101
|
Huri PY, Ozilgen BA, Hutton DL, Grayson WL. Scaffold pore size modulates in vitro osteogenesis of human adipose-derived stem/stromal cells. Biomed Mater 2014; 9:045003. [PMID: 24945873 DOI: 10.1088/1748-6041/9/4/045003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Trabecular bone has an interconnected porous structure, which influences cellular responses, biochemical transport and mechanical strength. Appropriately mimicking this structural organization in biomaterial scaffolds can facilitate more robust bone tissue regeneration and integration by providing a native microenvironment to the cells. This study examined the effect of pore size on human adipose-derived stem/stromal cell (ASC) osteogenesis within poly(ε-caprolactone) (PCL) scaffolds. Scaffold pore size was controlled by porogen leaching of custom-made paraffin particles with three different size ranges: P200 (< 500 µm), P500 (500-1000 µm), and P1000 (1000-1500 µm). Scaffolds produced by leaching these particles exhibited highly interconnected pores and rough surface structures that were favorable for cell attachment and ingrowth. The osteogenic response of ASCs was evaluated following 3 weeks of in vitro culture using biochemical (ALP, Ca(2+)/DNA content), mechanical (compression test) and histological (H&E and von Kossa staining) analyses. It was observed that while the total number of cells was similar for all scaffolds, the cell distributions and osteogenic properties were affected by the scaffold pore size. ASCs were able to bridge smaller pores and grow uniformly within these scaffolds (P200) while they grew as a layer along the periphery of the largest pores (P1000). The cell-biomaterial interactions specific to the latter case led to enhanced osteogenic responses. The ALP activity and Ca(2+) deposition were doubled in P1000 scaffolds as compared to P200 scaffolds. A significant difference was observed between the compressive strength of unseeded and seeded P1000 scaffolds. Therefore, we demonstrated that the use of scaffolds with pores that are in the range of 1 mm enhances in vitro ASC osteogenesis, which may improve their performance in engineered bone substitutes.
Collapse
Affiliation(s)
- Pinar Yilgor Huri
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | | | | | |
Collapse
|
102
|
Thompson EM, Matsiko A, Farrell E, Kelly DJ, O'Brien FJ. Recapitulating endochondral ossification: a promising route toin vivobone regeneration. J Tissue Eng Regen Med 2014; 9:889-902. [DOI: 10.1002/term.1918] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 02/14/2014] [Accepted: 04/24/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Emmet M. Thompson
- Tissue Engineering Research Group, Department of Anatomy; Royal College of Surgeons in Ireland; Dublin Ireland
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute; Trinity College Dublin; Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre; Dublin Ireland
| | - Amos Matsiko
- Tissue Engineering Research Group, Department of Anatomy; Royal College of Surgeons in Ireland; Dublin Ireland
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute; Trinity College Dublin; Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre; Dublin Ireland
| | - Eric Farrell
- Department of Oral and Maxillofacial Surgery, Erasmus MC; University Medical Centre Rotterdam; The Netherlands
| | - Daniel J. Kelly
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute; Trinity College Dublin; Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre; Dublin Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering; Trinity College Dublin; Ireland
| | - Fergal J. O'Brien
- Tissue Engineering Research Group, Department of Anatomy; Royal College of Surgeons in Ireland; Dublin Ireland
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute; Trinity College Dublin; Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre; Dublin Ireland
| |
Collapse
|
103
|
Yang G, Rothrauff BB, Tuan RS. Tendon and ligament regeneration and repair: clinical relevance and developmental paradigm. ACTA ACUST UNITED AC 2014; 99:203-222. [PMID: 24078497 DOI: 10.1002/bdrc.21041] [Citation(s) in RCA: 286] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 07/27/2013] [Accepted: 07/27/2013] [Indexed: 12/18/2022]
Abstract
As dense connective tissues connecting bone to muscle and bone to bone, respectively, tendon and ligament (T/L) arise from the somitic mesoderm, originating in a recently discovered somitic compartment, the syndetome. Inductive signals from the adjacent sclerotome and myotome upregulate expression of Scleraxis, a key transcription factor for tenogenic and ligamentogenic differentiation. Understanding T/L development is critical to establishing a knowledge base for improving the healing and repair of T/L injuries, a high-burden disease due to the intrinsically poor natural healing response. Current treatment of the three most common tendon injuries-tearing of the rotator cuff of the shoulder, flexor tendon of the hand, and Achilles tendon-include mostly surgical repair and/or conservative approaches, including biophysical modalities such as rehabilitation and cryotherapy. Unfortunately, the fibrovascular scar formed during healing possesses inferior mechanical and biochemical properties, resulting in compromised tissue functionality. Regenerative approaches have sought to augment the injured tissue with cells, scaffolds, bioactive agents, and mechanical stimulation to improve the natural healing response. The key challenges in restoring full T/L function following injury include optimal combination of these biological agents as well as their delivery to the injury site. A greater understanding of the molecular mechanisms involved in T/L development and natural healing, coupled with the capability of producing complex biomaterials to deliver multiple biofactors with high spatiotemporal resolution and specificity, should lead to regenerative procedures that more closely recapitulate T/L morphogenesis, thereby offering future patients the prospect of T/L regeneration, as opposed to simple tissue repair.
Collapse
Affiliation(s)
- Guang Yang
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Benjamin B Rothrauff
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| |
Collapse
|
104
|
Santo VE, Rodrigues MT, Gomes ME. Contributions and future perspectives on the use of magnetic nanoparticles as diagnostic and therapeutic tools in the field of regenerative medicine. Expert Rev Mol Diagn 2014; 13:553-66. [DOI: 10.1586/14737159.2013.819169] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
105
|
Babo =P, Santo VE, Duarte ARC, Correia C, Costa MHG, Mano JF, Reis RL, Gomes ME. Platelet lysate membranes as new autologous templates for tissue engineering applications. Inflamm Regen 2014. [DOI: 10.2492/inflammregen.34.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
106
|
Abstract
We overview the latest developments of polymeric/ceramic scaffolds and hydrogels that contain magnetic particles for the improvement of tissue engineering strategies.
Collapse
Affiliation(s)
- Sara Gil
- 3B's Research Group – Biomaterials
- Biodegradables and Biomimetics
- ICVS/3B's – PT Government Associate Laboratory
- Guimarães, Portugal
| | - João F. Mano
- 3B's Research Group – Biomaterials
- Biodegradables and Biomimetics
- ICVS/3B's – PT Government Associate Laboratory
- Guimarães, Portugal
| |
Collapse
|
107
|
Jeon JE, Vaquette C, Klein TJ, Hutmacher DW. Perspectives in Multiphasic Osteochondral Tissue Engineering. Anat Rec (Hoboken) 2013; 297:26-35. [DOI: 10.1002/ar.22795] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 09/13/2013] [Indexed: 12/25/2022]
Affiliation(s)
- June E. Jeon
- Institute of Health and Biomedical Innovation, Queensland University of Technology 60 Musk Ave., Kelvin Grove, QLD, 4059, Australia
| | - Cedryck Vaquette
- Institute of Health and Biomedical Innovation, Queensland University of Technology 60 Musk Ave., Kelvin Grove, QLD, 4059, Australia
| | - Travis J. Klein
- Institute of Health and Biomedical Innovation, Queensland University of Technology 60 Musk Ave., Kelvin Grove, QLD, 4059, Australia
| | - Dietmar W. Hutmacher
- Institute of Health and Biomedical Innovation, Queensland University of Technology 60 Musk Ave., Kelvin Grove, QLD, 4059, Australia
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 315 Ferst Drive Atlanta, GA 30332, USA
| |
Collapse
|
108
|
Recent progresses in gene delivery-based bone tissue engineering. Biotechnol Adv 2013; 31:1695-706. [DOI: 10.1016/j.biotechadv.2013.08.015] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/24/2013] [Accepted: 08/19/2013] [Indexed: 12/18/2022]
|
109
|
The use of ASCs engineered to express BMP2 or TGF-β3 within scaffold constructs to promote calvarial bone repair. Biomaterials 2013; 34:9401-12. [DOI: 10.1016/j.biomaterials.2013.08.051] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 08/19/2013] [Indexed: 01/16/2023]
|
110
|
Farach-Carson MC, Warren CR, Harrington DA, Carson DD. Border patrol: insights into the unique role of perlecan/heparan sulfate proteoglycan 2 at cell and tissue borders. Matrix Biol 2013; 34:64-79. [PMID: 24001398 DOI: 10.1016/j.matbio.2013.08.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/16/2013] [Accepted: 08/17/2013] [Indexed: 12/11/2022]
Abstract
The extracellular matrix proteoglycan (ECM) perlecan, also known as heparan sulfate proteoglycan 2 or HSPG2, is one of the largest (>200 nm) and oldest (>550 M years) extracellular matrix molecules. In vertebrates, perlecan's five-domain structure contains numerous independently folding modules with sequence similarities to other ECM proteins, all connected like cars into one long, diverse complex train following a unique N-terminal domain I decorated with three long glycosaminoglycan chains, and an additional glycosaminoglycan attachment site in the C-terminal domain V. In lower invertebrates, perlecan is not typically a proteoglycan, possessing the majority of the core protein modules, but lacking domain I where the attachment sites for glycosaminoglycan chains are located. This suggests that uniting the heparan sulfate binding growth factor functions of domain I and the core protein functions of the rest of the molecule in domains II-V occurred later in evolution for a new functional purpose. In this review, we surveyed several decades of pertinent literature to ask a fundamental question: Why did nature design this protein uniquely as an extraordinarily long multifunctional proteoglycan with a single promoter regulating expression, rather than separating these functions into individual proteins that could be independently regulated? We arrived at the conclusion that the concentration of perlecan at functional borders separating tissues and tissue layers is an ancient key function of the core protein. The addition of the heparan sulfate chains in domain I likely occurred as an additional means of binding the core protein to other ECM proteins in territorial matrices and basement membranes, and as a means to reserve growth factors in an on-site depot to assist with rapid repair of those borders when compromised, such as would occur during wounding. We propose a function for perlecan that extends its role from that of an extracellular scaffold, as we previously suggested, to that of a critical agent for establishing and patrolling tissue borders in complex tissues in metazoans. We also propose that understanding these unique functions of the individual portions of the perlecan molecule can provide new insights and tools for engineering of complex multi-layered tissues including providing the necessary cues for establishing neotissue borders.
Collapse
Affiliation(s)
- Mary C Farach-Carson
- Department of Biochemistry and Cell Biology, Rice University W100 George R. Brown Hall P.O. Box 1892, MS-140, Houston, TX 77251-1892, United States.
| | - Curtis R Warren
- Department of Biochemistry and Cell Biology, Rice University W100 George R. Brown Hall P.O. Box 1892, MS-140, Houston, TX 77251-1892, United States
| | - Daniel A Harrington
- Department of Biochemistry and Cell Biology, Rice University W100 George R. Brown Hall P.O. Box 1892, MS-140, Houston, TX 77251-1892, United States
| | - Daniel D Carson
- Department of Biochemistry and Cell Biology, Rice University W100 George R. Brown Hall P.O. Box 1892, MS-140, Houston, TX 77251-1892, United States
| |
Collapse
|
111
|
Regenerating cartilages by engineered ASCs: prolonged TGF-β3/BMP-6 expression improved articular cartilage formation and restored zonal structure. Mol Ther 2013; 22:186-95. [PMID: 23851345 DOI: 10.1038/mt.2013.165] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 07/04/2013] [Indexed: 01/19/2023] Open
Abstract
Adipose-derived stem cells (ASCs) hold promise for cartilage regeneration but their chondrogenesis potential is inferior. Here, we used a baculovirus (BV) system that exploited FLPo/Frt-mediated transgene recombination and episomal minicircle formation to genetically engineer rabbit ASCs (rASCs). The BV system conferred prolonged and robust TGF-β3/BMP-6 expression in rASCs cultured in porous scaffolds, which critically augmented rASCs chondrogenesis and suppressed osteogenesis/hypertrophy, leading to the formation of cartilaginous constructs with improved maturity and mechanical properties in 2-week culture. Twelve weeks after implantation into full-thickness articular cartilage defects in rabbits, these engineered constructs regenerated neocartilages that resembled native hyaline cartilages in cell morphology, matrix composition and mechanical properties. The neocartilages also displayed cartilage-specific zonal structures without signs of hypertrophy and degeneration, and eventually integrated with host cartilages. In contrast, rASCs that transiently expressed TGF-β3/BMP-6 underwent osteogenesis/hypertrophy and resulted in the formation of inferior cartilaginous constructs, which after implantation regenerated fibrocartilages. These data underscored the crucial role of TGF-β3/BMP-6 expression level and duration in rASCs in the cell differentiation, constructs properties and in vivo repair. The BV-engineered rASCs that persistently express TGF-β3/BMP-6 improved the chondrogenesis, in vitro cartilaginous constructs production and in vivo hyaline cartilage regeneration, thus representing a remarkable advance in cartilage engineering.
Collapse
|