated Pck1. Both these cells have the same metabolic changes that concern not only anabolic pathways such as an increased gluconeogenesis but also respiratory activity in terms both of respiratory rate and state of respiration. In particular, they have a higher respiratory reserve capacity and a lower non-phosphorylating respiration that in concert with a low burden of superoxide anions can affect positively chronological aging.
Collapse
Affiliation(s)
- Ivan Orlandi
- SYSBIO Centre for Systems Biology Milano, Italy; Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Damiano Pellegrino Coppola
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Maurizio Strippoli
- SYSBIO Centre for Systems Biology Milano, Italy; Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Rossella Ronzulli
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Marina Vai
- SYSBIO Centre for Systems Biology Milano, Italy; Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy.
| |
Collapse
|
124
|
Liu HM, Jiang F, Loo YM, Hsu S, Hsiang TY, Marcotrigiano J, Gale M. Regulation of Retinoic Acid Inducible Gene-I (RIG-I) Activation by the Histone Deacetylase 6. EBioMedicine 2016; 9:195-206. [PMID: 27372014 PMCID: PMC4972567 DOI: 10.1016/j.ebiom.2016.06.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 12/21/2022] Open
Abstract
Retinoic acid inducible gene-I (RIG-I) is a cytosolic pathogen recognition receptor that initiates the immune response against many RNA viruses. Upon RNA ligand binding, RIG-I undergoes a conformational change facilitating its homo-oligomerization and activation that results in its translocation from the cytosol to intracellular membranes to bind its signaling adaptor protein, mitochondrial antiviral-signaling protein (MAVS). Here we show that RIG-I activation is regulated by reversible acetylation. Acetyl-mimetic mutants of RIG-I do not form virus-induced homo-oligomers, revealing that acetyl-lysine residues of the RIG-I repressor domain prevent assembly to active homo-oligomers. During acute infection, deacetylation of RIG-I promotes its oligomerization upon ligand binding. We identify histone deacetylase 6 (HDAC6) as the deacetylase that promotes RIG-I activation and innate antiviral immunity to recognize and restrict RNA virus infection. RIG-I undergoes reversible deacetylation during acute virus infection. Acetylation of RIG-I Repressor domain controls RIG-I activation by restricting dimerization. HDAC6 is the cellular deacetylase essential for RIG-I deacetylation to induce antiviral innate immunity.
RIG-I is a cytosolic pathogen recognition receptor at the frontline of immune response against RNA virus infection. RIG-I is expressed in most cells of the body and becomes activated after sensing and binding to pathogen associated molecular pattern (PAMP) RNA motifs within products of virus infection. The RIG-I activation process involves multiple regulatory events including PAMP binding and ATP hydrolysis, protein conformational change and intracellular redistribution, and specific post-translational modifications. Our results define reversible acetylation of RIG-I and its deacetylation by HDAC6 as key to controlling innate antiviral immune induction in response to RNA virus infection.
Collapse
Affiliation(s)
- Helene Minyi Liu
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, 750 Republican St, Seattle, WA, USA; Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, No. 1, Changde St, Taipei City, Taiwan.
| | - Fuguo Jiang
- Center for Advanced Biotechnology and Medicine, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA
| | - Yueh Ming Loo
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, 750 Republican St, Seattle, WA, USA
| | - ShuZhen Hsu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, No. 1, Changde St, Taipei City, Taiwan
| | - Tien-Ying Hsiang
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, 750 Republican St, Seattle, WA, USA
| | - Joseph Marcotrigiano
- Center for Advanced Biotechnology and Medicine, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, 750 Republican St, Seattle, WA, USA.
| |
Collapse
|
125
|
Murphy E, Ardehali H, Balaban RS, DiLisa F, Dorn GW, Kitsis RN, Otsu K, Ping P, Rizzuto R, Sack MN, Wallace D, Youle RJ. Mitochondrial Function, Biology, and Role in Disease: A Scientific Statement From the American Heart Association. Circ Res 2016; 118:1960-91. [PMID: 27126807 PMCID: PMC6398603 DOI: 10.1161/res.0000000000000104] [Citation(s) in RCA: 336] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cardiovascular disease is a major leading cause of morbidity and mortality in the United States and elsewhere. Alterations in mitochondrial function are increasingly being recognized as a contributing factor in myocardial infarction and in patients presenting with cardiomyopathy. Recent understanding of the complex interaction of the mitochondria in regulating metabolism and cell death can provide novel insight and therapeutic targets. The purpose of this statement is to better define the potential role of mitochondria in the genesis of cardiovascular disease such as ischemia and heart failure. To accomplish this, we will define the key mitochondrial processes that play a role in cardiovascular disease that are potential targets for novel therapeutic interventions. This is an exciting time in mitochondrial research. The past decade has provided novel insight into the role of mitochondria function and their importance in complex diseases. This statement will define the key roles that mitochondria play in cardiovascular physiology and disease and provide insight into how mitochondrial defects can contribute to cardiovascular disease; it will also discuss potential biomarkers of mitochondrial disease and suggest potential novel therapeutic approaches.
Collapse
|
126
|
A genome-scale CRISPR-Cas9 screening method for protein stability reveals novel regulators of Cdc25A. Cell Discov 2016; 2:16014. [PMID: 27462461 PMCID: PMC4877570 DOI: 10.1038/celldisc.2016.14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 03/17/2016] [Indexed: 12/15/2022] Open
Abstract
The regulation of stability is particularly crucial for unstable proteins in cells. However, a convenient and unbiased method of identifying regulators of protein stability remains to be developed. Recently, a genome-scale CRISPR-Cas9 library has been established as a genetic tool to mediate loss-of-function screening. Here, we developed a protein stability regulators screening assay (Pro-SRSA) by combining the whole-genome CRISPR-Cas9 library with a dual-fluorescence-based protein stability reporter and high-throughput sequencing to screen for regulators of protein stability. Using Cdc25A as an example, Cul4B-DDB1DCAF8 was identified as a new E3 ligase for Cdc25A. Moreover, the acetylation of Cdc25A at lysine 150, which was acetylated by p300/CBP and deacetylated by HDAC3, prevented the ubiquitin-mediated degradation of Cdc25A by the proteasome. This is the first study to report that acetylation, as a novel posttranslational modification, modulates Cdc25A stability, and we suggest that this unbiased CRISPR-Cas9 screening method at the genome scale may be widely used to globally identify regulators of protein stability.
Collapse
|
127
|
Alterations of hemorheological parameters and tubulin content in erythrocytes from diabetic subjects. Int J Biochem Cell Biol 2016; 74:109-20. [DOI: 10.1016/j.biocel.2016.02.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 12/02/2015] [Accepted: 02/20/2016] [Indexed: 12/14/2022]
|
128
|
Fukushima A, Lopaschuk GD. Cardiac fatty acid oxidation in heart failure associated with obesity and diabetes. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1525-34. [PMID: 26996746 DOI: 10.1016/j.bbalip.2016.03.020] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 03/15/2016] [Accepted: 03/16/2016] [Indexed: 12/01/2022]
Abstract
Obesity and diabetes are major public health problems, and are linked to the development of heart failure. Emerging data highlight the importance of alterations in cardiac energy metabolism as a major contributor to cardiac dysfunction related to obesity and diabetes. Increased rates of fatty acid oxidation and decreased rates of glucose utilization are two prominent changes in cardiac energy metabolism that occur in obesity and diabetes. This metabolic profile is probably both a cause and consequence of a prominent cardiac insulin resistance, which is accompanied by a decrease in both cardiac function and efficiency, and by the accumulation of potentially toxic lipid metabolites in the heart that can further exaggerate insulin resistance and cardiac dysfunction. The high cardiac fatty acid oxidation rates seen in obesity and diabetes are attributable to several factors, including: 1) increased fatty acid supply and uptake into the cardiomyocyte, 2) increased transcription of fatty acid metabolic enzymes, 3) decreased allosteric control of mitochondrial fatty acid uptake and fatty acid oxidation, and 4) increased post-translational acetylation control of various fatty acid oxidative enzymes. Emerging evidence suggests that therapeutic approaches aimed at switching the balance of cardiac energy substrate preference from fatty acid oxidation to glucose use can prevent cardiac dysfunction associated with obesity and diabetes. Modulating acetylation control of fatty acid oxidative enzymes is also a potentially attractive strategy, although presently this is limited to precursors of nicotinamide adenine or nonspecific activators of deacetylation such as resveratrol. This review will focus on the metabolic alterations in the heart that occur in obesity and diabetes, as well as on the molecular mechanisms controlling these metabolic changes. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.
Collapse
Affiliation(s)
- Arata Fukushima
- Cardiovascular Translational Science Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Gary D Lopaschuk
- Cardiovascular Translational Science Institute, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
129
|
Urasaki Y, Fiscus RR, Le TT. Molecular classification of fatty liver by high-throughput profiling of protein post-translational modifications. J Pathol 2016; 238:641-50. [DOI: 10.1002/path.4685] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 12/10/2015] [Accepted: 12/28/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Yasuyo Urasaki
- Department of Biomedical Sciences, College of Medicine; Roseman University of Health Sciences; 10530 Discovery Drive Las Vegas NV USA
| | - Ronald R Fiscus
- Department of Biomedical Sciences, College of Medicine; Roseman University of Health Sciences; 10530 Discovery Drive Las Vegas NV USA
| | - Thuc T Le
- Department of Biomedical Sciences, College of Medicine; Roseman University of Health Sciences; 10530 Discovery Drive Las Vegas NV USA
| |
Collapse
|
130
|
Acetylation of lysine 109 modulates pregnane X receptor DNA binding and transcriptional activity. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1155-1169. [PMID: 26855179 DOI: 10.1016/j.bbagrm.2016.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/19/2016] [Accepted: 01/26/2016] [Indexed: 12/31/2022]
Abstract
Pregnane X receptor (PXR) is a major transcriptional regulator of xenobiotic metabolism and transport pathways in the liver and intestines, which are critical for protecting organisms against potentially harmful xenobiotic and endobiotic compounds. Inadvertent activation of drug metabolism pathways through PXR is known to contribute to drug resistance, adverse drug-drug interactions, and drug toxicity in humans. In both humans and rodents, PXR has been implicated in non-alcoholic fatty liver disease, diabetes, obesity, inflammatory bowel disease, and cancer. Because of PXR's important functions, it has been a therapeutic target of interest for a long time. More recent mechanistic studies have shown that PXR is modulated by multiple PTMs. Herein we provide the first investigation of the role of acetylation in modulating PXR activity. Through LC-MS/MS analysis, we identified lysine 109 (K109) in the hinge as PXR's major acetylation site. Using various biochemical and cell-based assays, we show that PXR's acetylation status and transcriptional activity are modulated by E1A binding protein (p300) and sirtuin 1 (SIRT1). Based on analysis of acetylation site mutants, we found that acetylation at K109 represses PXR transcriptional activity. The mechanism involves loss of RXRα dimerization and reduced binding to cognate DNA response elements. This mechanism may represent a promising therapeutic target using modulators of PXR acetylation levels. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie.
Collapse
|
131
|
Young IA, Mittal C, Shogren-Knaak MA. Expression and purification of histone H3 proteins containing multiple sites of lysine acetylation using nonsense suppression. Protein Expr Purif 2016; 118:92-7. [DOI: 10.1016/j.pep.2015.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 09/30/2015] [Accepted: 10/13/2015] [Indexed: 10/22/2022]
|
132
|
Pandey S, Simmons GE, Malyarchuk S, Calhoun TN, Pruitt K. A novel MeCP2 acetylation site regulates interaction with ATRX and HDAC1. Genes Cancer 2015; 6:408-21. [PMID: 26622943 PMCID: PMC4633168 DOI: 10.18632/genesandcancer.84] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Methyl-CpG-binding protein-2 (MeCP2) regulates gene expression by recruiting SWI/SNF DNA helicase/ATPase (ATRX) and Histone Deacetylase-1 (HDAC1) to methylated gene regions and modulates heterochromatin association by interacting with Heterochromatin protein-1. As MeCP2 contributes to tumor suppressor gene silencing and its mutation causes Rett Syndrome, we investigated how novel post-translational-modification contributes to its function. Herein we report that upon pharmacological inhibition of SIRT1 in RKO colon and MCF-7 breast cancer cells, endogenous MeCP2 is acetylated at sites critical for binding to DNA and transcriptional regulators. We created an acetylation mimetic mutation in MeCP2 and found it to possess decreased binding to ATRX and HDAC1. Conditions inducing MeCP2 acetylation do not alter its promoter occupancy at a subset of target genes analyzed, but do cause decreased binding to ATRX and HDAC1. We also report here that a specific inhibitor of SIRT1, IV, can be used to selectively decrease H3K27me3 repressive marks on a subset of repressed target gene promoters analyzed. Lastly, we show that RKO cells over-expressing MeCP2 mutant show reduced proliferation compared to those over-expressing MeCP2-wildtype. Our study demonstrates the importance of acetylated lysine residues and suggests their key role in regulating MeCP2 function and its ability to bind transcriptional regulators.
Collapse
Affiliation(s)
- Somnath Pandey
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Glenn E Simmons
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Svitlana Malyarchuk
- Molecular and Cellular Physiology, Shreveport, LA, USA ; LSU Health Sciences Center School of Medicine, Shreveport, LA, USA
| | - Tara N Calhoun
- Molecular and Cellular Physiology, Shreveport, LA, USA ; LSU Health Sciences Center School of Medicine, Shreveport, LA, USA
| | - Kevin Pruitt
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
133
|
Griffin TM, Humphries KM, Kinter M, Lim HY, Szweda LI. Nutrient sensing and utilization: Getting to the heart of metabolic flexibility. Biochimie 2015; 124:74-83. [PMID: 26476002 DOI: 10.1016/j.biochi.2015.10.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/12/2015] [Indexed: 02/07/2023]
Abstract
A central feature of obesity-related cardiometabolic diseases is the impaired ability to transition between fatty acid and glucose metabolism. This impairment, referred to as "metabolic inflexibility", occurs in a number of tissues, including the heart. Although the heart normally prefers to metabolize fatty acids over glucose, the inability to upregulate glucose metabolism under energetically demanding conditions contributes to a pathological state involving energy imbalance, impaired contractility, and post-translational protein modifications. This review discusses pathophysiologic processes that contribute to cardiac metabolic inflexibility and speculates on the potential physiologic origins that lead to the current state of cardiometabolic disease in an obesogenic environment.
Collapse
Affiliation(s)
- Timothy M Griffin
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Kenneth M Humphries
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Michael Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Hui-Ying Lim
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Luke I Szweda
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
134
|
Pehar M, Ball LE, Sharma DR, Harlan BA, Comte-Walters S, Neely BA, Vargas MR. Changes in Protein Expression and Lysine Acetylation Induced by Decreased Glutathione Levels in Astrocytes. Mol Cell Proteomics 2015; 15:493-505. [PMID: 26486419 DOI: 10.1074/mcp.m115.049288] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Indexed: 01/13/2023] Open
Abstract
Astrocytes and neurons form a highly specialized functional unit, and the loss or gain of astrocytic functions can influence the initiation and progression of different neurodegenerative diseases. Neurons depend on the antioxidant protection provided by neighboring astrocytes. Glutathione (γ-l-glutamyl-l-cysteinyl-glycine) is a major component of the antioxidant system that defends cells against the toxic effects of reactive oxygen/nitrogen species. A decline in glutathione levels has been observed in aging and neurodegenerative diseases, and it aggravates the pathology in an amyotrophic lateral sclerosis-mouse model. Using a SILAC-based quantitative proteomic approach, we analyzed changes in global protein expression and lysine acetylation in primary astrocyte cultures obtained from wild-type mice or those deficient in the glutamate-cysteine ligase modifier subunit (GCLM). GCLM knockout astrocytes display an ∼80% reduction in total glutathione levels. We identified potential molecular targets and novel sites of acetylation that are affected by the chronic decrease in glutathione levels and observed a response mediated by Nrf2 activation. In addition, sequence analysis of peptides displaying increased acetylation in GCLM knockout astrocytes revealed an enrichment of cysteine residues in the vicinity of the acetylation site, which suggests potential crosstalk between lysine-acetylation and cysteine modification. Regulation of several metabolic and antioxidant pathways was observed at the level of protein expression and lysine acetylation, revealing a coordinated response involving transcriptional and posttranslational regulation.
Collapse
Affiliation(s)
- Mariana Pehar
- From the ¶Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425.
| | - Lauren E Ball
- From the ¶Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425
| | - Deep R Sharma
- From the ¶Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425
| | - Benjamin A Harlan
- From the ¶Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425
| | - Susana Comte-Walters
- From the ¶Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425
| | - Benjamin A Neely
- From the ¶Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425
| | - Marcelo R Vargas
- From the ¶Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425.
| |
Collapse
|
135
|
Hentchel KL, Escalante-Semerena JC. Acylation of Biomolecules in Prokaryotes: a Widespread Strategy for the Control of Biological Function and Metabolic Stress. Microbiol Mol Biol Rev 2015; 79:321-46. [PMID: 26179745 PMCID: PMC4503791 DOI: 10.1128/mmbr.00020-15] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Acylation of biomolecules (e.g., proteins and small molecules) is a process that occurs in cells of all domains of life and has emerged as a critical mechanism for the control of many aspects of cellular physiology, including chromatin maintenance, transcriptional regulation, primary metabolism, cell structure, and likely other cellular processes. Although this review focuses on the use of acetyl moieties to modify a protein or small molecule, it is clear that cells can use many weak organic acids (e.g., short-, medium-, and long-chain mono- and dicarboxylic aliphatics and aromatics) to modify a large suite of targets. Acetylation of biomolecules has been studied for decades within the context of histone-dependent regulation of gene expression and antibiotic resistance. It was not until the early 2000s that the connection between metabolism, physiology, and protein acetylation was reported. This was the first instance of a metabolic enzyme (acetyl coenzyme A [acetyl-CoA] synthetase) whose activity was controlled by acetylation via a regulatory system responsive to physiological cues. The above-mentioned system was comprised of an acyltransferase and a partner deacylase. Given the reversibility of the acylation process, this system is also referred to as reversible lysine acylation (RLA). A wealth of information has been obtained since the discovery of RLA in prokaryotes, and we are just beginning to visualize the extent of the impact that this regulatory system has on cell function.
Collapse
Affiliation(s)
- Kristy L Hentchel
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | | |
Collapse
|
136
|
Lysine acetylation is a common post-translational modification of key metabolic pathway enzymes of the anaerobe Porphyromonas gingivalis. J Proteomics 2015; 128:352-64. [PMID: 26341301 DOI: 10.1016/j.jprot.2015.08.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/21/2015] [Accepted: 08/21/2015] [Indexed: 01/12/2023]
Abstract
Porphyromonas gingivalis is a Gram-negative anaerobe considered to be a keystone pathogen in the development of the bacterial-associated inflammatory oral disease chronic periodontitis. Although post-translational modifications (PTMs) of proteins are commonly found to modify protein function in eukaryotes and prokaryotes, PTMs such as lysine acetylation have not been examined in P. gingivalis. Lysine acetylation is the addition of an acetyl group to a lysine which removes this amino acid's positive charge and can induce changes in a protein's secondary structure and reactivity. A proteomics based approach combining immune-affinity enrichment with high sensitivity Orbitrap mass spectrometry identified 130 lysine acetylated peptides from 92 P. gingivalis proteins. The majority of these peptides (71) were attributed to 45 proteins with predicted metabolic activity; these proteins could be mapped to several P. gingivalis metabolic pathways where enzymes catalysing sequential reactions within the same pathway were often found acetylated. In particular, the catabolic pathways of complex anaerobic fermentation of amino acids to produce energy had 12 enzymes lysine acetylated. The results suggest that lysine acetylation may be an important mechanism in metabolic regulation in P. gingivalis, which is vital for P. gingivalis survival and adaptation of its metabolism throughout infection. Statement of significance. Porphyromonas gingivalis is a keystone pathogen in the development of chronic periodontitis, an inflammatory disease of the supporting tissues of the teeth. The ability of the pathogen to induce dysbiosis and disease is related to an array of specific virulence factors and metabolic regulation that enables the bacterium to proliferate in an inflamed periodontal pocket. The mechanisms P. gingivalis uses to adapt to a changing and hostile environment are poorly understood and here we show, for the first time, that enzymes of critical metabolic pathways for energy production in this bacterium were acetylated on certain lysine residues. These enzymes were often found catalysing sequential reactions within the same catabolic pathway. The results suggest that lysine acetylation is an important mechanism of metabolic regulation in P. gingivalis vital for its adaptation and proliferation to produce disease.
Collapse
|
137
|
Ha J, Guan KL, Kim J. AMPK and autophagy in glucose/glycogen metabolism. Mol Aspects Med 2015; 46:46-62. [PMID: 26297963 DOI: 10.1016/j.mam.2015.08.002] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/04/2015] [Indexed: 12/14/2022]
Abstract
Glucose/glycogen metabolism is a primary metabolic pathway acting on a variety of cellular needs, such as proliferation, growth, and survival against stresses. The multiple regulatory mechanisms underlying a specific metabolic fate have been documented and explained the molecular basis of various pathophysiological conditions, including metabolic disorders and cancers. AMP-activated protein kinase (AMPK) has been appreciated for many years as a central metabolic regulator to inhibit energy-consuming pathways as well as to activate the compensating energy-producing programs. In fact, glucose starvation is a potent physiological AMPK activating condition, in which AMPK triggers various subsequent metabolic events depending on cells or tissues. Of note, the recent studies show bidirectional interplay between AMPK and glycogen. A growing number of studies have proposed additional level of metabolic regulation by a lysosome-dependent catabolic program, autophagy. Autophagy is a critical degradative pathway not only for maintenance of cellular homeostasis to remove potentially dangerous constituents, such as protein aggregates and dysfunctional subcellular organelles, but also for adaptive responses to metabolic stress, such as nutrient starvation. Importantly, many lines of evidence indicate that autophagy is closely connected with nutrient signaling modules, including AMPK, to fine-tune the metabolic pathways in response to many different cellular cues. In this review, we introduce the studies demonstrating the role of AMPK and autophagy in glucose/glycogen metabolism. Also, we describe the recent advances on their contributions to the metabolic disorders.
Collapse
Affiliation(s)
- Joohun Ha
- Department of Biochemistry and Molecular Biology, Medical Research Center and Biomedical Science Institute, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Kun-Liang Guan
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Joungmok Kim
- Department of Oral Biochemistry and Molecular Biology, Research Center for Tooth and Periodontal Tissue Regeneration, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
138
|
Lu J, Cheng K, Zhang B, Xu H, Cao Y, Guo F, Feng X, Xia Q. Novel mechanisms for superoxide-scavenging activity of human manganese superoxide dismutase determined by the K68 key acetylation site. Free Radic Biol Med 2015; 85:114-26. [PMID: 25908444 DOI: 10.1016/j.freeradbiomed.2015.04.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 03/22/2015] [Accepted: 04/09/2015] [Indexed: 01/29/2023]
Abstract
Superoxide is the primary reactive oxygen species generated in the mitochondria. Manganese superoxide dismutase (SOD2) is the major enzymatic superoxide scavenger present in the mitochondrial matrix and one of the most crucial reactive oxygen species-scavenging enzymes in the cell. SOD2 is activated by sirtuin 3 (SIRT3) through NAD(+)-dependent deacetylation. However, the exact acetylation sites of SOD2 are ambiguous and the mechanisms underlying the deacetylation-mediated SOD2 activation largely remain unknown. We are the first to characterize SOD2 mutants of the acetylation sites by investigating the relative enzymatic activity, structures, and electrostatic potential of SOD2 in this study. These SOD2 mutations affected the superoxide-scavenging activity in vitro and in HEK293T cells. The lysine 68 (K68) site is the most important acetylation site contributing to SOD2 activation and plays a role in cell survival after paraquat treatment. The molecular basis underlying the regulation of SOD2 activity by K68 was investigated in detail. Molecular dynamics simulations revealed that K68 mutations induced a conformational shift of residues located in the active center of SOD2 and altered the charge distribution on the SOD2 surface. Thus, the entry of the superoxide anion into the coordinated core of SOD2 was inhibited. Our results provide a novel mechanistic insight, whereby SOD2 acetylation affects the structure and charge distribution of SOD2, its tetramerization, and p53-SOD2 interactions of SOD2 in the mitochondria, which may play a role in nuclear-mitochondrial communication during aging.
Collapse
Affiliation(s)
- Jiaqi Lu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, People׳s Republic of China
| | - Kuoyuan Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, People׳s Republic of China
| | - Bo Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, People׳s Republic of China
| | - Huan Xu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, People׳s Republic of China
| | - Yuanzhao Cao
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, People׳s Republic of China
| | - Fei Guo
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, People׳s Republic of China
| | - Xudong Feng
- Department of Medicine, Children׳s Hospital Boston, Harvard Medical School, Boston, MA 02445, USA.
| | - Qing Xia
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, People׳s Republic of China.
| |
Collapse
|
139
|
Glucose-dependent acetylation of Rictor promotes targeted cancer therapy resistance. Proc Natl Acad Sci U S A 2015; 112:9406-11. [PMID: 26170313 DOI: 10.1073/pnas.1511759112] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cancer cells adapt their signaling in response to nutrient availability. To uncover the mechanisms regulating this process and its functional consequences, we interrogated cell lines, mouse tumor models, and clinical samples of glioblastoma (GBM), the highly lethal brain cancer. We discovered that glucose or acetate is required for epidermal growth factor receptor vIII (EGFRvIII), the most common growth factor receptor mutation in GBM, to activate mechanistic target of rapamycin complex 2 (mTORC2) and promote tumor growth. Glucose or acetate promoted growth factor receptor signaling through acetyl-CoA-dependent acetylation of Rictor, a core component of the mTORC2 signaling complex. Remarkably, in the presence of elevated glucose levels, Rictor acetylation is maintained to form an autoactivation loop of mTORC2 even when the upstream components of the growth factor receptor signaling pathway are no longer active, thus rendering GBMs resistant to EGFR-, PI3K (phosphoinositide 3-kinase)-, or AKT (v-akt murine thymoma viral oncogene homolog)-targeted therapies. These results demonstrate that elevated nutrient levels can drive resistance to targeted cancer treatments and nominate mTORC2 as a central node for integrating growth factor signaling with nutrient availability in GBM.
Collapse
|
140
|
Kosono S, Tamura M, Suzuki S, Kawamura Y, Yoshida A, Nishiyama M, Yoshida M. Changes in the Acetylome and Succinylome of Bacillus subtilis in Response to Carbon Source. PLoS One 2015; 10:e0131169. [PMID: 26098117 PMCID: PMC4476798 DOI: 10.1371/journal.pone.0131169] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/29/2015] [Indexed: 11/19/2022] Open
Abstract
Lysine residues can be post-translationally modified by various acyl modifications in bacteria and eukarya. Here, we showed that two major acyl modifications, acetylation and succinylation, were changed in response to the carbon source in the Gram-positive model bacterium Bacillus subtilis. Acetylation was more common when the cells were grown on glucose, glycerol, or pyruvate, whereas succinylation was upregulated when the cells were grown on citrate, reflecting the metabolic states that preferentially produce acetyl-CoA and succinyl-CoA, respectively. To identify and quantify changes in acetylation and succinylation in response to the carbon source, we performed a stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative proteomic analysis of cells grown on glucose or citrate. We identified 629 acetylated proteins with 1355 unique acetylation sites and 204 succinylated proteins with 327 unique succinylation sites. Acetylation targeted different metabolic pathways under the two growth conditions: branched-chain amino acid biosynthesis and purine metabolism in glucose and the citrate cycle in citrate. Succinylation preferentially targeted the citrate cycle in citrate. Acetylation and succinylation mostly targeted different lysine residues and showed a preference for different residues surrounding the modification sites, suggesting that the two modifications may depend on different factors such as characteristics of acyl-group donors, molecular environment of the lysine substrate, and/or the modifying enzymes. Changes in acetylation and succinylation were observed in proteins involved in central carbon metabolism and in components of the transcription and translation machineries, such as RNA polymerase and the ribosome. Mutations that modulate protein acylation affected B. subtilis growth. A mutation in acetate kinase (ackA) increased the global acetylation level, suggesting that acetyl phosphate-dependent acetylation is common in B. subtilis, just as it is in Escherichia coli. Our results suggest that acyl modifications play a role in the physiological adaptations to changes in carbon nutrient availability of B. subtilis.
Collapse
Affiliation(s)
- Saori Kosono
- Biotechnology Research Center, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
- * E-mail:
| | - Masaru Tamura
- Biotechnology Research Center, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shota Suzuki
- Biotechnology Research Center, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yumi Kawamura
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Ayako Yoshida
- Biotechnology Research Center, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Makoto Nishiyama
- Biotechnology Research Center, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Minoru Yoshida
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| |
Collapse
|
141
|
Nakagawa T, Nakayama K. Protein monoubiquitylation: targets and diverse functions. Genes Cells 2015; 20:543-62. [PMID: 26085183 PMCID: PMC4744734 DOI: 10.1111/gtc.12250] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 04/19/2015] [Indexed: 12/14/2022]
Abstract
Ubiquitin is a 76-amino acid protein whose conjugation to protein targets is a form of post-translational modification. Protein ubiquitylation is characterized by the covalent attachment of the COOH-terminal carboxyl group of ubiquitin to an amino group of the substrate protein. Given that the NH2 -terminal amino group is usually masked, internal lysine residues are most often targeted for ubiquitylation. Polyubiquitylation refers to the formation of a polyubiquitin chain on the substrate as a result of the ubiquitylation of conjugated ubiquitin. The structures of such polyubiquitin chains depend on the specific lysine residues of ubiquitin targeted for ubiquitylation. Most of the polyubiquitin chains other than those linked via lysine-63 and methionine-1 of ubiquitin are recognized by the proteasome and serve as a trigger for substrate degradation. In contrast, polyubiquitin chains linked via lysine-63 and methionine-1 serve as a binding platform for proteins that function in immune signal transduction or DNA repair. With the exception of a few targets such as histones, the functions of protein monoubiquitylation have remained less clear. However, recent proteomics analysis has shown that monoubiquitylation occurs more frequently than polyubiquitylation, and studies are beginning to provide insight into its biologically important functions. Here, we summarize recent findings on protein monoubiquitylation to provide an overview of the targets and molecular functions of this modification.
Collapse
Affiliation(s)
- Tadashi Nakagawa
- Division of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, 980-8575, Miyagi, Japan
| | - Keiko Nakayama
- Division of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, 980-8575, Miyagi, Japan
| |
Collapse
|
142
|
Li H, Yu C, Chen H, Tian F, He C. PXO_00987, a putative acetyltransferase, is required for flagellin glycosylation, and regulates flagellar motility, exopolysaccharide production, and biofilm formation in Xanthomonas oryzae pv. oryzae. Microb Pathog 2015; 85:50-7. [PMID: 26065383 DOI: 10.1016/j.micpath.2015.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/27/2015] [Accepted: 06/05/2015] [Indexed: 10/23/2022]
Abstract
Acetyltransferases catalyze an important process for sugar or protein modification. In the genome of Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of bacterial blight of rice, there are 32 acetyltransferase-encoding genes belonging to different families. In this work, we focused on PXO_00987, which encodes a putative acetyltransferase in the flagellar regulon. We found that mutation of PXO_00987 gene abolished the glycosylation of wild-type flagellin protein of Xoo. In addition, the PXO_00987 mutant showed enhanced swimming motility, and decreased exopolysaccharide production and biofilm formation. Virulence assays demonstrated that the PXO_00987 mutant caused shorter disease length on rice leaves, suggesting that the function of PXO_00987 contributes to the pathogenesis of Xoo.
Collapse
Affiliation(s)
- Haiyun Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chao Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huamin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fang Tian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Chenyang He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
143
|
Role of CoA and acetyl-CoA in regulating cardiac fatty acid and glucose oxidation. Biochem Soc Trans 2015; 42:1043-51. [PMID: 25110000 DOI: 10.1042/bst20140094] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
CoA (coenzyme A) and its derivatives have a critical role in regulating cardiac energy metabolism. This includes a key role as a substrate and product in the energy metabolic pathways, as well as serving as an allosteric regulator of cardiac energy metabolism. In addition, the CoA ester malonyl-CoA has an important role in regulating fatty acid oxidation, secondary to inhibiting CPT (carnitine palmitoyltransferase) 1, a key enzyme involved in mitochondrial fatty acid uptake. Alterations in malonyl-CoA synthesis by ACC (acetyl-CoA carboxylase) and degradation by MCD (malonyl-CoA decarboxylase) are important contributors to the high cardiac fatty acid oxidation rates seen in ischaemic heart disease, heart failure, obesity and diabetes. Additional control of fatty acid oxidation may also occur at the level of acetyl-CoA involvement in acetylation of mitochondrial fatty acid β-oxidative enzymes. We find that acetylation of the fatty acid β-oxidative enzymes, LCAD (long-chain acyl-CoA dehydrogenase) and β-HAD (β-hydroxyacyl-CoA dehydrogenase) is associated with an increase in activity and fatty acid oxidation in heart from obese mice with heart failure. This is associated with decreased SIRT3 (sirtuin 3) activity, an important mitochondrial deacetylase. In support of this, cardiac SIRT3 deletion increases acetylation of LCAD and β-HAD, and increases cardiac fatty acid oxidation. Acetylation of MCD is also associated with increased activity, decreases malonyl-CoA levels and an increase in fatty acid oxidation. Combined, these data suggest that malonyl-CoA and acetyl-CoA have an important role in mediating the alterations in fatty acid oxidation seen in heart failure.
Collapse
|
144
|
Lee JV, Shah S, Carrer A, Wellen KE. A cancerous web: signaling, metabolism, and the epigenome. Mol Cell Oncol 2015; 2:e965620. [PMID: 27308412 PMCID: PMC4904988 DOI: 10.4161/23723548.2014.965620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 08/08/2014] [Accepted: 08/12/2014] [Indexed: 11/19/2022]
Abstract
Histone acetylation is sensitive to the availability of acetyl-CoA. However, the extent to which metabolic alterations in cancer cells impact tumor histone acetylation has been unclear. Here, we discuss our recent findings that oncogenic AKT1 activation regulates histone acetylation levels in tumors through regulation of acetyl-CoA metabolism.
Collapse
Affiliation(s)
- Joyce V. Lee
- Department of Cancer Biology and Abramson Family Cancer Research Institute; University of Pennsylvania Perelman School of Medicine; Philadelphia, PA USA
| | - Supriya Shah
- Department of Cancer Biology and Abramson Family Cancer Research Institute; University of Pennsylvania Perelman School of Medicine; Philadelphia, PA USA
| | - Alessandro Carrer
- Department of Cancer Biology and Abramson Family Cancer Research Institute; University of Pennsylvania Perelman School of Medicine; Philadelphia, PA USA
| | - Kathryn E. Wellen
- Department of Cancer Biology and Abramson Family Cancer Research Institute; University of Pennsylvania Perelman School of Medicine; Philadelphia, PA USA
| |
Collapse
|
145
|
Zhang L, Han L, Ma R, Hou X, Yu Y, Sun S, Xu Y, Schedl T, Moley KH, Wang Q. Sirt3 prevents maternal obesity-associated oxidative stress and meiotic defects in mouse oocytes. Cell Cycle 2015; 14:2959-68. [PMID: 25790176 DOI: 10.1080/15384101.2015.1026517] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Maternal obese environment has been reported to induce oxidative stress and meiotic defects in oocytes, however the underlying molecular mechanism remains unclear. Here, using mice fed a high fat diet (HFD) as an obesity model, we first detected enhanced reactive oxygen species (ROS) content and reduced Sirt3 expression in HFD oocytes. We further observed that specific depletion of Sirt3 in control oocytes elevates ROS levels while Sirt3 overexpression attenuates ROS production in HFD oocytes, with significant suppression of spindle disorganization and chromosome misalignment phenotypes that have been reported in the obesity model. Candidate screening revealed that the acetylation status of lysine 68 on superoxide dismutase (SOD2K68) is dependent on Sirt3 deacetylase activity in oocytes, and acetylation-mimetic mutant SOD2K68Q results in almost threefold increase in intracellular ROS. Moreover, we found that acetylation levels of SOD2K68 are increased by ~80% in HFD oocytes and importantly, that the non-acetylatable-mimetic mutant SOD2K68R is capable of partially rescuing their deficient phenotypes. Together, our data identify Sirt3 as an important player in modulating ROS homeostasis during oocyte development, and indicate that Sirt3-dependent deacetylation of SOD2 plays a protective role against oxidative stress and meiotic defects in oocytes under maternal obese conditions.
Collapse
Affiliation(s)
- Liang Zhang
- a College of Animal Science & Technology; Nanjing Agricultural University ; Nanjing , China.,b State Key Laboratory of Reproductive Medicine; Nanjing Medical University ; Nanjing , China
| | - Longsen Han
- a College of Animal Science & Technology; Nanjing Agricultural University ; Nanjing , China
| | - Rujun Ma
- a College of Animal Science & Technology; Nanjing Agricultural University ; Nanjing , China.,c College of Veterinary Medicine; Nanjing Agricultural University , Nanjing , China
| | - Xiaojing Hou
- b State Key Laboratory of Reproductive Medicine; Nanjing Medical University ; Nanjing , China
| | - Yang Yu
- d Center of Reproductive Medicine; Department of Obstetrics and Gynecology; Peking University Third Hospital , Beijing , China
| | - Shaochen Sun
- a College of Animal Science & Technology; Nanjing Agricultural University ; Nanjing , China
| | - Yinxue Xu
- a College of Animal Science & Technology; Nanjing Agricultural University ; Nanjing , China
| | - Tim Schedl
- e Washington University School of Medicine , St. Louis , MO USA
| | - Kelle H Moley
- e Washington University School of Medicine , St. Louis , MO USA
| | - Qiang Wang
- b State Key Laboratory of Reproductive Medicine; Nanjing Medical University ; Nanjing , China
| |
Collapse
|
146
|
Hirschey MD, Zhao Y. Metabolic Regulation by Lysine Malonylation, Succinylation, and Glutarylation. Mol Cell Proteomics 2015; 14:2308-15. [PMID: 25717114 DOI: 10.1074/mcp.r114.046664] [Citation(s) in RCA: 328] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Indexed: 12/14/2022] Open
Abstract
Protein acetylation is a well-studied regulatory mechanism for several cellular processes, ranging from gene expression to metabolism. Recent discoveries of new post-translational modifications, including malonylation, succinylation, and glutarylation, have expanded our understanding of the types of modifications found on proteins. These three acidic lysine modifications are structurally similar but have the potential to regulate different proteins in different pathways. The deacylase sirtuin 5 (SIRT5) catalyzes the removal of these modifications from a wide range of proteins in different subcellular compartments. Here, we review these new modifications, their regulation by SIRT5, and their emerging role in cellular regulation and diseases.
Collapse
Affiliation(s)
- Matthew D Hirschey
- From the ‡Duke Molecular Physiology Institute, Sarah W. Stedman Metabolism and Nutrition Center, §Departments of Medicine & Pharmacology and Cancer Biology, Duke University, Medical Center, Durham, NC 27710;
| | - Yingming Zhao
- ¶Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
147
|
Rowlands BD, Lau CL, Ryall JG, Thomas DS, Klugmann M, Beart PM, Rae CD. Silent information regulator 1 modulator resveratrol increases brain lactate production and inhibits mitochondrial metabolism, whereas SRT1720 increases oxidative metabolism. J Neurosci Res 2015; 93:1147-56. [PMID: 25677687 DOI: 10.1002/jnr.23570] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/16/2015] [Accepted: 01/16/2015] [Indexed: 12/26/2022]
Abstract
Silent information regulators (SIRTs) have been shown to deacetylate a range of metabolic enzymes, including those in glycolysis and the Krebs cycle, and thus alter their activity. SIRTs require NAD(+) for their activity, linking cellular energy status to enzyme activity. To examine the impact of SIRT1 modulation on oxidative metabolism, this study tests the effect of ligands that are either SIRT-activating compounds (resveratrol and SRT1720) or SIRT inhibitors (EX527) on the metabolism of (13)C-enriched substrates by guinea pig brain cortical tissue slices with (13)C and (1)H nuclear magnetic resonance spectroscopy. Resveratrol increased lactate labeling but decreased incorporation of (13)C into Krebs cycle intermediates, consistent with effects on AMPK and inhibition of the F0/F1-ATPase. By testing with resveratrol that was directly applied to astrocytes with a Seahorse analyzer, increased glycolytic shift and increased mitochondrial proton leak resulting from interactions of resveratrol with the mitochondrial electron transport chain were revealed. SRT1720, by contrast, stimulated incorporation of (13)C into Krebs cycle intermediates and reduced incorporation into lactate, although the inhibitor EX527 paradoxically also increased Krebs cycle (13)C incorporation. In summary, the various SIRT1 modulators show distinct acute effects on oxidative metabolism. The strong effects of resveratrol on the mitochondrial respiratory chain and on glycolysis suggest that caution should be used in attempts to increase bioavailability of this compound in the CNS.
Collapse
Affiliation(s)
- Benjamin D Rowlands
- Neuroscience Research Australia, Randwick, New South Wales, Australia.,Department of Physiology and Translational Neuroscience Facility, School of Medical Sciences, The University of New South Wales, Randwick, New South Wales, Australia
| | - Chew Ling Lau
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - James G Ryall
- Stem Cell Metabolism and Regenerative Medicine Group, Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Parkville, Victoria, Australia
| | - Donald S Thomas
- Mark Wainwright Analytical Centre, The University of New South Wales, Randwick, New South Wales, Australia
| | - Matthias Klugmann
- Department of Physiology and Translational Neuroscience Facility, School of Medical Sciences, The University of New South Wales, Randwick, New South Wales, Australia
| | - Philip M Beart
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Caroline D Rae
- Neuroscience Research Australia, Randwick, New South Wales, Australia.,Department of Physiology and Translational Neuroscience Facility, School of Medical Sciences, The University of New South Wales, Randwick, New South Wales, Australia
| |
Collapse
|
148
|
Zhou Y, Zhang N, Li BQ, Huang T, Cai YD, Kong XY. A method to distinguish between lysine acetylation and lysine ubiquitination with feature selection and analysis. J Biomol Struct Dyn 2015; 33:2479-90. [PMID: 25616595 DOI: 10.1080/07391102.2014.1001793] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lysine acetylation and ubiquitination are two primary post-translational modifications (PTMs) in most eukaryotic proteins. Lysine residues are targets for both types of PTMs, resulting in different cellular roles. With the increasing availability of protein sequences and PTM data, it is challenging to distinguish the two types of PTMs on lysine residues. Experimental approaches are often laborious and time consuming. There is an urgent need for computational tools to distinguish between lysine acetylation and ubiquitination. In this study, we developed a novel method, called DAUFSA (distinguish between lysine acetylation and lysine ubiquitination with feature selection and analysis), to discriminate ubiquitinated and acetylated lysine residues. The method incorporated several types of features: PSSM (position-specific scoring matrix) conservation scores, amino acid factors, secondary structures, solvent accessibilities, and disorder scores. By using the mRMR (maximum relevance minimum redundancy) method and the IFS (incremental feature selection) method, an optimal feature set containing 290 features was selected from all incorporated features. A dagging-based classifier constructed by the optimal features achieved a classification accuracy of 69.53%, with an MCC of .3853. An optimal feature set analysis showed that the PSSM conservation score features and the amino acid factor features were the most important attributes, suggesting differences between acetylation and ubiquitination. Our study results also supported previous findings that different motifs were employed by acetylation and ubiquitination. The feature differences between the two modifications revealed in this study are worthy of experimental validation and further investigation.
Collapse
Affiliation(s)
- You Zhou
- a The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine , Shanghai 200031 , P.R. China
| | - Ning Zhang
- b Department of Biomedical Engineering, Tianjin Key Lab of BME Measurement , Tianjin University , Tianjin 300072 , P.R. China
| | - Bi-Qing Li
- c Key Laboratory of Systems Biology , Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai 200031 , P.R. China
| | - Tao Huang
- a The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine , Shanghai 200031 , P.R. China.,d Department of Genetics and Genomic Sciences , Icahn School of Medicine at Mount Sinai , New York , NY 10029 , USA
| | - Yu-Dong Cai
- e Institute of Systems Biology , Shanghai University , Shanghai 200444 , P.R. China
| | - Xiang-Yin Kong
- a The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine , Shanghai 200031 , P.R. China
| |
Collapse
|
149
|
Abstract
![]()
Protein acetylation of lysine ε-amino
groups is abundant in cells, particularly within mitochondria. The
contribution of enzyme-catalyzed and nonenzymatic acetylation in mitochondria
remains unresolved. Here, we utilize a newly developed approach to
measure site-specific, nonenzymatic acetylation rates for 90 sites
in eight native purified proteins. Lysine reactivity (as second-order
rate constants) with acetyl-phosphate and acetyl-CoA ranged over 3
orders of magnitude, and higher chemical reactivity tracked with likelihood
of dynamic modification in vivo, providing evidence
that enzyme-catalyzed acylation might not be necessary to explain
the prevalence of acetylation in mitochondria. Structural analysis
revealed that many highly reactive sites exist within clusters of
basic residues, whereas lysines that show low reactivity are engaged
in strong attractive electrostatic interactions with acidic residues.
Lysine clusters are predicted to be high-affinity substrates of mitochondrial
deacetylase SIRT3 both in vitro and in vivo. Our analysis describing rate determination of lysine acetylation
is directly applicable to investigate targeted and proteome-wide acetylation,
whether or not the reaction is enzyme catalyzed.
Collapse
Affiliation(s)
- Josue Baeza
- Department of Biomolecular Chemistry and ‡Wisconsin Institute for Discovery, University of Wisconsin, Madison, Wisconsin 53715, United States
| | - Michael J. Smallegan
- Department of Biomolecular Chemistry and ‡Wisconsin Institute for Discovery, University of Wisconsin, Madison, Wisconsin 53715, United States
| | - John M. Denu
- Department of Biomolecular Chemistry and ‡Wisconsin Institute for Discovery, University of Wisconsin, Madison, Wisconsin 53715, United States
| |
Collapse
|
150
|
Belman JP, Bian RR, Habtemichael EN, Li DT, Jurczak MJ, Alcázar-Román A, McNally LJ, Shulman GI, Bogan JS. Acetylation of TUG protein promotes the accumulation of GLUT4 glucose transporters in an insulin-responsive intracellular compartment. J Biol Chem 2015; 290:4447-63. [PMID: 25561724 DOI: 10.1074/jbc.m114.603977] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin causes the exocytic translocation of GLUT4 glucose transporters to stimulate glucose uptake in fat and muscle. Previous results support a model in which TUG traps GLUT4 in intracellular, insulin-responsive vesicles termed GLUT4 storage vesicles (GSVs). Insulin triggers TUG cleavage to release the GSVs; GLUT4 then recycles through endosomes during ongoing insulin exposure. The TUG C terminus binds a GSV anchoring site comprising Golgin-160 and possibly other proteins. Here, we report that the TUG C terminus is acetylated. The TUG C-terminal peptide bound the Golgin-160-associated protein, ACBD3 (acyl-CoA-binding domain-containing 3), and acetylation reduced binding of TUG to ACBD3 but not to Golgin-160. Mutation of the acetylated residues impaired insulin-responsive GLUT4 trafficking in 3T3-L1 adipocytes. ACBD3 overexpression enhanced the translocation of GSV cargos, GLUT4 and insulin-regulated aminopeptidase (IRAP), and ACBD3 was required for intracellular retention of these cargos in unstimulated cells. Sirtuin 2 (SIRT2), a NAD(+)-dependent deacetylase, bound TUG and deacetylated the TUG peptide. SIRT2 overexpression reduced TUG acetylation and redistributed GLUT4 and IRAP to the plasma membrane in 3T3-L1 adipocytes. Mutation of the acetylated residues in TUG abrogated these effects. In mice, SIRT2 deletion increased TUG acetylation and proteolytic processing. During glucose tolerance tests, glucose disposal was enhanced in SIRT2 knock-out mice, compared with wild type controls, without any effect on insulin concentrations. Together, these data support a model in which TUG acetylation modulates its interaction with Golgi matrix proteins and is regulated by SIRT2. Moreover, acetylation of TUG enhances its function to trap GSVs within unstimulated cells and enhances insulin-stimulated glucose uptake.
Collapse
Affiliation(s)
- Jonathan P Belman
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine, Department of Cell Biology
| | - Rachel R Bian
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine
| | | | - Don T Li
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine
| | - Michael J Jurczak
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine
| | - Abel Alcázar-Román
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine
| | - Leah J McNally
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine
| | - Gerald I Shulman
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine, Department of Cellular and Molecular Physiology, and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520-8020
| | - Jonathan S Bogan
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine, Department of Cell Biology,
| |
Collapse
|