101
|
Yang R, Cheng S, Luo N, Gao R, Yu K, Kang B, Wang L, Zhang Q, Fang Q, Zhang L, Li C, He A, Hu X, Peng J, Ren X, Zhang Z. Distinct epigenetic features of tumor-reactive CD8+ T cells in colorectal cancer patients revealed by genome-wide DNA methylation analysis. Genome Biol 2019; 21:2. [PMID: 31892342 PMCID: PMC6937914 DOI: 10.1186/s13059-019-1921-y] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/12/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Tumor-reactive CD8+ tumor-infiltrating lymphocytes (TILs) represent a subtype of T cells that can recognize and destroy tumor specifically. Understanding the regulatory mechanism of tumor-reactive CD8+ T cells has important therapeutic implications. Yet the DNA methylation status of this T cell subtype has not been elucidated. RESULTS In this study, we segregate tumor-reactive and bystander CD8+ TILs, as well as naïve and effector memory CD8+ T cell subtypes as controls from colorectal cancer patients, to compare their transcriptome and methylome characteristics. Transcriptome profiling confirms previous conclusions that tumor-reactive TILs have an exhausted tissue-resident memory signature. Whole-genome methylation profiling identifies a distinct methylome pattern of tumor-reactive CD8+ T cells, with tumor-reactive markers CD39 and CD103 being specifically demethylated. In addition, dynamic changes are observed during the transition of naïve T cells into tumor-reactive CD8+ T cells. Transcription factor binding motif enrichment analysis identifies several immune-related transcription factors, including three exhaustion-related genes (NR4A1, BATF, and EGR2) and VDR, which potentially play an important regulatory role in tumor-reactive CD8+ T cells. CONCLUSION Our study supports the involvement of DNA methylation in shaping tumor-reactive and bystander CD8+ TILs, and provides a valuable resource for the development of novel DNA methylation markers and future therapeutics.
Collapse
Affiliation(s)
- Rui Yang
- BIOPIC, Beijing Advanced Innovation Center for Genomics, and School of Life Sciences, Peking University, Beijing, China
| | - Sijin Cheng
- BIOPIC, Beijing Advanced Innovation Center for Genomics, and School of Life Sciences, Peking University, Beijing, China
| | - Nan Luo
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Surgery, Peking University Ninth School of Clinical Medicine, Beijing, China
| | - Ranran Gao
- BIOPIC, Beijing Advanced Innovation Center for Genomics, and School of Life Sciences, Peking University, Beijing, China
| | - Kezhuo Yu
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Boxi Kang
- BIOPIC, Beijing Advanced Innovation Center for Genomics, and School of Life Sciences, Peking University, Beijing, China
| | - Li Wang
- BIOPIC, Beijing Advanced Innovation Center for Genomics, and School of Life Sciences, Peking University, Beijing, China
| | - Qiming Zhang
- BIOPIC, Beijing Advanced Innovation Center for Genomics, and School of Life Sciences, Peking University, Beijing, China
| | - Qiao Fang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Lei Zhang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Chen Li
- Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Aibin He
- Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Xueda Hu
- BIOPIC, Beijing Advanced Innovation Center for Genomics, and School of Life Sciences, Peking University, Beijing, China
| | - Jirun Peng
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
- Department of Surgery, Peking University Ninth School of Clinical Medicine, Beijing, China.
| | - Xianwen Ren
- BIOPIC, Beijing Advanced Innovation Center for Genomics, and School of Life Sciences, Peking University, Beijing, China.
| | - Zemin Zhang
- BIOPIC, Beijing Advanced Innovation Center for Genomics, and School of Life Sciences, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| |
Collapse
|
102
|
Fan Y, Vilgalys TP, Sun S, Peng Q, Tung J, Zhou X. IMAGE: high-powered detection of genetic effects on DNA methylation using integrated methylation QTL mapping and allele-specific analysis. Genome Biol 2019; 20:220. [PMID: 31651351 PMCID: PMC6813132 DOI: 10.1186/s13059-019-1813-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 09/03/2019] [Indexed: 12/15/2022] Open
Abstract
Identifying genetic variants that are associated with methylation variation-an analysis commonly referred to as methylation quantitative trait locus (mQTL) mapping-is important for understanding the epigenetic mechanisms underlying genotype-trait associations. Here, we develop a statistical method, IMAGE, for mQTL mapping in sequencing-based methylation studies. IMAGE properly accounts for the count nature of bisulfite sequencing data and incorporates allele-specific methylation patterns from heterozygous individuals to enable more powerful mQTL discovery. We compare IMAGE with existing approaches through extensive simulation. We also apply IMAGE to analyze two bisulfite sequencing studies, in which IMAGE identifies more mQTL than existing approaches.
Collapse
Affiliation(s)
- Yue Fan
- Systems Engineering Institute, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, People's Republic of China
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Tauras P Vilgalys
- Departments of Evolutionary Anthropology and Biology, Duke University, Durham, NC, 27708, USA
| | - Shiquan Sun
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Qinke Peng
- Systems Engineering Institute, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, People's Republic of China
| | - Jenny Tung
- Departments of Evolutionary Anthropology and Biology, Duke University, Durham, NC, 27708, USA
- Duke University Population Research Institute, Duke University, Durham, NC, 27708, USA
| | - Xiang Zhou
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109, USA.
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
103
|
Benton MC, Lea RA, Macartney-Coxson D, Sutherland HG, White N, Kennedy D, Mengersen K, Haupt LM, Griffiths LR. Genome-wide allele-specific methylation is enriched at gene regulatory regions in a multi-generation pedigree from the Norfolk Island isolate. Epigenetics Chromatin 2019; 12:60. [PMID: 31594537 PMCID: PMC6781349 DOI: 10.1186/s13072-019-0304-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/12/2019] [Indexed: 02/08/2023] Open
Abstract
Background Allele-specific methylation (ASM) occurs when DNA methylation patterns exhibit asymmetry among alleles. ASM occurs at imprinted loci, but its presence elsewhere across the human genome is indicative of wider importance in terms of gene regulation and disease risk. Here, we studied ASM by focusing on blood-based DNA collected from 24 subjects comprising a 3-generation pedigree from the Norfolk Island genetic isolate. We applied a genome-wide bisulphite sequencing approach with a genotype-independent ASM calling method to map ASM across the genome. Regions of ASM were then tested for enrichment at gene regulatory regions using Genomic Association Test (GAT) tool. Results In total, we identified 1.12 M CpGs of which 147,170 (13%) exhibited ASM (P ≤ 0.05). When including contiguous ASM signal spanning ≥ 2 CpGs, this condensed to 12,761 ASM regions (AMRs). These AMRs tagged 79% of known imprinting regions and most (98.1%) co-localised with known single nucleotide variants. Notably, miRNA and lncRNA showed a 3.3- and 1.8-fold enrichment of AMRs, respectively (P < 0.005). Also, the 5′ UTR and start codons each showed a 3.5-fold enrichment of AMRs (P < 0.005). There was also enrichment of AMRs observed at subtelomeric regions of many chromosomes. Five out of 11 large AMRs localised to the protocadherin cluster on chromosome 5. Conclusions This study shows ASM extends far beyond genomic imprinting in humans and that gene regulatory regions are hotspots for ASM. Future studies of ASM in pedigrees should help to clarify transgenerational inheritance patterns in relation to genotype and disease phenotypes.
Collapse
Affiliation(s)
- Miles C Benton
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.,Human Genomics, Institute of Environmental Science and Research, Wellington, New Zealand
| | - Rodney A Lea
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.
| | - Donia Macartney-Coxson
- Human Genomics, Institute of Environmental Science and Research, Wellington, New Zealand
| | - Heidi G Sutherland
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Nicole White
- ARC Centre of Excellence for Mathematical and Statistical Frontiers, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Daniel Kennedy
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.,ARC Centre of Excellence for Mathematical and Statistical Frontiers, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Kerry Mengersen
- ARC Centre of Excellence for Mathematical and Statistical Frontiers, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Larisa M Haupt
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Lyn R Griffiths
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
104
|
Zhang B, Zhu L, Dai Y, Li H, Huang K, Luo Y, Xu W. An in vitro attempt at precision toxicology reveals the involvement of DNA methylation alteration in ochratoxin A-induced G0/G1 phase arrest. Epigenetics 2019; 15:199-214. [PMID: 31314649 DOI: 10.1080/15592294.2019.1644878] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Precision toxicology evaluates the toxicity of certain substances by isolating a small group of cells with a typical phenotype of interest followed by a single cell sequencing-based analysis. In this in vitro attempt, ochratoxin A (OTA), a typical mycotoxin and food contaminant, is found to induce G0/G1 phase cell cycle arrest in human renal proximal tubular HKC cells at a concentration of 20 μM after a 24h-treatment. A small number of G0/G1 phase HKC cells are evaluated in both the presence and absence of OTA. These cells are sorted with a flow cytometer and subjected to mRNA and DNA methylation sequencing using Smart-Seq2 and single-cell reduced-representation bisulfite sequencing (scRRBS) technology, respectively. Integrated analysis of the transcriptome and methylome profiles reveals that OTA causes abnormal expression of the essential genes that regulate G1/S phase transition, act as signal transductors in G1 DNA damage checkpoints, and associate with the anaphase-promoting complex/cyclosome. The alteration of their DNA methylation status is a significant underlying epigenetic mechanism. Furthermore, Notch signaling and Ras/MAPK/CREB pathways are found to be suppressed by OTA. This attempt at precision toxicology paves the way for a deeper understanding of OTA toxicity and provides an innovative strategy to researchers in the toxicology and pharmacology field.
Collapse
Affiliation(s)
- Boyang Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Liye Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yaqi Dai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Hongyu Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Kunlun Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, China
| | - Yunbo Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, China
| | - Wentao Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, China
| |
Collapse
|
105
|
Yuan X, Ye S, Chen Z, Pan X, Huang S, Li Z, Zhong Y, Gao N, Zhang H, Li J, Zhang Z. Dynamic DNA methylation of ovaries during pubertal transition in gilts. BMC Genomics 2019; 20:510. [PMID: 31221102 PMCID: PMC6585006 DOI: 10.1186/s12864-019-5884-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 06/05/2019] [Indexed: 02/06/2023] Open
Abstract
Background In female mammals, the initiation of puberty, coupling with the dramatically morphological changes in ovaries, indicates the sexual and follicular maturation. Previous studies have suggested that the disrupted DNA methylation results in the delayed puberty. However, to date, the changes in ovarian methylomes during pubertal transition have not been investigated. In this study, using gilts as a pubertal model, the genome-wide DNA methylation were profiled to explore their dynamics during pubertal transition across Pre-, In- and Post-puberty. Results During pubertal transition, the follicles underwent maturation and luteinization, coupled with the significant changes in the mRNA expression of DNMT1 and DNMT3a. DNA methylation levels of In-puberty were higher than that of Pre- and Post-puberty at the locations of genes and CpG islands (CGIs). Analysis of the DNA methylation changes identified 12,313, 20,960 and 17,694 differentially methylated CpGs (DMCs) for the comparisons of Pre- vs. In-, In vs. Post-, and Pre- vs. Post-puberty, respectively. Moreover, the CGIs, upstream and exonic regions showed a significant underrepresentation of DMCs, but the CGI shores, CGI shelves, intronic, downstream and intergenic regions showed a significant overrepresentation of DMCs. Furthermore, biological functions of these methylation changes enriched in PI3K-Akt signaling pathway, GnRH signaling pathway, and Insulin secretion, and the mRNA expressions of several genes of these signaling pathway, including MMP2, ESR1, GSK3B, FGF21, IGF1R, and TAC3, were significantly changed across Pre-, In- and Post-puberty in ovaries. Conclusions During pubertal transition in gilts, the DNA methylation changes of ovaries were likely to affect the transcription of genes related to PI3K-Akt signaling pathway, GnRH signaling pathway, and Insulin secretion. These observations can provide new insight into the epigenetic mechanism of follicular and sexual maturation during pubertal transition in mammals. Electronic supplementary material The online version of this article (10.1186/s12864-019-5884-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaolong Yuan
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Shaopan Ye
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zitao Chen
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xiangchun Pan
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Shuwen Huang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhonghui Li
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yuyi Zhong
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Ning Gao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, North Third Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, Guangdong, China
| | - Hao Zhang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jiaqi Li
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.
| | - Zhe Zhang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.
| |
Collapse
|
106
|
Chen J, Haanpää MK, Gruber JJ, Jäger N, Ford JM, Snyder MP. High-Resolution Bisulfite-Sequencing of Peripheral Blood DNA Methylation in Early-Onset and Familial Risk Breast Cancer Patients. Clin Cancer Res 2019; 25:5301-5314. [PMID: 31175093 DOI: 10.1158/1078-0432.ccr-18-2423] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 04/11/2019] [Accepted: 06/05/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE Understanding and explaining hereditary predisposition to cancer has focused on the genetic etiology of the disease. However, mutations in known genes associated with breast cancer, such as BRCA1 and BRCA2, account for less than 25% of familial cases of breast cancer. Recently, specific epigenetic modifications at BRCA1 have been shown to promote hereditary breast cancer, but the broader potential for epigenetic contribution to hereditary breast cancer is not yet well understood. EXPERIMENTAL DESIGN We examined DNA methylation through deep bisulfite sequencing of CpG islands and known promoter or regulatory regions in peripheral blood DNA from 99 patients with familial or early-onset breast or ovarian cancer, 6 unaffected BRCA mutation carriers, and 49 unaffected controls. RESULTS In 9% of patients, we observed altered methylation in the promoter regions of genes known to be involved in cancer, including hypermethylation at the tumor suppressor PTEN and hypomethylation at the proto-oncogene TEX14. These alterations occur in the form of allelic methylation that span up to hundreds of base pairs in length. CONCLUSIONS Our observations suggest a broader role for DNA methylation in early-onset, familial risk breast cancer. Further studies are warranted to clarify these mechanisms and the benefits of DNA methylation screening for early risk prediction of familial cancers.
Collapse
Affiliation(s)
- Justin Chen
- Department of Genetics, Stanford University, Stanford, California
| | - Maria K Haanpää
- Department of Medicine, Oncology Division, Stanford University, Stanford, California
| | - Joshua J Gruber
- Department of Genetics, Stanford University, Stanford, California.,Department of Medicine, Oncology Division, Stanford University, Stanford, California
| | - Natalie Jäger
- Department of Genetics, Stanford University, Stanford, California
| | - James M Ford
- Department of Genetics, Stanford University, Stanford, California. .,Department of Medicine, Oncology Division, Stanford University, Stanford, California
| | - Michael P Snyder
- Department of Genetics, Stanford University, Stanford, California.
| |
Collapse
|
107
|
Yuan X, Zhou X, Chen Z, He Y, Kong Y, Ye S, Gao N, Zhang Z, Zhang H, Li J. Genome-Wide DNA Methylation Analysis of Hypothalamus During the Onset of Puberty in Gilts. Front Genet 2019; 10:228. [PMID: 30941164 PMCID: PMC6433709 DOI: 10.3389/fgene.2019.00228] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/28/2019] [Indexed: 12/30/2022] Open
Abstract
Although selection of the early age at puberty in gilts will make for a favorable effect on the reproductivity of sow, a large proportion of phenotypic variation in age at puberty of gilts cannot be explained by genetics. Previous studies have implicated hypothalamic DNA methylation in the onset of puberty in mammals. However, the underlying molecular mechanism regarding the regulation of the onset of puberty has remained largely unexplored in gilts. Herein, the genome-scale DNA methylation of hypothalamus was acquired, using the reduced representation bisulfite sequencing, to compare and describe the changes of DNA methylation across Pre-, In- and Post-pubertal gilts. In this study, the average methylation levels of CpGs and CpHs (where H = C, T, or A) in CpG islands- and gene-related regions were gradually decreased in hypothalamic methylomes during the pubertal transition. Comparisons of Pre- vs. In-, In- vs. Post-, and Pre- vs. Post-pubertal stage revealed that there were 85726, 92914, and 100421 differentially methylated CpGs and 5940, 14804, and 16893 differentially methylated CpHs (where H = C, T, or A) in the hypothalamic methylomes. The methylation changes of CpHs were more dynamic than that of CpGs, and methylation changes of CpGs and CpHs were likely to be, respectively, involved in the developmental processes of reproduction and the molecular processes of cellular communications in the hypothalamus. Moreover, methylation changes of CpHs were observed to overrepresent in the quantitative trait loci of age at puberty, and the biological function of these CpH methylation changes was enriched in the pancreas development in gilts. Furthermore, the mRNA levels of several differentially CpG or CpH methylated genes related to the transcription of RNA II polymerase, GnRH signaling pathway, Estrogen signaling pathway, PI3K-AKt signaling pathway, and Insulin signaling pathway, including MAX, MMP2, FGF11, IGF1R, FGF21, and GSK3B, were significantly changed across these pubertal stages in the hypothalamus. These results will help our understanding of how DNA methylation contributes to phenotypic variation of age at puberty.
Collapse
Affiliation(s)
- Xiaolong Yuan
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiaofeng Zhou
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zitao Chen
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yingting He
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yaru Kong
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shaopan Ye
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ning Gao
- State Key Laboratory of Biocontrol, School of Life Sciences, Guangzhou Higher Education Mega Center, Sun Yat-sen University, Guangzhou, China
| | - Zhe Zhang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Hao Zhang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jiaqi Li
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
108
|
Yuan X, Li Z, Ye S, Chen Z, Huang S, Zhong Y, Zhang H, Li J, Zhang Z. Genome-wide DNA methylation analysis of pituitaries during the initiation of puberty in gilts. PLoS One 2019; 14:e0212630. [PMID: 30845225 PMCID: PMC6405085 DOI: 10.1371/journal.pone.0212630] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 02/06/2019] [Indexed: 12/26/2022] Open
Abstract
It has been widely recognized that the early or delayed puberty appears to display harmful effects on adult health outcomes. During the timing of puberty, pituitaries responds to the hypothalamus and then introduce the following response of ovaries in hypothalamic-pituitary-gonadal axis. DNA methylation has been recently suggested to regulate the onset of puberty in female mammals. However, to date, the changes of DNA methylation in pituitaries have not been investigated during pubertal transition. In this study, using gilts as the pubertal model, the genome-scale DNA methylation of pituitaries was profiled and compared across Pre-, In- and Post-puberty by using the reduced representation bisulfite sequencing. We found that average methylation levels of each genomic feature in Post- were lower than Pre- and In-pubertal stage in CpG context, but they were higher in In- than that in Pre- and Post-pubertal stage in CpH (where H = A, T, or C) context. The methylation patterns of CpHs were more dynamic than that of CpGs at the location of high CpG content, low CpG content promoter genes, and differently genomic CGIs. Furthermore, the differently genomic CGIs were likely to show in a similar manner in CpG context but display in a stage-specific manner in the CpH context across the Pre-, In- and Post-pubertal stage. Among these pubertal stages, 5 kb upstream regions of the transcription start sites were protected from both CpG and CpH methylation changes. 12.65% of detected CpGs were identified as the differentially methylated CpGs, regarding 4301 genes which were involved in the fundamental functions of pituitaries. 0.35% of detected CpHs were identified as differentially methylated CpHs, regarding 3691 genes which were involved in the biological functions of releasing gonadotropin hormones. These observations and analyses would provide valuable insights into epigenetic mechanism of the initiation of puberty in pituitary level.
Collapse
Affiliation(s)
- Xiaolong Yuan
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhonghui Li
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Shaopan Ye
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zitao Chen
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Shuwen Huang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yuyi Zhong
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Hao Zhang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jiaqi Li
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- * E-mail: (ZZ); (JL)
| | - Zhe Zhang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- * E-mail: (ZZ); (JL)
| |
Collapse
|
109
|
Bourguet P, de Bossoreille S, López-González L, Pouch-Pélissier MN, Gómez-Zambrano Á, Devert A, Pélissier T, Pogorelcnik R, Vaillant I, Mathieu O. A role for MED14 and UVH6 in heterochromatin transcription upon destabilization of silencing. Life Sci Alliance 2018; 1:e201800197. [PMID: 30574575 PMCID: PMC6291795 DOI: 10.26508/lsa.201800197] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/05/2018] [Accepted: 12/05/2018] [Indexed: 01/11/2023] Open
Abstract
The TFIIH component UVH6 and the mediator subunit MED14 are differentially required for the release of heterochromatin silencing, and MED14 regulates non-CG DNA methylation in Arabidopsis. Constitutive heterochromatin is associated with repressive epigenetic modifications of histones and DNA which silence transcription. Yet, particular mutations or environmental changes can destabilize heterochromatin-associated silencing without noticeable changes in repressive epigenetic marks. Factors allowing transcription in this nonpermissive chromatin context remain poorly known. Here, we show that the transcription factor IIH component UVH6 and the mediator subunit MED14 are both required for heat stress–induced transcriptional changes and release of heterochromatin transcriptional silencing in Arabidopsis thaliana. We find that MED14, but not UVH6, is required for transcription when heterochromatin silencing is destabilized in the absence of stress through mutating the MOM1 silencing factor. In this case, our results raise the possibility that transcription dependency over MED14 might require intact patterns of repressive epigenetic marks. We also uncover that MED14 regulates DNA methylation in non-CG contexts at a subset of RNA-directed DNA methylation target loci. These findings provide insight into the control of heterochromatin transcription upon silencing destabilization and identify MED14 as a regulator of DNA methylation.
Collapse
Affiliation(s)
- Pierre Bourguet
- Génétique Reproduction et Développement, Centre National de la Recherche Scientifique (CNRS), Inserm, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Stève de Bossoreille
- Génétique Reproduction et Développement, Centre National de la Recherche Scientifique (CNRS), Inserm, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Leticia López-González
- Génétique Reproduction et Développement, Centre National de la Recherche Scientifique (CNRS), Inserm, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Marie-Noëlle Pouch-Pélissier
- Génétique Reproduction et Développement, Centre National de la Recherche Scientifique (CNRS), Inserm, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Ángeles Gómez-Zambrano
- Génétique Reproduction et Développement, Centre National de la Recherche Scientifique (CNRS), Inserm, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Anthony Devert
- Génétique Reproduction et Développement, Centre National de la Recherche Scientifique (CNRS), Inserm, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Thierry Pélissier
- Génétique Reproduction et Développement, Centre National de la Recherche Scientifique (CNRS), Inserm, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Romain Pogorelcnik
- Génétique Reproduction et Développement, Centre National de la Recherche Scientifique (CNRS), Inserm, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Isabelle Vaillant
- Génétique Reproduction et Développement, Centre National de la Recherche Scientifique (CNRS), Inserm, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Olivier Mathieu
- Génétique Reproduction et Développement, Centre National de la Recherche Scientifique (CNRS), Inserm, Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
110
|
Zhu H, Zhang L, Wu Y, Dong B, Guo W, Wang M, Yang L, Fan X, Tang Y, Liu N, Lei X, Wu H. T-ALL leukemia stem cell 'stemness' is epigenetically controlled by the master regulator SPI1. eLife 2018; 7:38314. [PMID: 30412053 PMCID: PMC6251627 DOI: 10.7554/elife.38314] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 11/09/2018] [Indexed: 12/17/2022] Open
Abstract
Leukemia stem cells (LSCs) are regarded as the origins and key therapeutic targets of leukemia, but limited knowledge is available on the key determinants of LSC 'stemness'. Using single-cell RNA-seq analysis, we identify a master regulator, SPI1, the LSC-specific expression of which determines the molecular signature and activity of LSCs in the murine Pten-null T-ALL model. Although initiated by PTEN-controlled β-catenin activation, Spi1 expression and LSC 'stemness' are maintained by a β-catenin-SPI1-HAVCR2 regulatory circuit independent of the leukemogenic driver mutation. Perturbing any component of this circuit either genetically or pharmacologically can prevent LSC formation or eliminate existing LSCs. LSCs lose their 'stemness' when Spi1 expression is silenced by DNA methylation, but Spi1 expression can be reactivated by 5-AZ treatment. Importantly, similar regulatory mechanisms may be also present in human T-ALL.
Collapse
Affiliation(s)
- Haichuan Zhu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.,Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Liuzhen Zhang
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.,Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Yilin Wu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.,Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Bingjie Dong
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.,Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Weilong Guo
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.,Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Mei Wang
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.,Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Lu Yang
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.,Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Xiaoying Fan
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.,Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Yuliang Tang
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.,Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Ningshu Liu
- Drug Discovery Oncology, Bayer Pharmaceuticals, Berlin, Germany
| | - Xiaoguang Lei
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.,Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Hong Wu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.,Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| |
Collapse
|
111
|
Fu K, Nakano H, Morselli M, Chen T, Pappoe H, Nakano A, Pellegrini M. A temporal transcriptome and methylome in human embryonic stem cell-derived cardiomyocytes identifies novel regulators of early cardiac development. Epigenetics 2018; 13:1013-1026. [PMID: 30240284 PMCID: PMC6342070 DOI: 10.1080/15592294.2018.1526029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/30/2018] [Accepted: 09/09/2018] [Indexed: 02/07/2023] Open
Abstract
Stem cell-based cardiogenesis has become a powerful tool to enhance our understanding of cardiac development and test novel therapeutics for cardiovascular diseases. However, transcriptional and epigenetic regulation of multiple transitional stages from pluripotent cells to committed cardiomyocytes has not yet been fully characterized. To characterize how transcription factors, lincRNAs and DNA methylation change at temporal developmental stages, and identify potential novel regulators during cardiogenesis. We utilized a previously reported protocol that yields human cardiomyocytes (hCM) with more than 90% purity from human Embryonic Stem Cells (hESC). Leveraging the purity of cells resulting from this protocol, we systematically examined how gene expression and DNA methylation programs change at temporal developmental stages during cardiogenesis. Our results provide a comprehensive view of expression changes during cardiogenesis that extend previous studies, allowing us to identify key transcription factors as well as lincRNAs that are strongly associated with cardiac differentiation. Moreover, we incorporated a simple but powerful method to screen for novel regulators of cardiogenesis solely based on expression changes and found four novel cardiac-related transcription factors, i.e., SORBS2, MITF, DPF3, and ZNF436, which have no or few prior literature reports and we were able to validate using siRNA. Our strategy of identifying novel regulators of cardiogenesis can also be easily implemented in other stem cell-based systems. Our results provide a valuable resource for understanding cardiogenesis that extends previous findings by leveraging the purity of our cell lines, which allowed us to identify four novel cardiac-related regulators.
Collapse
Affiliation(s)
- Kai Fu
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA, USA
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Haruko Nakano
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA, USA
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA
| | - Marco Morselli
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Tiffany Chen
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Herman Pappoe
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Atsuschi Nakano
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA, USA
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA
- Cardiology Division, School of Medicine, University of California, Los Angeles, CA, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA, USA
| |
Collapse
|
112
|
Onuchic V, Lurie E, Carrero I, Pawliczek P, Patel RY, Rozowsky J, Galeev T, Huang Z, Altshuler RC, Zhang Z, Harris RA, Coarfa C, Ashmore L, Bertol JW, Fakhouri WD, Yu F, Kellis M, Gerstein M, Milosavljevic A. Allele-specific epigenome maps reveal sequence-dependent stochastic switching at regulatory loci. Science 2018; 361:eaar3146. [PMID: 30139913 PMCID: PMC6198826 DOI: 10.1126/science.aar3146] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 05/07/2018] [Accepted: 08/10/2018] [Indexed: 12/12/2022]
Abstract
To assess the impact of genetic variation in regulatory loci on human health, we constructed a high-resolution map of allelic imbalances in DNA methylation, histone marks, and gene transcription in 71 epigenomes from 36 distinct cell and tissue types from 13 donors. Deep whole-genome bisulfite sequencing of 49 methylomes revealed sequence-dependent CpG methylation imbalances at thousands of heterozygous regulatory loci. Such loci are enriched for stochastic switching, which is defined as random transitions between fully methylated and unmethylated states of DNA. The methylation imbalances at thousands of loci are explainable by different relative frequencies of the methylated and unmethylated states for the two alleles. Further analyses provided a unifying model that links sequence-dependent allelic imbalances of the epigenome, stochastic switching at gene regulatory loci, and disease-associated genetic variation.
Collapse
Affiliation(s)
- Vitor Onuchic
- Molecular and Human Genetics Department, Baylor College of Medicine, Houston, TX, USA
- Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA
- Epigenome Center, Baylor College of Medicine, Houston, TX, USA
- NIH Roadmap Epigenomics Project
| | - Eugene Lurie
- Molecular and Human Genetics Department, Baylor College of Medicine, Houston, TX, USA
- Epigenome Center, Baylor College of Medicine, Houston, TX, USA
- NIH Roadmap Epigenomics Project
| | - Ivenise Carrero
- Molecular and Human Genetics Department, Baylor College of Medicine, Houston, TX, USA
- Epigenome Center, Baylor College of Medicine, Houston, TX, USA
| | - Piotr Pawliczek
- Molecular and Human Genetics Department, Baylor College of Medicine, Houston, TX, USA
- Epigenome Center, Baylor College of Medicine, Houston, TX, USA
| | - Ronak Y Patel
- Molecular and Human Genetics Department, Baylor College of Medicine, Houston, TX, USA
- Epigenome Center, Baylor College of Medicine, Houston, TX, USA
| | - Joel Rozowsky
- Program in Computational Biology and Bioinformatics, Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Department of Computer Science, Yale University, New Haven, CT, USA
| | - Timur Galeev
- Program in Computational Biology and Bioinformatics, Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Department of Computer Science, Yale University, New Haven, CT, USA
| | - Zhuoyi Huang
- Molecular and Human Genetics Department, Baylor College of Medicine, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Robert C Altshuler
- NIH Roadmap Epigenomics Project
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zhizhuo Zhang
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - R Alan Harris
- Molecular and Human Genetics Department, Baylor College of Medicine, Houston, TX, USA
- Epigenome Center, Baylor College of Medicine, Houston, TX, USA
- NIH Roadmap Epigenomics Project
| | - Cristian Coarfa
- Molecular and Human Genetics Department, Baylor College of Medicine, Houston, TX, USA
- Epigenome Center, Baylor College of Medicine, Houston, TX, USA
- NIH Roadmap Epigenomics Project
| | - Lillian Ashmore
- Molecular and Human Genetics Department, Baylor College of Medicine, Houston, TX, USA
- Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA
- Epigenome Center, Baylor College of Medicine, Houston, TX, USA
| | - Jessica W Bertol
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Walid D Fakhouri
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Fuli Yu
- Molecular and Human Genetics Department, Baylor College of Medicine, Houston, TX, USA
- Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Manolis Kellis
- NIH Roadmap Epigenomics Project
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mark Gerstein
- Program in Computational Biology and Bioinformatics, Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Department of Computer Science, Yale University, New Haven, CT, USA
| | - Aleksandar Milosavljevic
- Molecular and Human Genetics Department, Baylor College of Medicine, Houston, TX, USA.
- Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA
- Epigenome Center, Baylor College of Medicine, Houston, TX, USA
- NIH Roadmap Epigenomics Project
| |
Collapse
|
113
|
Wang C, Wang C, Xu W, Zou J, Qiu Y, Kong J, Yang Y, Zhang B, Zhu S. Epigenetic Changes in the Regulation of Nicotiana tabacum Response to Cucumber Mosaic Virus Infection and Symptom Recovery through Single-Base Resolution Methylomes. Viruses 2018; 10:E402. [PMID: 30060626 PMCID: PMC6115852 DOI: 10.3390/v10080402] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/20/2018] [Accepted: 07/27/2018] [Indexed: 12/13/2022] Open
Abstract
Plants have evolved multiple mechanisms to respond to viral infection. These responses have been studied in detail at the level of host immune response and antiviral RNA silencing (RNAi). However, the possibility of epigenetic reprogramming has not been thoroughly investigated. Here, we identified the role of DNA methylation during viral infection and performed reduced representation bisulfite sequencing (RRBS) on tissues of Cucumber mosaic virus (CMV)-infected Nicotiana tabacum at various developmental stages. Differential methylated regions are enriched with CHH sequence contexts, 80% of which are located on the gene body to regulate gene expression in a temporal style. The methylated genes depressed by methyltransferase inhibition largely overlapped with methylated genes in response to viral invasion. Activation in the argonaute protein and depression in methyl donor synthase revealed the important role of dynamic methylation changes in modulating viral clearance and resistance signaling. Methylation-expression relationships were found to be required for the immune response and cellular components are necessary for the proper defense response to infection and symptom recovery.
Collapse
Affiliation(s)
- Chenguang Wang
- College of Plant Protection, China Agricultural University, Beijing 100083, China.
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100083, China.
| | - Chaonan Wang
- College of Plant Protection, China Agricultural University, Beijing 100083, China.
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100083, China.
| | - Wenjie Xu
- College of Plant Protection, China Agricultural University, Beijing 100083, China.
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100083, China.
| | - Jingze Zou
- College of Plant Protection, China Agricultural University, Beijing 100083, China.
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100083, China.
- College of Biological Sciences, China Agricultural University, Beijing 100083, China.
| | - Yanhong Qiu
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100083, China.
| | - Jun Kong
- College of Plant Protection, China Agricultural University, Beijing 100083, China.
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100083, China.
| | - Yunshu Yang
- Beijing Academy of Food Sciences, Beijing 100162, China.
| | - Boyang Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Shuifang Zhu
- College of Plant Protection, China Agricultural University, Beijing 100083, China.
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100083, China.
| |
Collapse
|
114
|
Zhou J, Lazar D, Li H, Xia X, Satheesan S, Charlins P, O'Mealy D, Akkina R, Saayman S, Weinberg MS, Rossi JJ, Morris KV. Receptor-targeted aptamer-siRNA conjugate-directed transcriptional regulation of HIV-1. Am J Cancer Res 2018; 8:1575-1590. [PMID: 29556342 PMCID: PMC5858168 DOI: 10.7150/thno.23085] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/09/2017] [Indexed: 12/16/2022] Open
Abstract
Gene-based therapies represent a promising therapeutic paradigm for the treatment of HIV-1, as they have the potential to maintain sustained viral inhibition with reduced treatment interventions. Such an option may represent a long-term treatment alternative to highly active antiretroviral therapy. Methods: We previously described a therapeutic approach, referred to as transcriptional gene silencing (TGS), whereby small noncoding RNAs directly inhibit the transcriptional activity of HIV-1 by targeting sites within the viral promoter, specifically the 5' long terminal repeat (LTR). TGS differs from traditional RNA interference (RNAi) in that it is characterized by concomitant silent-state epigenetic marks on histones and DNA. To deliver TGS-inducing RNAs, we developed functional RNA conjugates based on the previously reported dual function of the gp120 (A-1) aptamer conjugated to 27-mer Dicer-substrate anti-HIV-1 siRNA (dsiRNA), LTR-362. Results: We demonstrate here that high levels of processed guide RNAs localize to the nucleus in infected T lymphoblastoid CEM cell line and primary human CD4+ T-cells. Treatment of the aptamer-siRNA conjugates induced TGS with an ~10-fold suppression of viral p24 levels as measured at day 12 post infection. To explore the silencing efficacy of aptamer-siRNA conjugates in vivo, HIV-1-infected humanized NOD/SCID/IL2 rγnull mice (hu-NSG) were treated with the aptamer-siRNA conjugates. Systemic delivery of the A-1-stick-LTR-362 27-mer siRNA conjugates suppressed HIV-1 infection and protected CD4+ T cell levels in viremia hu-NSG mice. Principle conclusions: Collectively these data suggest that the gp120 aptamer-dsiRNA conjugate design is suitable for systemic delivery of small RNAs that can be used to suppress HIV-1.
Collapse
|