101
|
Khoury GA, Thompson JP, Smadbeck J, Kieslich CA, Floudas CA. Forcefield_PTM: Ab Initio Charge and AMBER Forcefield Parameters for Frequently Occurring Post-Translational Modifications. J Chem Theory Comput 2013; 9:5653-5674. [PMID: 24489522 PMCID: PMC3904396 DOI: 10.1021/ct400556v] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this work, we introduce Forcefield_PTM, a set of AMBER forcefield parameters consistent with ff03 for 32 common post-translational modifications. Partial charges were calculated through ab initio calculations and a two-stage RESP-fitting procedure in an ether-like implicit solvent environment. The charges were found to be generally consistent with others previously reported for phosphorylated amino acids, and trimethyllysine, using different parameterization methods. Pairs of modified and their corresponding unmodified structures were curated from the PDB for both single and multiple modifications. Background structural similarity was assessed in the context of secondary and tertiary structures from the global dataset. Next, the charges derived for Forcefield_PTM were tested on a macroscopic scale using unrestrained all-atom Langevin molecular dynamics simulations in AMBER for 34 (17 pairs of modified/unmodified) systems in implicit solvent. Assessment was performed in the context of secondary structure preservation, stability in energies, and correlations between the modified and unmodified structure trajectories on the aggregate. As an illustration of their utility, the parameters were used to compare the structural stability of the phosphorylated and dephosphorylated forms of OdhI. Microscopic comparisons between quantum and AMBER single point energies along key χ torsions on several PTMs were performed and corrections to improve their agreement in terms of mean squared errors and squared correlation coefficients were parameterized. This forcefield for post-translational modifications in condensed-phase simulations can be applied to a number of biologically relevant and timely applications including protein structure prediction, protein and peptide design, docking, and to study the effect of PTMs on folding and dynamics. We make the derived parameters and an associated interactive webtool capable of performing post-translational modifications on proteins using Forcefield_PTM available at http://selene.princeton.edu/FFPTM.
Collapse
Affiliation(s)
- George A. Khoury
- Department of Chemical and Biological Engineering, Princeton, NJ, USA
| | - Jeff P. Thompson
- Department of Chemical and Biological Engineering, Princeton, NJ, USA
| | - James Smadbeck
- Department of Chemical and Biological Engineering, Princeton, NJ, USA
| | - Chris A. Kieslich
- Department of Chemical and Biological Engineering, Princeton, NJ, USA
| | | |
Collapse
|
102
|
Edwards AVG, Edwards GJ, Schwämmle V, Saxtorph H, Larsen MR. Spatial and Temporal Effects in Protein Post-translational Modification Distributions in the Developing Mouse Brain. J Proteome Res 2013; 13:260-7. [DOI: 10.1021/pr4002977] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Alistair V. G. Edwards
- Department of Biochemistry
and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense, DK 5230, Denmark
| | | | - Veit Schwämmle
- Department of Biochemistry
and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense, DK 5230, Denmark
| | - Henrik Saxtorph
- Biomedical Laboratory, Odense University Hospital, Winsløwparken 23, Odense, DK 5000, Denmark
| | - Martin R. Larsen
- Department of Biochemistry
and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense, DK 5230, Denmark
| |
Collapse
|
103
|
Liu J, Wang Y, Li L, Zhou L, Wei H, Zhou Q, Liu J, Wang W, Ji L, Shan P, Wang Y, Yang Y, Jung SY, Zhang P, Wang C, Long W, Zhang B, Li X. Site-specific acetylation of the proteasome activator REGγ directs its heptameric structure and functions. J Biol Chem 2013; 288:16567-16578. [PMID: 23612972 PMCID: PMC3675592 DOI: 10.1074/jbc.m112.437129] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 04/22/2013] [Indexed: 12/22/2022] Open
Abstract
The proteasome activator REGγ has been reported to promote degradation of steroid receptor coactivator-3 and cyclin-dependent kinase inhibitors p21, p16, and p19 in a ubiquitin- and ATP-independent manner. A recent comparative analysis of REGγ expression in mouse and human tissues reveals a unique pattern of REGγ in specific cell types, suggesting undisclosed functions and biological importance of this molecule. Despite the emerging progress made in REGγ-related studies, how REGγ function is regulated remains to be explored. In this study, we report for the first time that REGγ can be acetylated mostly on its lysine 195 (Lys-195) residue by CREB binding protein (CBP), which can be reversed by sirtuin 1 (SIRT1) in mammalian cells. Site-directed mutagenesis abrogated acetylation at Lys-195 and significantly attenuated the capability of REGγ to degrade its target substrates, p21 and hepatitis C virus core protein. Mechanistically, acetylation at Lys-195 is important for the interactions between REGγ monomers and ultimately influences REGγ heptamerization. Biological analysis of cells containing REGγ-WT or REGγ-K195R mutant indicates an impact of acetylation on REGγ-mediated regulation of cell proliferation and cell cycle progression. These findings reveal a previously unknown mechanism in the regulation of REGγ assembly and activity, suggesting a potential venue for the intervention of the ubiquitin-independent REGγ proteasome activity.
Collapse
Affiliation(s)
- Jiang Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China; Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Ying Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China; Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Lei Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Li Zhou
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Haibin Wei
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Qingxia Zhou
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jian Liu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Weicang Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Lei Ji
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Peipei Shan
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yan Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yuanyuan Yang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Sung Yun Jung
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Pei Zhang
- Department of Pathology, the Second Chengdu Municipal Hospital, Chengdu, Sichuan 610017, China
| | - Chuangui Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Weiwen Long
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Bianhong Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China.
| | - Xiaotao Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030.
| |
Collapse
|
104
|
Macdonald JI, Dick FA. Posttranslational modifications of the retinoblastoma tumor suppressor protein as determinants of function. Genes Cancer 2013; 3:619-33. [PMID: 23634251 DOI: 10.1177/1947601912473305] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The retinoblastoma tumor suppressor protein (pRB) plays an integral role in G1-S checkpoint control and consequently is a frequent target for inactivation in cancer. The RB protein can function as an adaptor, nucleating components such as E2Fs and chromatin regulating enzymes into the same complex. For this reason, pRB's regulation by posttranslational modifications is thought to be critical. pRB is phosphorylated by a number of different kinases such as cyclin dependent kinases (Cdks), p38 MAP kinase, Chk1/2, Abl, and Aurora b. Although phosphorylation of pRB by Cdks has been extensively studied, activities regulated through phosphorylation by other kinases are just starting to be understood. As well as being phosphorylated, pRB is acetylated, methylated, ubiquitylated, and SUMOylated. Acetylation, methylation, and SUMOylation play roles in pRB mediated gene silencing. Ubiquitinylation of pRB promotes its degradation and may be used to regulate apoptosis. Recent proteomic data have revealed that pRB is posttranslationally modified to a much greater extent than previously thought. This new information suggests that many unknown pathways affect pRB regulation. This review focuses on posttranslational modifications of pRB and how they influence its function. The final part of the review summarizes new phosphorylation sites from accumulated proteomic data and discusses the possibilities that might arise from this data.
Collapse
Affiliation(s)
- James I Macdonald
- Western University, London Regional Cancer Program, Department of Biochemistry, London, ON, Canada
| | | |
Collapse
|
105
|
Enany S, Yoshida Y, Magdeldin S, Bo X, Zhang Y, Enany M, Yamamoto T. Two dimensional electrophoresis of the exo-proteome produced from community acquired methicillin resistant Staphylococcus aureus belonging to clonal complex 80. Microbiol Res 2013; 168:504-11. [PMID: 23566758 DOI: 10.1016/j.micres.2013.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 03/07/2013] [Accepted: 03/10/2013] [Indexed: 12/22/2022]
Abstract
Two-dimensional electrophoresis (2DE) combined with mass spectrometry was used to characterize the exo-proteome secreted by two strains (ER13 and ER21) representing community acquired methicillin resistant Staphylococcus aureus (CA-MRSA) belonging to clonal complex 80 (CC80). Common spots were detected between the 2 gels using the Progenesis SameSpots software. Two hundred and fifty-one and 312 spots from the exo-proteome of ER13 and ER21 were resolved, respectively. 2DE overlap comparison showed that 59 spots were shared. LC-MS/MS analysis identified 57 proteins from these spots comprising about 21% extracellular, 48% cytoplasmic, 2% cytoplasmic membrane, 2% cell wall, and 26% with unknown localization. The identified proteins were classified with respect to their Gene Ontology (GO) annotation as ∼24% virulence determinants and toxins, ∼17% involved in carbohydrate metabolism, ∼14% involved in environmental stress, and ∼12% associated with cell division. The identification of the enterotoxin B from the exo-products of both strains used in our study, as belonging to CC80 was interesting.
Collapse
Affiliation(s)
- Shymaa Enany
- Department of Structural Pathology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.
| | | | | | | | | | | | | |
Collapse
|