101
|
Kim BC, Kim JH, An HJ, Byun W, Park JH, Kwon IK, Kim JS, Hwang YS. Microwell-mediated micro cartilage-like tissue formation of adipose-derived stem cell. Macromol Res 2014. [DOI: 10.1007/s13233-014-2044-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
102
|
Orth P, Rey-Rico A, Venkatesan JK, Madry H, Cucchiarini M. Current perspectives in stem cell research for knee cartilage repair. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2014; 7:1-17. [PMID: 24520197 PMCID: PMC3897321 DOI: 10.2147/sccaa.s42880] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protocols based on the delivery of stem cells are currently applied in patients, showing encouraging results for the treatment of articular cartilage lesions (focal defects, osteoarthritis). Yet, restoration of a fully functional cartilage surface (native structural organization and mechanical functions) especially in the knee joint has not been reported to date, showing the need for improved designs of clinical trials. Various sources of progenitor cells are now available, originating from adult tissues but also from embryonic or reprogrammed tissues, most of which have already been evaluated for their chondrogenic potential in culture and for their reparative properties in vivo upon implantation in relevant animal models of cartilage lesions. Nevertheless, particular attention will be needed regarding their safe clinical use and their potential to form a cartilaginous repair tissue of proper quality and functionality in the patient. Possible improvements may reside in the use of biological supplements in accordance with regulations, while some challenges remain in establishing standardized, effective procedures in the clinics.
Collapse
Affiliation(s)
- Patrick Orth
- Department of Orthopaedic Surgery, Saarland University Medical Center, Homburg, Germany
| | - Ana Rey-Rico
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| | - Jagadeesh K Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| | - Henning Madry
- Department of Orthopaedic Surgery, Saarland University Medical Center, Homburg, Germany ; Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| |
Collapse
|
103
|
Li Y, Cai H, Fang W, Meng Q, Li J, Deng M, Long X. Fibroblast growth factor 2 involved in the pathogenesis of synovial chondromatosis of temporomandibular joint. J Oral Pathol Med 2013; 43:388-94. [PMID: 24372705 DOI: 10.1111/jop.12146] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2013] [Indexed: 12/28/2022]
Abstract
BACKGROUND Synovial chondromatosis (SC) of temporomandibular joint (TMJ) is a rare proliferative disorder characterized by the formation of cartilaginous or osteocartilaginous nodules in synovium and joint space. Fibroblast growth factor 2 (FGF-2) is frequently applied in chondrogenic differentiation assays. Therefore, we hypothesized that FGF-2 might involved in the pathogenesis of SC. METHODS SC synovium and loose bodies (LBs) specimens were observed by histological and immunohistochemical methods. Real-time PCR was conducted for comparing genes expressions in SC and normal synovium. SC synoviocytes were stimulated by FGF-2 in the presence or absence of its antagonist long pentraxin-3 (PTX3) for 6 days. Real-time PCR and alkaline phosphatase (ALP) activity were performed to examine the effects exerted by FGF-2 and PTX3. RESULTS SC synovium, no matter facing the articular cavity or covering LB, was characterized by increased quantity of synoviocytes and blood vessels. FGF-2 was expressed in chondrocytes and fibroblast-like cells of LBs, and the wall of blood vessels. Expressions of chondrogenic genes (Sox9 and Wnt-4), osteogenic genes (Foxc2), FGF-2, and VEGF-A mRNA were significantly higher in SC synovium than that of the control group. The stimulation of FGF-2 on SC synoviocytes increased ALP activity and expressions of chondrogenic genes (Sox9, Col2α1, and Aggrecan), osteogenic genes (Foxc2, osteocalcin, and Col1α1), and VEGF-A, but PTX3 inhibited these effects. CONCLUSION FGF-2 was responsible for the formation of cartilaginous loose bodies and involved in the pathogenesis of SC.
Collapse
Affiliation(s)
- Yingjie Li
- Department of Oral and Maxillofacial Surgery, The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | | | | | | | | | | | | |
Collapse
|
104
|
Shi X, Zhao Y, Zhou J, Chen S, Wu H. One-step generation of engineered drug-laden poly(lactic-co-glycolic acid) micropatterned with Teflon chips for potential application in tendon restoration. ACS APPLIED MATERIALS & INTERFACES 2013; 5:10583-10590. [PMID: 24111820 DOI: 10.1021/am402388k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Regulating cellular behaviors such as cellular spatial arrangement and cellular phenotype is critical for managing tissue microstructure and biological function for engineered tissue regeneration. We herein pattern drug-laden poly(lactic-co-glycolic acid) (PLGA) into grooves using novel Teflon stamps (that possess excellent properties of resistance to harsh organic solvents and molecular adsorption) for engineered tendon-repair therapeutics. The drug release and biological properties of melatonin-laden PLGA grooved micropatterns are investigated. The results reveal that fibroblasts cultured on the melatonin-laden PLGA groove micropatterns not only display significant cell alignment that mimics the cell behavior in native tendon, but also promote the secretion of a major extracellular matrix in tendon, type I collagen, indicating great potential for the engineering of functional tendon regeneration.
Collapse
Affiliation(s)
- Xuetao Shi
- WPI Advanced Institute for Materials Research, Tohoku University , 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | | | | | | | | |
Collapse
|
105
|
Abstract
Osteoarthritis (OA), a prevalent chronic condition with a striking impact on quality of life, represents an enormous societal burden that increases greatly as populations age. Yet no approved pharmacological intervention, biologic therapy or procedure prevents the progressive destruction of the OA joint. Mesenchymal stem cells (MSCs)-multipotent precursors of connective tissue cells that can be isolated from many adult tissues, including those of the diarthrodial joint-have emerged as a potential therapy. Endogenous MSCs contribute to maintenance of healthy tissues by acting as reservoirs of repair cells or as immunomodulatory sentinels to reduce inflammation. The onset of degenerative changes in the joint is associated with aberrant activity or depletion of these cell reservoirs, leading to loss of chondrogenic potential and preponderance of a fibrogenic phenotype. Local delivery of ex vivo cultures of MSCs has produced promising outcomes in preclinical models of joint disease. Mechanistically, paracrine signalling by MSCs might be more important than differentiation in stimulating repair responses; thus, paracrine factors must be assessed as measures of MSC therapeutic potency, to replace traditional assays based on cell-surface markers and differentiation. Several early-stage clinical trials, initiated or underway in 2013, are testing the delivery of MSCs as an intra-articular injection into the knee, but optimal dose and vehicle are yet to be established.
Collapse
|
106
|
Kokubo M, Sato M, Yamato M, Mitani G, Kutsuna T, Ebihara G, Okano T, Mochida J. Characterization of chondrocyte sheets prepared using a co-culture method with temperature-responsive culture inserts. J Tissue Eng Regen Med 2013; 10:486-95. [DOI: 10.1002/term.1764] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 02/02/2013] [Accepted: 04/13/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Mami Kokubo
- Department of Orthopaedic Surgery, Surgical Science; Tokai University School of Medicine; Isehara Kanagawa Japan
| | - Masato Sato
- Department of Orthopaedic Surgery, Surgical Science; Tokai University School of Medicine; Isehara Kanagawa Japan
| | - Masayuki Yamato
- Institute of Advanced Biomedical Engineering and Science; Tokyo, Women's Medical University; Shinjuku-ku Tokyo Japan
| | - Genya Mitani
- Department of Orthopaedic Surgery, Surgical Science; Tokai University School of Medicine; Isehara Kanagawa Japan
| | - Toshiharu Kutsuna
- Department of Orthopaedic Surgery, Surgical Science; Tokai University School of Medicine; Isehara Kanagawa Japan
| | - Goro Ebihara
- Department of Orthopaedic Surgery, Surgical Science; Tokai University School of Medicine; Isehara Kanagawa Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science; Tokyo, Women's Medical University; Shinjuku-ku Tokyo Japan
| | - Joji Mochida
- Department of Orthopaedic Surgery, Surgical Science; Tokai University School of Medicine; Isehara Kanagawa Japan
| |
Collapse
|
107
|
Lee BLP, Tang Z, Wang A, Huang F, Yan Z, Wang D, Chu JS, Dixit N, Yang L, Li S. Synovial stem cells and their responses to the porosity of microfibrous scaffold. Acta Biomater 2013; 9:7264-75. [PMID: 23523935 DOI: 10.1016/j.actbio.2013.03.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 03/11/2013] [Accepted: 03/12/2013] [Indexed: 12/19/2022]
Abstract
Tissue-specific stem cells can be coaxed or harvested for tissue regeneration. In this study, we identified and characterized a new type of stem cells from the synovial membrane of knee joint, named neural crest cell-like synovial stem cells (NCCL-SSCs). NCCL-SSCs showed the characteristics of neural crest stem cells: they expressed markers such as Sox10, Sox17 and S100β, were clonable, and could differentiate into neural lineages as well as mesenchymal lineages, although NCCL-SSCs were not derived from neural crest during the development. When treated with transforming growth factor β1 (TGF-β1), NCCL-SSCs differentiated into mesenchymal stem cells (MSCs), lost the expression of Sox17 and the differentiation potential into neural lineages, but retained the potential of differentiating into mesenchymal lineages. To determine the responses of NCCL-SSCs to microfibrous scaffolds for tissue engineering, electrospun composite scaffolds with various porosities were fabricated by co-electrospinning of structural and sacrificial microfibers. The increase in the porosity in microfibrous scaffolds enhanced cell infiltration in vitro and in vivo, but did not affect the morphology and the proliferation of NCCL-SSCs. Interestingly, microfibrous scaffolds with higher porosity increased the expression of chondrogenic and osteogenic genes but suppressed smooth muscle and adipogenic genes. These results suggest that the differentiation of NCCL-SSCs can be controlled by both soluble chemical factors and biophysical factors such as the porosity of the scaffold. Engineering both NCCL-SSCs and scaffolds will have tremendous potential for tissue regeneration.
Collapse
|
108
|
Abstract
Mechanical factors play a crucial role in the development of articular cartilage in vivo. In this regard, tissue engineers have sought to leverage native mechanotransduction pathways to enhance in vitro stem cell-based cartilage repair strategies. However, a thorough understanding of how individual mechanical factors influence stem cell fate is needed to predictably and effectively utilize this strategy of mechanically-induced chondrogenesis. This article summarizes some of the latest findings on mechanically stimulated chondrogenesis, highlighting several new areas of interest, such as the effects of mechanical stimulation on matrix maintenance and terminal differentiation, as well as the use of multifactorial bioreactors. Additionally, the roles of individual biophysical factors, such as hydrostatic or osmotic pressure, are examined in light of their potential to induce mesenchymal stem cell chondrogenesis. An improved understanding of biomechanically-driven tissue development and maturation of stem cell-based cartilage replacements will hopefully lead to the development of cell-based therapies for cartilage degeneration and disease.
Collapse
|
109
|
Dutta S, Singh G, Sreejith S, Mamidi MK, Husin JM, Datta I, Pal R, Das AK. Cell therapy: the final frontier for treatment of neurological diseases. CNS Neurosci Ther 2013; 19:5-11. [PMID: 23253099 DOI: 10.1111/cns.12027] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 09/21/2012] [Accepted: 09/25/2012] [Indexed: 12/22/2022] Open
Abstract
Neurodegenerative diseases are devastating because they cause increasing loss of cognitive and physical functions and affect an estimated 1 billion individuals worldwide. Unfortunately, no drugs are currently available to halt their progression, except a few that are largely inadequate. This mandates the search of new treatments for these progressively degenerative diseases. Neural stem cells (NSCs) have been successfully isolated, propagated, and characterized from the adult brains of mammals, including humans. The confirmation that neurogenesis occurs in the adult brain via NSCs opens up fresh avenues for treating neurological problems. The proof-of-concept studies demonstrating the neural differentiation capacity of stem cells both in vitro and in vivo have raised widespread enthusiasm toward cell-based interventions. It is anticipated that cell-based neurogenic drugs may reverse or compensate for deficits associated with neurological diseases. The increasing interest of the private sector in using human stem cells in therapeutics is evidenced by launching of several collaborative clinical research activities between Pharma giants and research institutions or small start-up companies. In this review, we discuss the major developments that have taken place in this field to position stem cells as a prospective candidate drug for the treatment of neurological disorders.
Collapse
Affiliation(s)
- Susmita Dutta
- Clinical Sciences, International Medical University, Kuala Lumpur, Malaysia
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Heard BJ, Fritzler MJ, Wiley JP, McAllister J, Martin L, El-Gabalawy H, Hart DA, Frank CB, Krawetz R. Intraarticular and Systemic Inflammatory Profiles May Identify Patients with Osteoarthritis. J Rheumatol 2013; 40:1379-87. [DOI: 10.3899/jrheum.121204] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Objective.To determine whether cytokine/chemokine profiles from synovial fluid and sera discriminate mild/moderate osteoarthritis (OA) from normal and severe OA cohorts.Methods.Multiplex technology was used to quantify expression levels for 42 cytokines in the synovial fluid of patients diagnosed with severe OA (n = 20) and mild/moderate OA (n = 12), as well as normal controls (n = 34). The same 42 cytokines were examined in serum samples of patients with severe OA (n = 26) and mild/moderate OA (n = 74) and normal individuals (n = 100). Treatment group comparisons followed by principal component analysis (PCA) and K-means clustering of the significantly different cytokines/chemokines revealed groupings of patients by physician diagnosis.Results.Differences in cytokine/chemokine levels were found between control, mild/moderate OA, and severe OA synovial fluid samples, as well as between normal and mild/moderate OA serum samples, and between control and severe OA serum samples. No differences were observed between mild/moderate and severe OA serum samples. Visual groupings based on PCA were validated by K-means analysis, with the best results obtained from the comparison of normal and mild/moderate OA serum samples with 96% of normal and 93% of mild/moderate OA samples accurately identified.Conclusion.Our study suggests that comparing the expression levels of cytokines/chemokines in synovial fluid and/or serum of patients with OA may have promise as a diagnostic platform to identify patients early in their disease course. This high-throughput low-cost assay may be able to provide clinicians with a diagnostic test to complement existing clinical and imaging modalities currently used to diagnose OA.
Collapse
|
111
|
Utsunomiya H, Uchida S, Sekiya I, Sakai A, Moridera K, Nakamura T. Isolation and characterization of human mesenchymal stem cells derived from shoulder tissues involved in rotator cuff tears. Am J Sports Med 2013; 41:657-68. [PMID: 23371475 DOI: 10.1177/0363546512473269] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Recent studies report a relatively high failure rate for tendon-bone healing after rotator cuff repair. Several studies have investigated biologically augmented rotator cuff repair; however, none has shown the application of synovial mesenchymal stem cells for such repair. PURPOSE To demonstrate whether cells derived from shoulder tissues have mesenchymal stem cell properties and to identify which tissue is the best source of the mesenchymal stem cells. STUDY DESIGN Controlled laboratory study. METHODS Forty-two patients with a diagnosed rotator cuff tear preoperatively were enrolled in this study. Human mesenchymal tissues were obtained during arthroscopic surgery for rotator cuff tears from 19 donors who met the inclusion criteria and had investigable amounts of tissue. Colony-forming units, yield obtained, expandability, differentiation potential, epitope profile, and gene expression were compared among the cells from 4 shoulder tissues: synovium of the glenohumeral joint, subacromial bursa, margin of the ruptured supraspinatus tendon, and residual tendon stump on the greater tuberosity (enthesis). RESULTS The number of live passage 0 cells from whole tissue was significantly higher in cells derived from the subacromial bursa (P < .05). Subacromial bursa-derived cells retained their expandability even at passage 10. In adipogenesis experiments, the frequency of Oil Red O-positive colonies was significantly higher for synovium- and subacromial bursa-derived cells than for tendon- and enthesis-derived cells (P < .0001). In studies of osteogenesis, the rate of von Kossa- and alkaline phosphatase-positive colonies was highest in subacromial bursa-derived cells (P < .0001). The chondrogenic potential was highest in cells derived from the enthesis. For epitope profiling, 11 surface antigens were measured, and most had similar epitope profiles, irrespective of cell source. CONCLUSION The findings indicate that the subacromial bursa is a good candidate for the source of mesenchymal stem cells in rotator cuff tears. CLINICAL RELEVANCE Synovial cells from the subacromial bursa in patients with rotator cuff tears are a superior cell source in vitro, suggesting that mesenchymal stem cells from this tissue could be good candidates for biological augmentation of rotator cuff repair.
Collapse
Affiliation(s)
- Hajime Utsunomiya
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan.
| | | | | | | | | | | |
Collapse
|
112
|
Matsiko A, Levingstone TJ, O'Brien FJ. Advanced Strategies for Articular Cartilage Defect Repair. MATERIALS (BASEL, SWITZERLAND) 2013; 6:637-668. [PMID: 28809332 PMCID: PMC5452095 DOI: 10.3390/ma6020637] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 02/06/2013] [Accepted: 02/16/2013] [Indexed: 02/07/2023]
Abstract
Articular cartilage is a unique tissue owing to its ability to withstand repetitive compressive stress throughout an individual's lifetime. However, its major limitation is the inability to heal even the most minor injuries. There still remains an inherent lack of strategies that stimulate hyaline-like articular cartilage growth with appropriate functional properties. Recent scientific advances in tissue engineering have made significant steps towards development of constructs for articular cartilage repair. In particular, research has shown the potential of biomaterial physico-chemical properties significantly influencing the proliferation, differentiation and matrix deposition by progenitor cells. Accordingly, this highlights the potential of using such properties to direct the lineage towards which such cells follow. Moreover, the use of soluble growth factors to enhance the bioactivity and regenerative capacity of biomaterials has recently been adopted by researchers in the field of tissue engineering. In addition, gene therapy is a growing area that has found noteworthy use in tissue engineering partly due to the potential to overcome some drawbacks associated with current growth factor delivery systems. In this context, such advanced strategies in biomaterial science, cell-based and growth factor-based therapies that have been employed in the restoration and repair of damaged articular cartilage will be the focus of this review article.
Collapse
Affiliation(s)
- Amos Matsiko
- Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.
- Trinity Centre for Bioengineering, Trinity College Dublin, Dublin 2, Ireland.
| | - Tanya J Levingstone
- Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.
- Trinity Centre for Bioengineering, Trinity College Dublin, Dublin 2, Ireland.
| | - Fergal J O'Brien
- Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.
- Trinity Centre for Bioengineering, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
113
|
Kim MJ, Son MJ, Son MY, Seol B, Kim J, Park J, Kim JH, Kim YH, Park SA, Lee CH, Lee KS, Han YM, Chang JS, Cho YS. Generation of human induced pluripotent stem cells from osteoarthritis patient-derived synovial cells. ACTA ACUST UNITED AC 2013; 63:3010-21. [PMID: 21953087 DOI: 10.1002/art.30488] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE This study was undertaken to generate and characterize human induced pluripotent stem cells (PSCs) from patients with osteoarthritis (OA) and to examine whether these cells can be developed into disease-relevant cell types for use in disease modeling and drug discovery. METHODS Human synovial cells isolated from two 71-year-old women with advanced OA were characterized and reprogrammed into induced PSCs by ectopic expression of 4 transcription factors (Oct-4, SOX2, Klf4, and c-Myc). The pluripotency status of each induced PSC line was validated by comparison with human embryonic stem cells (ESCs). RESULTS We found that OA patient-derived human synovial cells had human mesenchymal stem cell (MSC)-like characteristics, as indicated by the expression of specific markers, including CD14-, CD19-, CD34-, CD45-, CD44+, CD51+, CD90+, CD105+, and CD147+. Microarray analysis of human MSCs and human synovial cells further determined their unique and overlapping gene expression patterns. The pluripotency of established human induced PSCs was confirmed by their human ESC-like morphology, expression of pluripotency markers, gene expression profiles, epigenetic status, normal karyotype, and in vitro and in vivo differentiation potential. The potential of human induced PSCs to differentiate into distinct mesenchymal cell lineages, such as osteoblasts, adipocytes, and chondrocytes, was further confirmed by positive expression of markers for respective cell types and positive staining with alizarin red S (osteoblasts), oil red O (adipocytes), or Alcian blue (chondrocytes). Functional chondrocyte differentiation of induced PSCs in pellet culture and 3-dimensional polycaprolactone scaffold culture was assessed by chondrocyte self-assembly and histology. CONCLUSION Our findings indicate that patient-derived synovial cells are an attractive source of MSCs as well as induced PSCs and have the potential to advance cartilage tissue engineering and cell-based models of cartilage defects.
Collapse
Affiliation(s)
- Min-Jeong Kim
- Korea Research Institute of Bioscience and Biotechnology and University of Science and Technology, Daejeon, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
van Buul GM, van Osch GJVM. Musculoskeletal Stem Cells. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
115
|
Zhang F, Yao Y, Su K, Fang Y, Citra F, Wang DA. Co-transduction of lentiviral and adenoviral vectors for co-delivery of growth factor and shRNA genes in mesenchymal stem cells-based chondrogenic system. J Tissue Eng Regen Med 2012. [DOI: 10.1002/term.1656] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Feng Zhang
- Division of Bioengineering, School of Chemical and Biomedical Engineering; Nanyang Technological University; Singapore
| | - Yongchang Yao
- Division of Bioengineering, School of Chemical and Biomedical Engineering; Nanyang Technological University; Singapore
- School of Materials Science and Engineering; South China University of Technology; Guangzhou 510641 People's Republic of China
- National Engineering Research Centre for Tissue Restoration and Reconstruction; Guangzhou 510006 People's Republic of China
| | - Kai Su
- Division of Bioengineering, School of Chemical and Biomedical Engineering; Nanyang Technological University; Singapore
| | - Yu Fang
- Division of Bioengineering, School of Chemical and Biomedical Engineering; Nanyang Technological University; Singapore
| | - Fudiman Citra
- Division of Bioengineering, School of Chemical and Biomedical Engineering; Nanyang Technological University; Singapore
| | - Dong-An Wang
- Division of Bioengineering, School of Chemical and Biomedical Engineering; Nanyang Technological University; Singapore
| |
Collapse
|
116
|
Zhang F, Su K, Fang Y, Sandhya S, Wang DA. A mixed co-culture of mesenchymal stem cells and transgenic chondrocytes in alginate hydrogel for cartilage tissue engineering. J Tissue Eng Regen Med 2012; 9:77-84. [PMID: 23166064 DOI: 10.1002/term.1641] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 08/31/2012] [Accepted: 09/27/2012] [Indexed: 01/10/2023]
Abstract
To regenerate articular cartilage tissue from degeneration and trauma, synovial mesenchymal stem cells (SMSCs) were used in this study as therapeutic progenitor cells to induce therapeutic chondrogenesis. To accomplish this, chondrocytes pre-transduced with adenoviral vectors carrying the transforming growth factor (TGF) β3 gene were selected as transgenic companion cells and co-cultured side-by-side with SMSCs in a 3D environment to provide chondrogenic growth factors in situ. We adopted a mixed co-culture strategy for this purpose. Transgenic delivery of TGF-β3 in chondrocytes was performed via recombinant adenoviral vectors. The mixed co-culture of SMSCs and transgenic chondrocytes was produced in alginate gel constructs. Gene expression in both SMSCs and chondrocytes were characterized. Biochemical assays in vitro and in vivo showed that release of TGF-ß3 from transgenic chondrocytes not only induced SMSC differentiation into chondrocytic cells but also preserved the chondrocytic phenotype of chondrocytes from suspected dedifferentiation. As a result, this mixed co-culture strategy in conjunction with TGF-ß3 gene delivery could be a promising approach in cartilage tissue engineering.
Collapse
Affiliation(s)
- Feng Zhang
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Republic of Singapore
| | | | | | | | | |
Collapse
|
117
|
Therapeutic application of mesenchymal stem cells in bone and joint diseases. Clin Exp Med 2012; 14:13-24. [DOI: 10.1007/s10238-012-0218-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 10/22/2012] [Indexed: 02/06/2023]
|
118
|
Yang YH, Lee AJ, Barabino GA. Coculture-driven mesenchymal stem cell-differentiated articular chondrocyte-like cells support neocartilage development. Stem Cells Transl Med 2012. [PMID: 23197696 DOI: 10.5966/sctm.2012-0083] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Controlled differentiation of mesenchymal stem cells (MSCs) into the chondrogenic lineage is crucial for in vitro generation of neocartilage, yet achieving it remains challenging. Traditional protocols for MSC differentiation using exogenous inductive molecules, such as transforming growth factor-β, fall short in meeting the needs of clinical applications because they yield differentiated cells that exhibit hypertrophic characteristics and subsequently facilitate endochondral bone formation. The objective of the current study was to deliver endogenous inductive factors from juvenile articular chondrocytes to bone marrow-derived MSCs to drive MSC chondrogenic differentiation through cocultivation of the two cell types in the absence of direct physical contact and exogenous stimulators. An initial chondrocyte/MSC ratio of 63:1 was identified as the appropriate proportion of the two cell populations to ensure that coculture-driven MSC-differentiated (CDMD) cells replicated the cellular morphology, behavior, and phenotype of articular chondrocytes. In a three-dimensional agarose system, CDMD cells were further shown to develop into robust neocartilage structurally and mechanically stronger than chondrocyte-laden constructs and with reduced hypertrophic potential. Although MSCs tended to lose the ability to express CD44, an important regulator in cartilage biology, during the coculture induction, CDMD cells regained this function in the three-dimensional tissue cultivation. The present work establishes a chondrocyte/MSC coculture model that serves as a template to better understand chondrocyte-driven MSC differentiation and provides insights for improved strategies to develop clinically relevant cartilage tissue replacements.
Collapse
Affiliation(s)
- Yueh-Hsun Yang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | | | | |
Collapse
|
119
|
A new era of cartilage repair using cell therapy and tissue engineering: turning current clinical limitations into new ideas. Tissue Eng Regen Med 2012. [DOI: 10.1007/s13770-012-0370-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
120
|
Krawetz RJ, Wu YE, Martin L, Rattner JB, Matyas JR, Hart DA. Synovial fluid progenitors expressing CD90+ from normal but not osteoarthritic joints undergo chondrogenic differentiation without micro-mass culture. PLoS One 2012; 7:e43616. [PMID: 22952721 PMCID: PMC3430696 DOI: 10.1371/journal.pone.0043616] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 07/23/2012] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Mesenchymal progenitor cells (MPCs) can differentiate into osteoblasts, adipocytes, and chondrocytes, and are in part responsible for maintaining tissue integrity. Recently, a progenitor cell population has been found within the synovial fluid that shares many similarities with bone marrow MPCs. These synovial fluid MPCs (sfMPCs) share the ability to differentiate into bone and fat, with a bias for cartilage differentiation. In this study, sfMPCs were isolated from human and canine synovial fluid collected from normal individuals and those with osteoarthritis (human: clinician-diagnosed, canine: experimental) to compare the differentiation potential of CD90+ vs. CD90- sfMPCs, and to determine if CD90 (Thy-1) is a predictive marker of synovial fluid progenitors with chondrogenic capacity in vitro. METHODS sfMPCs were derived from synovial fluid from normal and OA knee joints. These cells were induced to differentiate into chondrocytes and analyzed using quantitative PCR, immunofluorescence, and electron microscopy. RESULTS The CD90+ subpopulation of sfMPCs had increased chondrogenic potential compared to the CD90- population. Furthermore, sfMPCs derived from healthy joints did not require a micro-mass step for efficient chondrogenesis. Whereas sfMPCs from OA synovial fluid retain the ability to undergo chondrogenic differentiation, they require micro-mass culture conditions. CONCLUSIONS Overall, this study has demonstrated an increased chondrogenic potential within the CD90+ fraction of human and canine sfMPCs and that this population of cells derived from healthy normal joints do not require a micro-mass step for efficient chondrogenesis, while sfMPCs obtained from OA knee joints do not differentiate efficiently into chondrocytes without the micro-mass procedure. These results reveal a fundamental shift in the chondrogenic ability of cells isolated from arthritic joint fluids, and we speculate that the mechanism behind this change of cell behavior is exposure to the altered milieu of the OA joint fluid, which will be examined in further studies.
Collapse
Affiliation(s)
- Roman J Krawetz
- Department of Surgery, University of Calgary, Calgary, Alberta, Canada.
| | | | | | | | | | | |
Collapse
|
121
|
Lee JC, Lee SY, Min HJ, Han SA, Jang J, Lee S, Seong SC, Lee MC. Synovium-derived mesenchymal stem cells encapsulated in a novel injectable gel can repair osteochondral defects in a rabbit model. Tissue Eng Part A 2012; 18:2173-86. [PMID: 22765885 DOI: 10.1089/ten.tea.2011.0643] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We developed a novel injectable type I collagen/hyaluronic acid/fibrinogen (COL/HA/FG) composite gel that encapsulated synovium-derived mesenchymal stem cells (SDSCs) for the repair of damaged articular cartilage. We first analyzed the suitability of the composite gel as a three-dimensional injectable cell carrier in vitro. In an in vivo rabbit model, the COL/HA/FG composite gel displayed the potential to regenerate and repair osteochondral defects in the knee. Culture of the SDSCs encapsulated COL/HA/FG composite gel in a chondrogenic medium resulted in high viability of the SDSCs and high expressions of type II collagen, aggrecan, and sox 9 mRNA. Moreover, glycosaminoglycans and type II collagen were accumulated within the extracellular matrix. In the animal model, the SDSCs encapsulated COL/HA/FG composite gel produced a hyaline-like cartilage construct. Twenty-four weeks after transplantation, the defects had been repaired with hyaline cartilage-like tissue that was densely stained by safranin-O and immunostained by a type II collagen antibody. This data suggest that the SDSC-encapsulated COL/HA/FG composite gel can be a good therapeutic candidate/strategy for repairing of damaged articular cartilage.
Collapse
Affiliation(s)
- Jae-Chul Lee
- Department of Orthopedic Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
122
|
XU TING, WU MENGJIE, FENG JIANYING, LIN XINPING, GU ZHIYUAN. RhoA/Rho kinase signaling regulates transforming growth factor-β1-induced chondrogenesis and actin organization of synovium-derived mesenchymal stem cells through interaction with the Smad pathway. Int J Mol Med 2012; 30:1119-25. [DOI: 10.3892/ijmm.2012.1107] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Accepted: 05/28/2012] [Indexed: 11/05/2022] Open
|
123
|
Beane OS, Darling EM. Isolation, characterization, and differentiation of stem cells for cartilage regeneration. Ann Biomed Eng 2012; 40:2079-97. [PMID: 22907257 DOI: 10.1007/s10439-012-0639-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 08/08/2012] [Indexed: 12/27/2022]
Abstract
The goal of tissue engineering is to create a functional replacement for tissues damaged by injury or disease. In many cases, impaired tissues cannot provide viable cells, leading to the investigation of stem cells as a possible alternative. Cartilage, in particular, may benefit from the use of stem cells since the tissue has low cellularity and cannot effectively repair itself. To address this need, researchers are investigating the chondrogenic capabilities of several multipotent stem cell sources, including adult and extra-embryonic mesenchymal stem cells (MSCs), embryonic stem cells (ESCs), and induced pluripotent stem cells (iPSCs). Comparative studies indicate that each cell type has advantages and disadvantages, and while direct comparisons are difficult to make, published data suggest some sources may be more promising for cartilage regeneration than others. In this review, we identify current approaches for isolating and chondrogenically differentiating MSCs from bone marrow, fat, synovium, muscle, and peripheral blood, as well as cells from extra-embryonic tissues, ESCs, and iPSCs. Additionally, we assess chondrogenic induction with growth factors, identifying standard cocktails used for each stem cell type. Cell-only (pellet) and scaffold-based studies are also included, as is a discussion of in vivo results.
Collapse
Affiliation(s)
- Olivia S Beane
- Center for Biomedical Engineering, Brown University, Providence, RI, USA
| | | |
Collapse
|
124
|
Li J, Pei M. Cell Senescence: A Challenge in Cartilage Engineering and Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2012; 18:270-87. [PMID: 22273114 DOI: 10.1089/ten.teb.2011.0583] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jingting Li
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, West Virginia
- Division of Exercise Physiology, West Virginia University, Morgantown, West Virginia
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, West Virginia
- Division of Exercise Physiology, West Virginia University, Morgantown, West Virginia
- Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia
| |
Collapse
|
125
|
Scanzello CR, Goldring SR. The role of synovitis in osteoarthritis pathogenesis. Bone 2012; 51:249-57. [PMID: 22387238 PMCID: PMC3372675 DOI: 10.1016/j.bone.2012.02.012] [Citation(s) in RCA: 849] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 02/10/2012] [Accepted: 02/11/2012] [Indexed: 01/15/2023]
Abstract
Research into the pathophysiology of osteoarthritis (OA) has focused on cartilage and peri-articular bone, but there is increasing recognition that OA affects all of the joint tissues, including the synovium (SM). Under normal physiological conditions the synovial lining consists of a thin layer of cells with phenotypic features of macrophages and fibroblasts. These cells and the underlying vascularized connective tissue stroma form a complex structure that is an important source of synovial fluid (SF) components that are essential for normal cartilage and joint function. The histological changes observed in the SM in OA generally include features indicative of an inflammatory "synovitis"; specifically they encompass a range of abnormalities, such as synovial lining hyperplasia, infiltration of macrophages and lymphocytes, neoangiogenesis and fibrosis. The pattern of synovial reaction varies with disease duration and associated metabolic and structural changes in other joint tissues. Imaging modalities including magnetic resonance (MRI) and ultrasound (US) have proved useful in detecting and quantifying synovial abnormalities, but individual studies have varied in their methods of evaluation. Despite these differences, most studies have concluded that the presence of synovitis in OA is associated with more severe pain and joint dysfunction. In addition, synovitis may be predictive of faster rates of cartilage loss in certain patient populations. Recent studies have provided insights into the pathogenic mechanisms underlying the development of synovitis in OA. Available evidence suggests that the inflammatory process involves engagement of Toll-like receptors and activation of the complement cascade by degradation products of extracellular matrices of cartilage and other joint tissues. The ensuing synovial reaction can lead to synthesis and release of a wide variety of cytokines and chemokines. Some of these inflammatory mediators are detected in joint tissues and SF in OA and have catabolic effects on chondrocytes. These inflammatory mediators represent potential targets for therapeutic interventions designed to reduce both symptoms and structural joint damage in OA. This article is part of a Special Issue entitled "Osteoarthritis".
Collapse
Affiliation(s)
- Carla R Scanzello
- Section of Rheumatology, Rush University Medical Center, Chicago, IL 60612, USA.
| | | |
Collapse
|
126
|
Bertram KL, Krawetz RJ. Osmolarity regulates chondrogenic differentiation potential of synovial fluid derived mesenchymal progenitor cells. Biochem Biophys Res Commun 2012; 422:455-61. [DOI: 10.1016/j.bbrc.2012.05.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 05/03/2012] [Indexed: 01/10/2023]
|
127
|
Jackson WM, Nesti LJ, Tuan RS. Mesenchymal stem cell therapy for attenuation of scar formation during wound healing. Stem Cell Res Ther 2012; 3:20. [PMID: 22668751 PMCID: PMC3392767 DOI: 10.1186/scrt111] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Scars are a consequence of cutaneous wound healing that can be both unsightly and detrimental to the function of the tissue. Scar tissue is generated by excessive deposition of extracellular matrix tissue by wound healing fibroblasts and myofibroblasts, and although it is inferior to the uninjured skin, it is able to restore integrity to the boundary between the body and its environment. Scarring is not a necessary process to repair the dermal tissues. Rather, scar tissue forms due to specific mechanisms that occur during the adult wound healing process and are modulated primarily by the inflammatory response at the site of injury. Adult tissue-derived mesenchymal stem cells, which participate in normal wound healing, are trophic mediators of tissue repair. These cells participate in attenuating inflammation in the wound and reprogramming the resident immune and wound healing cells to favor tissue regeneration and inhibit fibrotic tissue formation. As a result, these cells have been considered and tested as a likely candidate for a cellular therapy to promote scar-less wound healing. This review identifies specific mechanisms by which mesenchymal stem cells can limit tissue fibrosis and summarizes recent in vivo studies where these cells have been used successfully to limit scar formation.
Collapse
Affiliation(s)
- Wesley M Jackson
- Clinical and Experimental Orthopaedics Laboratory, Department of SurgeryUniformed Services University, Bethesda, MD 20814, USA
| | | | | |
Collapse
|
128
|
Santhagunam A, Madeira C, Cabral JMS. Genetically engineered stem cell-based strategies for articular cartilage regeneration. Biotechnol Appl Biochem 2012; 59:121-31. [DOI: 10.1002/bab.1016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 03/06/2012] [Indexed: 02/06/2023]
|
129
|
Fan J, Ren L, Liang R, Gong Y, Cai D, Wang DA. Chondrogenesis of Synovium-Derived Mesenchymal Stem Cells in Photopolymerizing Hydrogel Scaffolds. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 21:1653-67. [DOI: 10.1163/092050609x12531835454314] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jiabing Fan
- a Center for Stem Cell Biology and Tissue Engineering, Sun Yat-Sen University, Guangzhou 510080, P. R. China; Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, N1.3-B2-13 Singapore 637457, Republic of Singapore
| | - Li Ren
- b Key Laboratory of Specially Functional Materials and Advanced Manufacturing Technology, South China University of Technology, Ministry of Education, Guangzhou 510641, P. R. China
| | - Ruishan Liang
- c Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, N1.3-B2-13 Singapore 637457, Republic of Singapore
| | - Yihong Gong
- d Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, N1.3-B2-13 Singapore 637457, Republic of Singapore
| | - Daozhang Cai
- e Center for Stem Cell Biology and Tissue Engineering, Sun Yat-Sen University, Guangzhou 510080, P. R. China
| | - Dong-An Wang
- f Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, N1.3-B2-13 Singapore 637457, Republic of Singapore; Key Laboratory of Specially Functional Materials and Advanced Manufacturing Technology, South China University of Technology, Ministry of Education, Guangzhou 510641, P. R. China
| |
Collapse
|
130
|
Egli RJ, Wernike E, Grad S, Luginbühl R. Physiological cartilage tissue engineering effect of oxygen and biomechanics. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 289:37-87. [PMID: 21749898 DOI: 10.1016/b978-0-12-386039-2.00002-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In vitro engineering of cartilaginous tissues has been studied for many years, and tissue-engineered constructs are sought to be used clinically for treating articular cartilage defects. Even though there is a plethora of studies and data available, no breakthroughs have been achieved yet that allow for implanting in vivo cultured articular cartilaginous tissues in patients. A review of contributions to cartilage tissue engineering over the past decades emphasizes that most of the studies were performed under environmental conditions neglecting the physiological situation. This is specifically pronounced in the use of bioreactor systems which neither allow for application of near physiomechanical stimulations nor for controlling a hypoxic environment as it is experienced in synovial joints. It is suspected that the negligence of these important parameters has slowed down progress and prevented major breakthroughs in the field. This review focuses on the main aspects of cartilage tissue engineering with emphasis on the relation and understanding of employing physiological conditions.
Collapse
|
131
|
Buckley CT, Meyer EG, Kelly DJ. The Influence of Construct Scale on the Composition and Functional Properties of Cartilaginous Tissues Engineered Using Bone Marrow-Derived Mesenchymal Stem Cells. Tissue Eng Part A 2012; 18:382-96. [DOI: 10.1089/ten.tea.2011.0145] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Conor T. Buckley
- Trinity Centre for Bioengineering, Department of Mechanical Engineering, School of Engineering, Trinity College, Dublin, Ireland
| | - Eric G. Meyer
- Trinity Centre for Bioengineering, Department of Mechanical Engineering, School of Engineering, Trinity College, Dublin, Ireland
- Biomedical Engineering, College of Engineering, Lawrence Technological University, Southfield, Michigan
| | - Daniel J. Kelly
- Trinity Centre for Bioengineering, Department of Mechanical Engineering, School of Engineering, Trinity College, Dublin, Ireland
| |
Collapse
|
132
|
Jones E, McGonagle D. Synovial mesenchymal stem cells in vivo: Potential key players for joint regeneration. World J Rheumatol 2011; 1:4-11. [DOI: 10.5499/wjr.v1.i1.4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Unlike bone marrow (BM) mesenchymal stem cells (MSCs), whose in vivo identity has been actively explored in recent years, the biology of MSCs in the synovium remains poorly understood. Synovial MSCs may be of great importance to rheumatology and orthopedics because of the direct proximity and accessibility of the synovium to cartilage, ligament, and meniscus. Their excellent chondrogenic capabilities and suggested transit through the synovial fluid, giving unhindered access to the joint surface, further support a pivotal role for synovial MSCs in homeostatic joint repair. This review highlights several unresolved issues pertaining to synovial MSC isolation, topography, and their relationship with pericytes, synovial fibroblasts, and synovial fluid MSCs. Critically reviewing published data on synovial MSCs, we also draw from our experience of exploring the in vivo biology of MSCs in the BM to highlight key differences. Extending our knowledge of synovial MSCs in vivo could lead to novel therapeutic strategies for arthritic diseases.
Collapse
|
133
|
Jackson WM, Nesti LJ, Tuan RS. Concise review: clinical translation of wound healing therapies based on mesenchymal stem cells. Stem Cells Transl Med 2011. [PMID: 23197639 DOI: 10.5966/sctm.2011-0024] [Citation(s) in RCA: 193] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
There is enormous worldwide demand for therapies to promote the efficient resolution of hard-to-heal wounds with minimal appearance of scarring. Recent in vitro studies with mesenchymal stem cells (MSCs) have identified numerous mechanisms by which these cells can promote the process of wound healing, and there is significant interest in the clinical translation of an MSC-based therapy to promote dermal regeneration. This review provides a systematic analysis of recent preclinical and clinical research to evaluate the use of MSCs in wound healing applications. These in vivo studies provide overwhelming evidence that MSCs can accelerate wound closure by modulating the inflammatory environment, promoting the formation of a well-vascularized granulation matrix, encouraging the migration of keratinocytes, and inhibiting apoptosis of wound healing cells. The trophic effects of MSC therapy also appear to augment wound healing in diabetic tissues, thereby preventing the formation of nonhealing ulcers. Finally, a number of delivery systems have been evaluated and indicate that MSCs could be the basis of a versatile therapy to fulfill the clinical needs for dermal regeneration. However, despite the apparent advantages of MSC-based therapies, there have been only limited clinical investigations of this type of therapy in humans. Thus, our review concludes with a discussion of the translational barriers that are limiting the widespread clinical use of MSCs to enhance wound healing.
Collapse
Affiliation(s)
- Wesley M Jackson
- Clinical and Experimental Orthopaedics Laboratory, Department of Surgery, Uniformed Services University, Bethesda, Maryland, USA
| | | | | |
Collapse
|
134
|
Isolation of mesenchymal stem cells from the mandibular marrow aspirates. ACTA ACUST UNITED AC 2011; 112:e86-93. [DOI: 10.1016/j.tripleo.2011.05.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 05/24/2011] [Indexed: 01/11/2023]
|
135
|
Teti G, Cavallo C, Grigolo B, Giannini S, Facchini A, Mazzotti A, Falconi M. Ultrastructural analysis of human bone marrow mesenchymal stem cells during in vitro osteogenesis and chondrogenesis. Microsc Res Tech 2011; 75:596-604. [PMID: 21998022 DOI: 10.1002/jemt.21096] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 08/26/2011] [Indexed: 02/06/2023]
Abstract
The main purpose of this article was to describe the morphology of mesenchymal stem cells (MSCs) differentiated in vitro towards osteogenic and chondrogenic lineages and to focus on the ultrastructural features associated with these processes. Human mononuclear cells (hMNC) were isolated, expanded, and analyzed for the expression of specific cell surface markers to demonstrate their stem cell characteristics. Human mononuclear cells were differentiated in vitro in an osteogenic and in a chondrogenic sense for 7, 14, 21, and 28 days. Subsequently, they were processed using electron microscopic analysis (FEISEM). Alizarin red and alcian blue staining were carried out to demonstrate the deposition of mineral salts and proteoglycans in the extracellular matrix. Undifferentiated MSCs showed a cell surface covered by filopodia and ondulopodia. During differentiation, the MSCs changed their shape from a round to a fibroblastic-like shape. At the end of the differentiation, several filaments with a parallel orientation in the osteogenic samples as well as a network organization in the chondrogenic samples were detected in the extracellular spaces. This study demonstrated that there are morphological features associated with the undifferentiated and differentiated states of the MSCs, which could be utilized as new parameters for identifying and classifying these cells.
Collapse
Affiliation(s)
- Gabriella Teti
- Dipartimento di Scienze Anatomiche Umane e Fisiopatologia dell'Apparato Locomotore, University of Bologna, via Irnerio 48, Bologna 40126, Italy
| | | | | | | | | | | | | |
Collapse
|
136
|
Recent progress in cartilage tissue engineering. Curr Opin Biotechnol 2011; 22:734-40. [DOI: 10.1016/j.copbio.2011.04.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 04/01/2011] [Indexed: 11/21/2022]
|
137
|
Becerra J, Santos-Ruiz L, Andrades JA, Marí-Beffa M. The stem cell niche should be a key issue for cell therapy in regenerative medicine. Stem Cell Rev Rep 2011; 7:248-55. [PMID: 21052872 DOI: 10.1007/s12015-010-9195-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent advances in stem cell research have highlighted the role played by such cells and their environment (the stem cell niche) in tissue renewal and homeostasis. The control and regulation of stem cells and their niche are remaining challenges for cell therapy and regenerative medicine on several tissues and organs. These advances are important for both, the basic knowledge of stem cell regulation, and their practical translational applications into clinical medicine. This article is primarily concerned with the mesenchymal stem cells (MSCs) and it reviews the current aspects of their own niche. We discuss on the need for a deeper understanding of the identity of this cell type and its microenvironment in order to improve the effectiveness of any cell therapy for regenerative medicine. Ex vivo reproduction of the conditions of the natural stem cell niche, when necessary, would provide success to tissue engineering. The first challenge of regenerative medicine is to find cells able to replace and/or repair the lost function of tissues and organs by disease or aging and the trophic and immunomodulatory effects recently found for MSCs open up for new opportunities. If MSCs are pericytes, as it has been proposed, perhaps it may explain the ubiquity of these cells and their possible role in miscellaneous repairs throughout the body opening for new chances for extensive tissue repair.
Collapse
Affiliation(s)
- José Becerra
- Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, Campus Teatinos, 29071, Málaga, Spain.
| | | | | | | |
Collapse
|
138
|
Rodrigues MT, Gomes ME, Reis RL. Current strategies for osteochondral regeneration: from stem cells to pre-clinical approaches. Curr Opin Biotechnol 2011; 22:726-33. [PMID: 21550794 DOI: 10.1016/j.copbio.2011.04.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 04/01/2011] [Indexed: 12/20/2022]
Abstract
Damaged cartilage tissue has no functional replacement alternatives and current therapies for bone injury treatment are far from being the ideal solutions emphasizing an urgent need for alternative therapeutic approaches for osteochondral (OC) regeneration. The tissue engineering field provides new possibilities for therapeutics and regeneration in rheumatology and orthopaedics, holding the potential for improving the quality of life of millions of patients by exploring new strategies towards the development of biological substitutes to maintain, repair and improve OC tissue function. Numerous studies have focused on the development of distinct tissue engineering strategies that could result in promising solutions for this delicate interface. In order to outperform currently used methods, novel tissue engineering approaches propose, for example, the design of multi-layered scaffolds, the use of stem cells, bioreactors or the combination of clinical techniques.
Collapse
Affiliation(s)
- Márcia T Rodrigues
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Univ. of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal
| | | | | |
Collapse
|
139
|
Abstract
In the present study, MSCs (mesenchymal stem cells) were successfully isolated and identified from hUCC (human uterine cervix cancer) tissues. The morphological appearance, immunophenotype, growth curve, cell cycle, cytogenetic features and differentiation potential of these cells were investigated. Results showed that cells isolated from the uterine cervix cancer tissues displayed fibroblast-like morphology and grew into colonies. Immunophenotyping by flow cytometry revealed that the isolated cells were positive for CD13, CD29, CD44, CD105 and HLA-I, while negative for CD10, CD14, CD31, CD34, CD38 and HLA-DR. The cells kept a normal karyotype by chromosome analysis. At the third passage, the percentages of cells in G0-/G1-, 2-/M- and S-phase were 84.94, 8.36 and 6.71%, respectively. Under appropriate induction conditions, these cells can differentiate into osteogenic, adipogenic cells and hepatocytes. Taken together, MSCs were confirmed to exist in hUCC tissues, which may provide a new target for clinical cancer therapy.
Collapse
|
140
|
Chanda D, Kumar S, Ponnazhagan S. Therapeutic potential of adult bone marrow-derived mesenchymal stem cells in diseases of the skeleton. J Cell Biochem 2011; 111:249-57. [PMID: 20506559 DOI: 10.1002/jcb.22701] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) are the most popular among the adult stem cells in tissue engineering and regenerative medicine. Since their discovery and functional characterization in the late 1960s and early 1970s, MSCs or MSC-like cells have been obtained from various mesodermal and non-mesodermal tissues, although majority of the therapeutic applications involved bone marrow-derived MSCs. Based on its mesenchymal origin, it was predicted earlier that MSCs only can differentiate into mesengenic lineages like bone, cartilage, fat or muscle. However, varied isolation and cell culturing methods identified subsets of MSCs in the bone marrow which not only differentiated into mesenchymal lineages, but also into ectodermal and endodermal derivatives. Although, true pluripotent status is yet to be established, MSCs have been successfully used in bone and cartilage regeneration in osteoporotic fracture and arthritis, respectively, and in the repair of cardiac tissue following myocardial infarction. Immunosuppressive properties of MSCs extend utility of MSCs to reduce complications of graft versus host disease and rheumatoid arthritis. Homing of MSCs to sites of tissue injury, including tumor, is well established. In addition to their ability in tissue regeneration, MSCs can be genetically engineered ex vivo for delivery of therapeutic molecule(s) to the sites of injury or tumorigenesis as cell therapy vehicles. MSCs tend to lose surface receptors for trafficking and have been reported to develop sarcoma in long-term culture. In this article, we reviewed the current status of MSCs with special emphasis to therapeutic application in bone-related diseases.
Collapse
Affiliation(s)
- Diptiman Chanda
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0007, USA
| | | | | |
Collapse
|
141
|
Lodi D, Iannitti T, Palmieri B. Stem cells in clinical practice: applications and warnings. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2011; 30:9. [PMID: 21241480 PMCID: PMC3033847 DOI: 10.1186/1756-9966-30-9] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 01/17/2011] [Indexed: 12/11/2022]
Abstract
Stem cells are a relevant source of information about cellular differentiation, molecular processes and tissue homeostasis, but also one of the most putative biological tools to treat degenerative diseases. This review focuses on human stem cells clinical and experimental applications. Our aim is to take a correct view of the available stem cell subtypes and their rational use in the medical area, with a specific focus on their therapeutic benefits and side effects. We have reviewed the main clinical trials dividing them basing on their clinical applications, and taking into account the ethical issue associated with the stem cell therapy.
Collapse
Affiliation(s)
- Daniele Lodi
- Department of Nephrology, Dialysis and Transplantation, University of Modena and Reggio Emilia Medical School, Modena, Italy
| | | | | |
Collapse
|
142
|
Qi J, Chen A, You H, Li K, Zhang D, Guo F. Proliferation and chondrogenic differentiation of CD105-positive enriched rat synovium-derived mesenchymal stem cells in three-dimensional porous scaffolds. Biomed Mater 2011; 6:015006. [PMID: 21205995 DOI: 10.1088/1748-6041/6/1/015006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stem cell-based tissue engineering has provided an alternative strategy to treat cartilage lesions, and synovium-derived mesenchymal stem cells (SMSCs) are considered as a promising cell source for cartilage repair. In this study, the SMSCs were isolated from rat synovium, and CD105-positive (CD105(+)) cells were enriched using magnetic activated cell sorting. Sorted cells were subsequently seeded onto the chitosan-alginate composite three-dimensional (3D) porous scaffolds and cultured in chondrogenic culture medium in the presence of TGF-β₃ and BMP-2 for 2 weeks in vitro. After 2 weeks in culture, scanning electron microscopy results showed that cells attached and proliferated well on scaffolds, and secreted extracellular matrix were also observed. From day 7 to day 14, the total DNA and glucosaminoglycan content of the cells cultured in scaffolds were found to have increased significantly, and cell cycle analyses revealed that the percentage of cells in the S and G2/M phases increased and the percentage of cells in the G0/G1 phase decreased. Compared with non-sorted cells, the sorted cells cultured in scaffolds underwent more chondrogenic differentiation, as evidenced by higher expression of type II collagen and Sox9 at the protein and mRNA levels. The results suggest that CD105(+) enriched SMSCs may be a potential cell source for cartilage tissue engineering, and the chitosan-alginate composite 3D porous scaffold could provide a favorable microenvironment for supporting proliferation and chondrogenic differentiation of cells.
Collapse
Affiliation(s)
- Jun Qi
- Department of Orthopedics, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | | | | | | | | | | |
Collapse
|
143
|
Chaudhury S, Murphy R, Carr A. Tendon Tissue Engineering: The Potential Application of Stem Cells, Biological Factors, and Repair Scaffolds to Improve Rotator Cuff Tendon Tears. COMPREHENSIVE BIOTECHNOLOGY 2011:252-269. [DOI: 10.1016/b978-0-444-64046-8.00297-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
|
144
|
Chaudhury S, Murphy R, Carr A. Tendon Tissue Engineering. COMPREHENSIVE BIOTECHNOLOGY 2011:291-310. [DOI: 10.1016/b978-0-08-088504-9.00511-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
|
145
|
Abstract
Although classical dogma dictates that satellite cells are the primary cell type involved in skeletal muscle regeneration, alternative cell types such as a variety of inflammatory and stromal cells are also actively involved in this process. A model describing myogenic cells as direct contributors to regeneration and nonmyogenic cells from other developmental sources as important accessories has emerged, with similar systems having been described in numerous other tissues in the body. Increasing evidence supports the notion that inflammatory cells function as supportive accessory cells, and are not merely involved in clearing damage following skeletal muscle injury. Additionally, recent studies have highlighted the role of tissue resident mesenchymal cell populations as playing a central role in regulating regeneration. These "accessory" cell populations are proposed to influence myogenesis via direct cell contact and secretion of paracrine trophic factors. The basic foundations of accessory cell understanding should be recognized as a crucial component to all prospects of regenerative medicine, and this chapter intends to provide a comprehensive background on the current literature describing immune and tissue-resident mesenchymal cells' role in skeletal muscle regeneration.
Collapse
|
146
|
van Buul GM, van Osch GJVM. Musculoskeletal Stem Cells. Regen Med 2011. [DOI: 10.1007/978-90-481-9075-1_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
147
|
Chen G, Zhang S, Zhang Z. Over-expression of has2 in synovium-derived mesenchymal stem cells may prevent adhesions following surgery of the digital flexor tendons. Med Hypotheses 2010; 76:314-6. [PMID: 21084166 DOI: 10.1016/j.mehy.2010.09.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 09/24/2010] [Indexed: 11/26/2022]
Abstract
The prevention of peritendinous adhesions after zone II flexor tendon repair poses a significant challenge to hand surgeons. Exogenous hyaluronic acid (HA) has been widely studied and has been found to promote tendon healing and decrease adhesion formation in digital flexor tendons following surgery. However, the clinical application of exogenous HA is restricted due to limitations inherent in the exogenously expressed form. However, hyaluronic acid synthase 2 (has2) has been shown to promote synthesis of the endogenous high molecular weight HA in many cells. Taken together with the fact that synovium-derived mesenchymal stem cells (SMSCs) are more proliferative than other MSCs, we hypothesize that over-expression of has2 in SMSCs will be an effective therapeutic in preventing the adhesions in surgery of the digital flexor tendons.
Collapse
Affiliation(s)
- Gang Chen
- Central Laboratory, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, PR China
| | | | | |
Collapse
|
148
|
Zhang F, Yao Y, Zhou R, Su K, Citra F, Wang DA. Optimal Construction and Delivery of Dual-Functioning Lentiviral Vectors for Type I Collagen-Suppressed Chondrogenesis in Synovium-Derived Mesenchymal Stem Cells. Pharm Res 2010; 28:1338-48. [DOI: 10.1007/s11095-010-0305-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 10/13/2010] [Indexed: 11/30/2022]
|
149
|
Abstract
BACKGROUND Various types of tissue-derived cells are being experimented with for the treatment of tendinopathy, tendon repair, and use in tissue engineering. PURPOSE The aim of this systematic review is to explore the current evidence with a view to evaluate the potential of this therapeutic intervention. STUDY DESIGN Systematic review. METHODS A review of the literature was conducted using PubMed. Search criteria included keywords "tendinopathy," "tendinitis," "tendinosis," "epicondylitis," "stem cell," and "cell therapy." Articles not written in English language were excluded. RESULTS A total number of 379 articles were identified and a critical appraisal of the relevant articles was undertaken, which encompassed human and animal research. The review included articles related to various tissue-derived cells such as tendon progenitors, adipose tissue, synovium, muscle, bone marrow, and skin. The utility of cell therapy in tissue engineering and rotator cuff repair was also assessed. CONCLUSION With the limitation of the available evidence, the literature suggests that cell therapy is applicable and may be effective for the treatment of tendinopathy. However, further research into the precise biological mechanisms, long-term implications, and cost-effectiveness is needed.
Collapse
Affiliation(s)
- Haron Obaid
- Doncaster Royal Infirmary, Doncaster, United Kingdom.
| | | |
Collapse
|
150
|
Buckley CT, Vinardell T, Kelly DJ. Oxygen tension differentially regulates the functional properties of cartilaginous tissues engineered from infrapatellar fat pad derived MSCs and articular chondrocytes. Osteoarthritis Cartilage 2010; 18:1345-54. [PMID: 20650328 DOI: 10.1016/j.joca.2010.07.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 07/07/2010] [Accepted: 07/14/2010] [Indexed: 02/02/2023]
Abstract
BACKGROUND For current tissue engineering or regenerative medicine strategies, chondrocyte (CC)- or mesenchymal stem cell (MSC)-seeded constructs are typically cultured in normoxic conditions (20% oxygen). However, within the knee joint capsule a lower oxygen tension exists. OBJECTIVE The objective of this study was to investigate how CCs and infrapatellar fad pad derived MSCs will respond to a low oxygen (5%) environment in 3D agarose culture. Our hypothesis was that culture in a low oxygen environment (5%) will enhance the functional properties of cartilaginous tissues engineered using both cell sources. EXPERIMENTAL DESIGN Cell-encapsulated agarose hydrogel constructs (seeded with CCs or infrapatellar fat pad (IFP) derived MSCs) were prepared and cultured in a chemically defined serum-free medium in the presence (CCs and MSCs) or absence (CCs only) of transforming growth factor-beta3 (TGF-β3) in normoxic (20%) or low oxygen (5%) conditions for 42 days. Constructs were assessed at days 0, 21 and 42 in terms of mechanical properties, biochemical content and histologically. RESULTS Low oxygen tension (5%) was observed to promote extracellular matrix (ECM) production by CCs cultured in the absence of TGF-β3, but was inhibitory in the presence of TGF-β3. In contrast, a low oxygen tension enhanced chondrogenesis of IFP constructs in the presence of TGF-β3, leading to superior mechanical functionality compared to CCs cultured in identical conditions. CONCLUSIONS Extrapolating the results of this study to the in vivo setting, it would appear that joint fat pad derived MSCs may possess a superior potential to generate a functional repair tissue in low oxygen tensions. However, in the context of in vitro cartilage tissue engineering, CCs maintained in normoxic conditions in the presence of TGF-β3 generate the most mechanically functional tissue.
Collapse
Affiliation(s)
- C T Buckley
- Trinity Centre for Bioengineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland
| | | | | |
Collapse
|