101
|
Fan Y, Cui J, Zhu Q. Heterogeneous graph inference based on similarity network fusion for predicting lncRNA-miRNA interaction. RSC Adv 2020; 10:11634-11642. [PMID: 35496629 PMCID: PMC9050493 DOI: 10.1039/c9ra11043g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/14/2020] [Indexed: 12/28/2022] Open
Abstract
LncRNA and miRNA are two non-coding RNA types that are popular in current research. LncRNA interacts with miRNA to regulate gene transcription, further affecting human health and disease. Accurate identification of lncRNA-miRNA interactions contributes to the in-depth study of the biological functions and mechanisms of non-coding RNA. However, relying on biological experiments to obtain interaction information is time-consuming and expensive. Considering the rapid accumulation of gene information and the few computational methods, it is urgent to supplement the effective computational models to predict lncRNA-miRNA interactions. In this work, we propose a heterogeneous graph inference method based on similarity network fusion (SNFHGILMI) to predict potential lncRNA-miRNA interactions. First, we calculated multiple similarity data, including lncRNA sequence similarity, miRNA sequence similarity, lncRNA Gaussian nuclear similarity, and miRNA Gaussian nuclear similarity. Second, the similarity network fusion method was employed to integrate the data and get the similarity network of lncRNA and miRNA. Then, we constructed a bipartite network by combining the known interaction network and similarity network of lncRNA and miRNA. Finally, the heterogeneous graph inference method was introduced to construct a prediction model. On the real dataset, the model SNFHGILMI achieved AUC of 0.9501 and 0.9426 ± 0.0035 based on LOOCV and 5-fold cross validation, respectively. Furthermore, case studies also demonstrate that SNFHGILMI is a high-performance prediction method that can accurately predict new lncRNA-miRNA interactions. The Matlab code and readme file of SNFHGILMI can be downloaded from https://github.com/cj-DaSE/SNFHGILMI.
Collapse
Affiliation(s)
- Yongxian Fan
- School of Computer and Information Security, Guilin University of Electronic Technology Guilin 541004 China
| | - Juan Cui
- School of Computer and Information Security, Guilin University of Electronic Technology Guilin 541004 China
| | - QingQi Zhu
- School of Computer and Information Security, Guilin University of Electronic Technology Guilin 541004 China
| |
Collapse
|
102
|
Rayhan F, Ahmed S, Mousavian Z, Farid DM, Shatabda S. FRnet-DTI: Deep convolutional neural network for drug-target interaction prediction. Heliyon 2020; 6:e03444. [PMID: 32154410 PMCID: PMC7052404 DOI: 10.1016/j.heliyon.2020.e03444] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 06/16/2019] [Accepted: 02/14/2020] [Indexed: 01/09/2023] Open
Abstract
The task of drug-target interaction prediction holds significant importance in pharmacology and therapeutic drug design. In this paper, we present FRnet-DTI, an auto-encoder based feature manipulation and a convolutional neural network based classifier for drug target interaction prediction. Two convolutional neural networks are proposed: FRnet-Encode and FRnet-Predict. Here, one model is used for feature manipulation and the other one for classification. Using the first method FRnet-Encode, we generate 4096 features for each of the instances in each of the datasets and use the second method, FRnet-Predict, to identify interaction probability employing those features. We have tested our method on four gold standard datasets extensively used by other researchers. Experimental results shows that our method significantly improves over the state-of-the-art method on three out of four drug-target interaction gold standard datasets on both area under curve for Receiver Operating Characteristic (auROC) and area under Precision Recall curve (auPR) metric. We also introduce twenty new potential drug-target pairs for interaction based on high prediction scores. The source codes and implementation details of our methods are available from https://github.com/farshidrayhanuiu/FRnet-DTI/ and also readily available to use as an web application from http://farshidrayhan.pythonanywhere.com/FRnet-DTI/.
Collapse
Affiliation(s)
- Farshid Rayhan
- Department of Computer Science and Engineering, United International University, Plot 2, United City, Madani Avenue, Satarkul, Badda, Dhaka-1212, Bangladesh
| | - Sajid Ahmed
- Department of Computer Science and Engineering, United International University, Plot 2, United City, Madani Avenue, Satarkul, Badda, Dhaka-1212, Bangladesh
| | - Zaynab Mousavian
- School of Mathematics, Statistics, and Computer Science, College of Science, University of Tehran, Tehran, Iran
| | - Dewan Md Farid
- Department of Computer Science and Engineering, United International University, Plot 2, United City, Madani Avenue, Satarkul, Badda, Dhaka-1212, Bangladesh
| | - Swakkhar Shatabda
- Department of Computer Science and Engineering, United International University, Plot 2, United City, Madani Avenue, Satarkul, Badda, Dhaka-1212, Bangladesh
| |
Collapse
|
103
|
Mohamed SK, Nounu A, Nováček V. Biological applications of knowledge graph embedding models. Brief Bioinform 2020; 22:1679-1693. [PMID: 32065227 DOI: 10.1093/bib/bbaa012] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/10/2020] [Accepted: 01/21/2020] [Indexed: 01/04/2023] Open
Abstract
Complex biological systems are traditionally modelled as graphs of interconnected biological entities. These graphs, i.e. biological knowledge graphs, are then processed using graph exploratory approaches to perform different types of analytical and predictive tasks. Despite the high predictive accuracy of these approaches, they have limited scalability due to their dependency on time-consuming path exploratory procedures. In recent years, owing to the rapid advances of computational technologies, new approaches for modelling graphs and mining them with high accuracy and scalability have emerged. These approaches, i.e. knowledge graph embedding (KGE) models, operate by learning low-rank vector representations of graph nodes and edges that preserve the graph's inherent structure. These approaches were used to analyse knowledge graphs from different domains where they showed superior performance and accuracy compared to previous graph exploratory approaches. In this work, we study this class of models in the context of biological knowledge graphs and their different applications. We then show how KGE models can be a natural fit for representing complex biological knowledge modelled as graphs. We also discuss their predictive and analytical capabilities in different biology applications. In this regard, we present two example case studies that demonstrate the capabilities of KGE models: prediction of drug-target interactions and polypharmacy side effects. Finally, we analyse different practical considerations for KGEs, and we discuss possible opportunities and challenges related to adopting them for modelling biological systems.
Collapse
Affiliation(s)
| | - Aayah Nounu
- Insight Centre for Data Analytics, NUI Galway, Galway, Ireland
| | - Vít Nováček
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
104
|
Luo H, Li M, Yang M, Wu FX, Li Y, Wang J. Biomedical data and computational models for drug repositioning: a comprehensive review. Brief Bioinform 2020; 22:1604-1619. [PMID: 32043521 DOI: 10.1093/bib/bbz176] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/07/2019] [Accepted: 12/26/2019] [Indexed: 12/16/2022] Open
Abstract
Drug repositioning can drastically decrease the cost and duration taken by traditional drug research and development while avoiding the occurrence of unforeseen adverse events. With the rapid advancement of high-throughput technologies and the explosion of various biological data and medical data, computational drug repositioning methods have been appealing and powerful techniques to systematically identify potential drug-target interactions and drug-disease interactions. In this review, we first summarize the available biomedical data and public databases related to drugs, diseases and targets. Then, we discuss existing drug repositioning approaches and group them based on their underlying computational models consisting of classical machine learning, network propagation, matrix factorization and completion, and deep learning based models. We also comprehensively analyze common standard data sets and evaluation metrics used in drug repositioning, and give a brief comparison of various prediction methods on the gold standard data sets. Finally, we conclude our review with a brief discussion on challenges in computational drug repositioning, which includes the problem of reducing the noise and incompleteness of biomedical data, the ensemble of various computation drug repositioning methods, the importance of designing reliable negative samples selection methods, new techniques dealing with the data sparseness problem, the construction of large-scale and comprehensive benchmark data sets and the analysis and explanation of the underlying mechanisms of predicted interactions.
Collapse
Affiliation(s)
- Huimin Luo
- School of Computer Science and Engineering at Central South University
| | - Min Li
- School of Computer Science and Engineering at Central South University
| | - Mengyun Yang
- School of Computer Science and Engineering at Central South University
| | - Fang-Xiang Wu
- College of Engineering and the Department of Computer Science at University of Saskatchewan, Saskatoon, Canada
| | - Yaohang Li
- Department of Computer Science at Old Dominion University, Norfolk, USA
| | - Jianxin Wang
- School of Computer Science and Engineering at Central South University
| |
Collapse
|
105
|
Pliakos K, Vens C. Drug-target interaction prediction with tree-ensemble learning and output space reconstruction. BMC Bioinformatics 2020; 21:49. [PMID: 32033537 PMCID: PMC7006075 DOI: 10.1186/s12859-020-3379-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 01/21/2020] [Indexed: 12/21/2022] Open
Abstract
Background Computational prediction of drug-target interactions (DTI) is vital for drug discovery. The experimental identification of interactions between drugs and target proteins is very onerous. Modern technologies have mitigated the problem, leveraging the development of new drugs. However, drug development remains extremely expensive and time consuming. Therefore, in silico DTI predictions based on machine learning can alleviate the burdensome task of drug development. Many machine learning approaches have been proposed over the years for DTI prediction. Nevertheless, prediction accuracy and efficiency are persisting problems that still need to be tackled. Here, we propose a new learning method which addresses DTI prediction as a multi-output prediction task by learning ensembles of multi-output bi-clustering trees (eBICT) on reconstructed networks. In our setting, the nodes of a DTI network (drugs and proteins) are represented by features (background information). The interactions between the nodes of a DTI network are modeled as an interaction matrix and compose the output space in our problem. The proposed approach integrates background information from both drug and target protein spaces into the same global network framework. Results We performed an empirical evaluation, comparing the proposed approach to state of the art DTI prediction methods and demonstrated the effectiveness of the proposed approach in different prediction settings. For evaluation purposes, we used several benchmark datasets that represent drug-protein networks. We show that output space reconstruction can boost the predictive performance of tree-ensemble learning methods, yielding more accurate DTI predictions. Conclusions We proposed a new DTI prediction method where bi-clustering trees are built on reconstructed networks. Building tree-ensemble learning models with output space reconstruction leads to superior prediction results, while preserving the advantages of tree-ensembles, such as scalability, interpretability and inductive setting.
Collapse
Affiliation(s)
- Konstantinos Pliakos
- KU Leuven, Campus KULAK, Faculty of Medicine, Kortrijk, Belgium. .,ITEC, imec research group at KU Leuven, Kortrijk, Belgium.
| | - Celine Vens
- KU Leuven, Campus KULAK, Faculty of Medicine, Kortrijk, Belgium.,ITEC, imec research group at KU Leuven, Kortrijk, Belgium
| |
Collapse
|
106
|
Wang H, Wang J, Dong C, Lian Y, Liu D, Yan Z. A Novel Approach for Drug-Target Interactions Prediction Based on Multimodal Deep Autoencoder. Front Pharmacol 2020; 10:1592. [PMID: 32047432 PMCID: PMC6997437 DOI: 10.3389/fphar.2019.01592] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 12/09/2019] [Indexed: 01/09/2023] Open
Abstract
Drug targets are biomacromolecules or biomolecular structures that bind to specific drugs and produce therapeutic effects. Therefore, the prediction of drug-target interactions (DTIs) is important for disease therapy. Incorporating multiple similarity measures for drugs and targets is of essence for improving the accuracy of prediction of DTIs. However, existing studies with multiple similarity measures ignored the global structure information of similarity measures, and required manual extraction features of drug-target pairs, ignoring the non-linear relationship among features. In this paper, we proposed a novel approach MDADTI for DTIs prediction based on MDA. MDADTI applied random walk with restart method and positive pointwise mutual information to calculate the topological similarity matrices of drugs and targets, capturing the global structure information of similarity measures. Then, MDADTI applied multimodal deep autoencoder to fuse multiple topological similarity matrices of drugs and targets, automatically learned the low-dimensional features of drugs and targets, and applied deep neural network to predict DTIs. The results of 5-repeats of 10-fold cross-validation under three different cross-validation settings indicated that MDADTI is superior to the other four baseline methods. In addition, we validated the predictions of the MDADTI in six drug-target interactions reference databases, and the results showed that MDADTI can effectively identify unknown DTIs.
Collapse
Affiliation(s)
- Huiqing Wang
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Jingjing Wang
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Chunlin Dong
- Dryland Agriculture Research Center, Shanxi Academy of Agricultural Sciences, Taiyuan, China
| | - Yuanyuan Lian
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Dan Liu
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Zhiliang Yan
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| |
Collapse
|
107
|
Bagherian M, Sabeti E, Wang K, Sartor MA, Nikolovska-Coleska Z, Najarian K. Machine learning approaches and databases for prediction of drug-target interaction: a survey paper. Brief Bioinform 2020; 22:247-269. [PMID: 31950972 PMCID: PMC7820849 DOI: 10.1093/bib/bbz157] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/01/2019] [Accepted: 11/07/2019] [Indexed: 12/12/2022] Open
Abstract
The task of predicting the interactions between drugs and targets plays a key role in the process of drug discovery. There is a need to develop novel and efficient prediction approaches in order to avoid costly and laborious yet not-always-deterministic experiments to determine drug–target interactions (DTIs) by experiments alone. These approaches should be capable of identifying the potential DTIs in a timely manner. In this article, we describe the data required for the task of DTI prediction followed by a comprehensive catalog consisting of machine learning methods and databases, which have been proposed and utilized to predict DTIs. The advantages and disadvantages of each set of methods are also briefly discussed. Lastly, the challenges one may face in prediction of DTI using machine learning approaches are highlighted and we conclude by shedding some lights on important future research directions.
Collapse
Affiliation(s)
- Maryam Bagherian
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Elyas Sabeti
- Michigan Institute for Data Science, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kai Wang
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Maureen A Sartor
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Kayvan Najarian
- Department of Electrical Engineering and Computer Science, College of Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
108
|
ISCMF: Integrated similarity-constrained matrix factorization for drug–drug interaction prediction. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s13721-019-0215-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
109
|
Zong N, Wong RSN, Yu Y, Wen A, Huang M, Li N. Drug-target prediction utilizing heterogeneous bio-linked network embeddings. Brief Bioinform 2019; 22:568-580. [PMID: 31885036 DOI: 10.1093/bib/bbz147] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/11/2019] [Accepted: 10/29/2019] [Indexed: 11/12/2022] Open
Abstract
To enable modularization for network-based prediction, we conducted a review of known methods conducting the various subtasks corresponding to the creation of a drug-target prediction framework and associated benchmarking to determine the highest-performing approaches. Accordingly, our contributions are as follows: (i) from a network perspective, we benchmarked the association-mining performance of 32 distinct subnetwork permutations, arranging based on a comprehensive heterogeneous biomedical network derived from 12 repositories; (ii) from a methodological perspective, we identified the best prediction strategy based on a review of combinations of the components with off-the-shelf classification, inference methods and graph embedding methods. Our benchmarking strategy consisted of two series of experiments, totaling six distinct tasks from the two perspectives, to determine the best prediction. We demonstrated that the proposed method outperformed the existing network-based methods as well as how combinatorial networks and methodologies can influence the prediction. In addition, we conducted disease-specific prediction tasks for 20 distinct diseases and showed the reliability of the strategy in predicting 75 novel drug-target associations as shown by a validation utilizing DrugBank 5.1.0. In particular, we revealed a connection of the network topology with the biological explanations for predicting the diseases, 'Asthma' 'Hypertension', and 'Dementia'. The results of our benchmarking produced knowledge on a network-based prediction framework with the modularization of the feature selection and association prediction, which can be easily adapted and extended to other feature sources or machine learning algorithms as well as a performed baseline to comprehensively evaluate the utility of incorporating varying data sources.
Collapse
Affiliation(s)
- Nansu Zong
- Department of Health Sciences Research, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| | - Rachael Sze Nga Wong
- Department of Bioengineering, UC San Diego, 9500 Gilman Drive, San Diego, CA 92093-0412, USA
| | - Yue Yu
- Department of Health Sciences Research, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| | - Andrew Wen
- Department of Health Sciences Research, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| | - Ming Huang
- Department of Health Sciences Research, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| | - Ning Li
- Scripps Research Institute, 10550 North Torrey Pines Road, San Diego, CA, 92037, USA
| |
Collapse
|
110
|
Chu Y, Kaushik AC, Wang X, Wang W, Zhang Y, Shan X, Salahub DR, Xiong Y, Wei DQ. DTI-CDF: a cascade deep forest model towards the prediction of drug-target interactions based on hybrid features. Brief Bioinform 2019; 22:451-462. [PMID: 31885041 DOI: 10.1093/bib/bbz152] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 12/18/2022] Open
Abstract
Drug-target interactions (DTIs) play a crucial role in target-based drug discovery and development. Computational prediction of DTIs can effectively complement experimental wet-lab techniques for the identification of DTIs, which are typically time- and resource-consuming. However, the performances of the current DTI prediction approaches suffer from a problem of low precision and high false-positive rate. In this study, we aim to develop a novel DTI prediction method for improving the prediction performance based on a cascade deep forest (CDF) model, named DTI-CDF, with multiple similarity-based features between drugs and the similarity-based features between target proteins extracted from the heterogeneous graph, which contains known DTIs. In the experiments, we built five replicates of 10-fold cross-validation under three different experimental settings of data sets, namely, corresponding DTI values of certain drugs (SD), targets (ST), or drug-target pairs (SP) in the training sets are missed but existed in the test sets. The experimental results demonstrate that our proposed approach DTI-CDF achieves a significantly higher performance than that of the traditional ensemble learning-based methods such as random forest and XGBoost, deep neural network, and the state-of-the-art methods such as DDR. Furthermore, there are 1352 newly predicted DTIs which are proved to be correct by KEGG and DrugBank databases. The data sets and source code are freely available at https://github.com//a96123155/DTI-CDF.
Collapse
Affiliation(s)
- Yanyi Chu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University
| | | | - Xiangeng Wang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University
| | - Wei Wang
- Mathematical Sciences, Shanghai Jiao Tong University
| | - Yufang Zhang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University
| | | | | | - Yi Xiong
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University
| | - Dong-Qing Wei
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University
| |
Collapse
|
111
|
Pliakos K, Vens C. Network inference with ensembles of bi-clustering trees. BMC Bioinformatics 2019; 20:525. [PMID: 31660848 PMCID: PMC6819564 DOI: 10.1186/s12859-019-3104-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 09/20/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Network inference is crucial for biomedicine and systems biology. Biological entities and their associations are often modeled as interaction networks. Examples include drug protein interaction or gene regulatory networks. Studying and elucidating such networks can lead to the comprehension of complex biological processes. However, usually we have only partial knowledge of those networks and the experimental identification of all the existing associations between biological entities is very time consuming and particularly expensive. Many computational approaches have been proposed over the years for network inference, nonetheless, efficiency and accuracy are still persisting open problems. Here, we propose bi-clustering tree ensembles as a new machine learning method for network inference, extending the traditional tree-ensemble models to the global network setting. The proposed approach addresses the network inference problem as a multi-label classification task. More specifically, the nodes of a network (e.g., drugs or proteins in a drug-protein interaction network) are modelled as samples described by features (e.g., chemical structure similarities or protein sequence similarities). The labels in our setting represent the presence or absence of links connecting the nodes of the interaction network (e.g., drug-protein interactions in a drug-protein interaction network). RESULTS We extended traditional tree-ensemble methods, such as extremely randomized trees (ERT) and random forests (RF) to ensembles of bi-clustering trees, integrating background information from both node sets of a heterogeneous network into the same learning framework. We performed an empirical evaluation, comparing the proposed approach to currently used tree-ensemble based approaches as well as other approaches from the literature. We demonstrated the effectiveness of our approach in different interaction prediction (network inference) settings. For evaluation purposes, we used several benchmark datasets that represent drug-protein and gene regulatory networks. We also applied our proposed method to two versions of a chemical-protein association network extracted from the STITCH database, demonstrating the potential of our model in predicting non-reported interactions. CONCLUSIONS Bi-clustering trees outperform existing tree-based strategies as well as machine learning methods based on other algorithms. Since our approach is based on tree-ensembles it inherits the advantages of tree-ensemble learning, such as handling of missing values, scalability and interpretability.
Collapse
Affiliation(s)
- Konstantinos Pliakos
- KU Leuven, Campus KULAK, Department of Public Health and Primary Care, Faculty of Medicine, Kortrijk, Belgium. .,ITEC, imec research group at KU Leuven, Kortrijk, Belgium.
| | - Celine Vens
- KU Leuven, Campus KULAK, Department of Public Health and Primary Care, Faculty of Medicine, Kortrijk, Belgium.,ITEC, imec research group at KU Leuven, Kortrijk, Belgium
| |
Collapse
|
112
|
Rifaioglu AS, Atas H, Martin MJ, Cetin-Atalay R, Atalay V, Doğan T. Recent applications of deep learning and machine intelligence on in silico drug discovery: methods, tools and databases. Brief Bioinform 2019; 20:1878-1912. [PMID: 30084866 PMCID: PMC6917215 DOI: 10.1093/bib/bby061] [Citation(s) in RCA: 261] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/25/2018] [Indexed: 01/16/2023] Open
Abstract
The identification of interactions between drugs/compounds and their targets is crucial for the development of new drugs. In vitro screening experiments (i.e. bioassays) are frequently used for this purpose; however, experimental approaches are insufficient to explore novel drug-target interactions, mainly because of feasibility problems, as they are labour intensive, costly and time consuming. A computational field known as 'virtual screening' (VS) has emerged in the past decades to aid experimental drug discovery studies by statistically estimating unknown bio-interactions between compounds and biological targets. These methods use the physico-chemical and structural properties of compounds and/or target proteins along with the experimentally verified bio-interaction information to generate predictive models. Lately, sophisticated machine learning techniques are applied in VS to elevate the predictive performance. The objective of this study is to examine and discuss the recent applications of machine learning techniques in VS, including deep learning, which became highly popular after giving rise to epochal developments in the fields of computer vision and natural language processing. The past 3 years have witnessed an unprecedented amount of research studies considering the application of deep learning in biomedicine, including computational drug discovery. In this review, we first describe the main instruments of VS methods, including compound and protein features (i.e. representations and descriptors), frequently used libraries and toolkits for VS, bioactivity databases and gold-standard data sets for system training and benchmarking. We subsequently review recent VS studies with a strong emphasis on deep learning applications. Finally, we discuss the present state of the field, including the current challenges and suggest future directions. We believe that this survey will provide insight to the researchers working in the field of computational drug discovery in terms of comprehending and developing novel bio-prediction methods.
Collapse
Affiliation(s)
- Ahmet Sureyya Rifaioglu
- Department of Computer Engineering, Middle East Technical University, Ankara, Turkey
- Department of Computer Engineering, İskenderun Technical University, Hatay, Turkey
| | - Heval Atas
- Cancer System Biology Laboratory (CanSyL), Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
| | - Maria Jesus Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL–EBI), Cambridge, Hinxton, UK
| | - Rengul Cetin-Atalay
- Department of Computer Engineering, Middle East Technical University, Ankara, Turkey
| | - Volkan Atalay
- Department of Computer Engineering, Middle East Technical University, Ankara, Turkey
| | - Tunca Doğan
- Cancer System Biology Laboratory (CanSyL), Graduate School of Informatics, Middle East Technical University, Ankara, Turkey and European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL–EBI), Cambridge, Hinxton, UK
| |
Collapse
|
113
|
Drug-Drug Interaction Predicting by Neural Network Using Integrated Similarity. Sci Rep 2019; 9:13645. [PMID: 31541145 PMCID: PMC6754439 DOI: 10.1038/s41598-019-50121-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/06/2019] [Indexed: 01/04/2023] Open
Abstract
Drug-Drug Interaction (DDI) prediction is one of the most critical issues in drug development and health. Proposing appropriate computational methods for predicting unknown DDI with high precision is challenging. We proposed "NDD: Neural network-based method for drug-drug interaction prediction" for predicting unknown DDIs using various information about drugs. Multiple drug similarities based on drug substructure, target, side effect, off-label side effect, pathway, transporter, and indication data are calculated. At first, NDD uses a heuristic similarity selection process and then integrates the selected similarities with a nonlinear similarity fusion method to achieve high-level features. Afterward, it uses a neural network for interaction prediction. The similarity selection and similarity integration parts of NDD have been proposed in previous studies of other problems. Our novelty is to combine these parts with new neural network architecture and apply these approaches in the context of DDI prediction. We compared NDD with six machine learning classifiers and six state-of-the-art graph-based methods on three benchmark datasets. NDD achieved superior performance in cross-validation with AUPR ranging from 0.830 to 0.947, AUC from 0.954 to 0.994 and F-measure from 0.772 to 0.902. Moreover, cumulative evidence in case studies on numerous drug pairs, further confirm the ability of NDD to predict unknown DDIs. The evaluations corroborate that NDD is an efficient method for predicting unknown DDIs. The data and implementation of NDD are available at https://github.com/nrohani/NDD.
Collapse
|
114
|
Xuan P, Sun C, Zhang T, Ye Y, Shen T, Dong Y. Gradient Boosting Decision Tree-Based Method for Predicting Interactions Between Target Genes and Drugs. Front Genet 2019; 10:459. [PMID: 31214240 PMCID: PMC6555260 DOI: 10.3389/fgene.2019.00459] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/30/2019] [Indexed: 02/01/2023] Open
Abstract
Determining the target genes that interact with drugs—drug–target interactions—plays an important role in drug discovery. Identification of drug–target interactions through biological experiments is time consuming, laborious, and costly. Therefore, using computational approaches to predict candidate targets is a good way to reduce the cost of wet-lab experiments. However, the known interactions (positive samples) and the unknown interactions (negative samples) display a serious class imbalance, which has an adverse effect on the accuracy of the prediction results. To mitigate the impact of class imbalance and completely exploit the negative samples, we proposed a new method, named DTIGBDT, based on gradient boosting decision trees, for predicting candidate drug–target interactions. We constructed a drug–target heterogeneous network that contains the drug similarities based on the chemical structures of drugs, the target similarities based on target sequences, and the known drug–target interactions. The topological information of the network was captured by random walks to update the similarities between drugs or targets. The paths between drugs and targets could be divided into multiple categories, and the features of each category of paths were extracted. We constructed a prediction model based on gradient boosting decision trees. The model establishes multiple decision trees with the extracted features and obtains the interaction scores between drugs and targets. DTIGBDT is a method of ensemble learning, and it effectively reduces the impact of class imbalance. The experimental results indicate that DTIGBDT outperforms several state-of-the-art methods for drug–target interaction prediction. In addition, case studies on Quetiapine, Clozapine, Olanzapine, Aripiprazole, and Ziprasidone demonstrate the ability of DTIGBDT to discover potential drug–target interactions.
Collapse
Affiliation(s)
- Ping Xuan
- School of Computer Science and Technology, Heilongjiang University, Harbin, China
| | - Chang Sun
- School of Computer Science and Technology, Heilongjiang University, Harbin, China
| | - Tiangang Zhang
- School of Mathematical Science, Heilongjiang University, Harbin, China
| | - Yilin Ye
- School of Computer Science and Technology, Heilongjiang University, Harbin, China
| | - Tonghui Shen
- School of Computer Science and Technology, Heilongjiang University, Harbin, China
| | - Yihua Dong
- School of Computer Science and Technology, Heilongjiang University, Harbin, China
| |
Collapse
|
115
|
Alberga D, Trisciuzzi D, Montaruli M, Leonetti F, Mangiatordi GF, Nicolotti O. A New Approach for Drug Target and Bioactivity Prediction: The Multifingerprint Similarity Search Algorithm (MuSSeL). J Chem Inf Model 2018; 59:586-596. [PMID: 30485097 DOI: 10.1021/acs.jcim.8b00698] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We present MuSSeL, a multifingerprint similarity search algorithm, able to predict putative drug targets for a given query small molecule as well as to return a quantitative assessment of its bioactivity in terms of Ki or IC50 values. Predictions are automatically made exploiting a large collection of high quality experimental bioactivity data available from ChEMBL (version 22.1) combining, in a consensus-like approach, predictions resulting from a similarity search performed using 13 different fingerprint definitions. Importantly, the herein proposed algorithm is also effective in detecting and handling activity cliffs. A calibration set including small molecules present in the last updated version of ChEMBL (version 23) was employed to properly tune the algorithm parameters. Three randomly built external sets were instead challenged for model performances. The potential use of MuSSeL was also challenged by a prospective exercise for the prediction of five bioactive compounds taken from articles published in the Journal of Medicinal Chemistry just few months ago. The paper emphasizes the importance of implementing multifingerprint consensus strategies to increase the confidence in prediction of similarity search algorithms and provides a fast and easy-to-run tool for drug target and bioactivity prediction.
Collapse
Affiliation(s)
- Domenico Alberga
- Dipartimento di Farmacia-Scienze del Farmaco , Università degli Studi di Bari "Aldo Moro" , Via E. Orabona, 4 , I-70126 Bari , Italy
| | - Daniela Trisciuzzi
- Dipartimento di Farmacia-Scienze del Farmaco , Università degli Studi di Bari "Aldo Moro" , Via E. Orabona, 4 , I-70126 Bari , Italy
| | - Michele Montaruli
- Dipartimento di Farmacia-Scienze del Farmaco , Università degli Studi di Bari "Aldo Moro" , Via E. Orabona, 4 , I-70126 Bari , Italy
| | - Francesco Leonetti
- Dipartimento di Farmacia-Scienze del Farmaco , Università degli Studi di Bari "Aldo Moro" , Via E. Orabona, 4 , I-70126 Bari , Italy
| | - Giuseppe Felice Mangiatordi
- Dipartimento di Farmacia-Scienze del Farmaco , Università degli Studi di Bari "Aldo Moro" , Via E. Orabona, 4 , I-70126 Bari , Italy
| | - Orazio Nicolotti
- Dipartimento di Farmacia-Scienze del Farmaco , Università degli Studi di Bari "Aldo Moro" , Via E. Orabona, 4 , I-70126 Bari , Italy
| |
Collapse
|
116
|
Shi H, Liu S, Chen J, Li X, Ma Q, Yu B. Predicting drug-target interactions using Lasso with random forest based on evolutionary information and chemical structure. Genomics 2018; 111:1839-1852. [PMID: 30550813 DOI: 10.1016/j.ygeno.2018.12.007] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/06/2018] [Accepted: 12/07/2018] [Indexed: 01/01/2023]
Abstract
The identification of drug-target interactions has great significance for pharmaceutical scientific research. Since traditional experimental methods identifying drug-target interactions is costly and time-consuming, the use of machine learning methods to predict potential drug-target interactions has attracted widespread attention. This paper presents a novel drug-target interactions prediction method called LRF-DTIs. Firstly, the pseudo-position specific scoring matrix (PsePSSM) and FP2 molecular fingerprinting were used to extract the features of drug-target. Secondly, using Lasso to reduce the dimension of the extracted feature information and then the Synthetic Minority Oversampling Technique (SMOTE) method was used to deal with unbalanced data. Finally, the processed feature vectors were input into a random forest (RF) classifier to predict drug-target interactions. Through 10 trials of 5-fold cross-validation, the overall prediction accuracies on the enzyme, ion channel (IC), G-protein-coupled receptor (GPCR) and nuclear receptor (NR) datasets reached 98.09%, 97.32%, 95.69%, and 94.88%, respectively, and compared with other prediction methods. In addition, we have tested and verified that our method not only could be applied to predict the new interactions but also could obtain a satisfactory result on the new dataset. All the experimental results indicate that our method can significantly improve the prediction accuracy of drug-target interactions and play a vital role in the new drug research and target protein development. The source code and all datasets are available at https://github.com/QUST-AIBBDRC/LRF-DTIs/ for academic use.
Collapse
Affiliation(s)
- Han Shi
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, China; Artificial Intelligence and Biomedical Big Data Research Center, Qingdao University of Science and Technology, Qingdao 266061, China; Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Simin Liu
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, China; Artificial Intelligence and Biomedical Big Data Research Center, Qingdao University of Science and Technology, Qingdao 266061, China; Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Junqi Chen
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, China; Artificial Intelligence and Biomedical Big Data Research Center, Qingdao University of Science and Technology, Qingdao 266061, China; Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xuan Li
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qin Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Bin Yu
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, China; Artificial Intelligence and Biomedical Big Data Research Center, Qingdao University of Science and Technology, Qingdao 266061, China; School of Life Sciences, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
117
|
Hao M, Bryant SH, Wang Y. A new chemoinformatics approach with improved strategies for effective predictions of potential drugs. J Cheminform 2018; 10:50. [PMID: 30311095 PMCID: PMC6755712 DOI: 10.1186/s13321-018-0303-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 10/02/2018] [Indexed: 12/24/2022] Open
Abstract
Background Fast and accurate identification of potential drug candidates against therapeutic targets (i.e., drug–target interactions, DTIs) is a fundamental step in the early drug discovery process. However, experimental determination of DTIs is time-consuming and costly, especially for testing the associations between the entire chemical and genomic spaces. Therefore, computationally efficient algorithms with accurate predictions are required to achieve such a challenging task. In this work, we design a new chemoinformatics approach derived from neighbor-based collaborative filtering (NBCF) to infer potential drug candidates for targets of interest. One of the fundamental steps of NBCF in the application of DTI predictions is to accurately measure the similarity between drugs solely based on the DTI profiles of known knowledge. However, commonly used similarity calculation methods such as COSINE may be noise-prone due to the extremely sparse property of the DTI bipartite network, which decreases the model performance of NBCF. We herein propose three strategies to remedy such a dilemma, which include: (1) adopting a positive pointwise mutual information (PPMI)-based similarity metric, which is noise-immune to some extent; (2) performing low-rank approximation of the original prediction scores; (3) incorporating auxiliary (complementary) information to produce the final predictions. Results We test the proposed methods in three benchmark datasets and the results indicate that our strategies are helpful to improve the NBCF performance for DTI predictions. Comparing to the prior algorithm, our methods exhibit better results assessed by a recall-based evaluation metric. Conclusions A new chemoinformatics approach with improved strategies was successfully developed to predict potential DTIs. Among them, the model based on the sparsity resistant PPMI similarity metric exhibits the best performance, which may be helpful to researchers for identifying potential drugs against therapeutic targets of interest, and can also be applied to related research such as identifying candidate disease genes.
Collapse
Affiliation(s)
- Ming Hao
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Stephen H Bryant
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Yanli Wang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
| |
Collapse
|
118
|
Kwok MK, Lin SL, Schooling CM. Re-thinking Alzheimer's disease therapeutic targets using gene-based tests. EBioMedicine 2018; 37:461-470. [PMID: 30314892 PMCID: PMC6446018 DOI: 10.1016/j.ebiom.2018.10.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/11/2018] [Accepted: 10/01/2018] [Indexed: 12/12/2022] Open
Abstract
Background Alzheimer's disease (AD) is a devastating condition with no known effective drug treatments. Existing drugs only alleviate symptoms. Given repeated expensive drug failures, we assessed systematically whether approved and investigational AD drugs are targeting products of genes strongly associated with AD and whether these genes are targeted by existing drugs for other indications which could be re-purposed. Methods We identified genes strongly associated with late-onset AD from the loci of genetic variants associated with AD at genome-wide-significance and from a gene-based test applied to the most extensively genotyped late-onset AD case (n = 17,008)-control (n = 37,154) study, the International Genomics of Alzheimer's Project. We used three gene-to-drug cross-references, Kyoto Encyclopedia of Genes and Genomes, Drugbank and Drug Repurposing Hub, to identify genetically validated targets of AD drugs and any existing drugs or nutraceuticals targeting products of the genes strongly associated with late-onset AD. Findings A total of 67 autosomal genes (forming 9 gene clusters) were identified as strongly associated with late-onset AD, 28 from the loci of single genetic variants, 51 from the gene-based test and 12 by both methods. Existing approved or investigational AD drugs did not target products of any of these 67 genes. Drugs for other indications targeted 11 of these genes, including immunosuppressive disease-modifying anti-rheumatic drugs targeting PTK2B gene products. Interpretation Approved and investigational AD drugs are not targeting products of genes strongly associated with late-onset AD. However, other drugs targeting products of these genes exist and could perhaps be re-purposing to combat late-onset AD after further scrutiny.
Collapse
Affiliation(s)
- Man Ki Kwok
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 1/F, Patrick Manson Building (North Wing), 7 Sassoon Road, Hong Kong, China
| | - Shi Lin Lin
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 1/F, Patrick Manson Building (North Wing), 7 Sassoon Road, Hong Kong, China
| | - C Mary Schooling
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 1/F, Patrick Manson Building (North Wing), 7 Sassoon Road, Hong Kong, China; City University of New York, Graduate School of Public Health and Health Policy, New York, United States.
| |
Collapse
|
119
|
Prediction Methods of Herbal Compounds in Chinese Medicinal Herbs. Molecules 2018; 23:molecules23092303. [PMID: 30201875 PMCID: PMC6225236 DOI: 10.3390/molecules23092303] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 12/12/2022] Open
Abstract
Chinese herbal medicine has recently gained worldwide attention. The curative mechanism of Chinese herbal medicine is compared with that of western medicine at the molecular level. The treatment mechanism of most Chinese herbal medicines is still not clear. How do we integrate Chinese herbal medicine compounds with modern medicine? Chinese herbal medicine drug-like prediction method is particularly important. A growing number of Chinese herbal source compounds are now widely used as drug-like compound candidates. An important way for pharmaceutical companies to develop drugs is to discover potentially active compounds from related herbs in Chinese herbs. The methods for predicting the drug-like properties of Chinese herbal compounds include the virtual screening method, pharmacophore model method and machine learning method. In this paper, we focus on the prediction methods for the medicinal properties of Chinese herbal medicines. We analyze the advantages and disadvantages of the above three methods, and then introduce the specific steps of the virtual screening method. Finally, we present the prospect of the joint application of various methods.
Collapse
|
120
|
Seal A, Wild DJ. Netpredictor: R and Shiny package to perform drug-target network analysis and prediction of missing links. BMC Bioinformatics 2018; 19:265. [PMID: 30012095 PMCID: PMC6047136 DOI: 10.1186/s12859-018-2254-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 06/18/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Netpredictor is an R package for prediction of missing links in any given unipartite or bipartite network. The package provides utilities to compute missing links in a bipartite and well as unipartite networks using Random Walk with Restart and Network inference algorithm and a combination of both. The package also allows computation of Bipartite network properties, visualization of communities for two different sets of nodes, and calculation of significant interactions between two sets of nodes using permutation based testing. The application can also be used to search for top-K shortest paths between interactome and use enrichment analysis for disease, pathway and ontology. The R standalone package (including detailed introductory vignettes) and associated R Shiny web application is available under the GPL-2 Open Source license and is freely available to download. RESULTS We compared different algorithms performance in different small datasets and found random walk supersedes rest of the algorithms. The package is developed to perform network based prediction of unipartite and bipartite networks and use the results to understand the functionality of proteins in an interactome using enrichment analysis. CONCLUSION The rapid application development envrionment like shiny, helps non programmers to develop fast rich visualization apps and we beleieve it would continue to grow in future with further enhancements. We plan to update our algorithms in the package in near future and help scientist to analyse data in a much streamlined fashion.
Collapse
Affiliation(s)
- Abhik Seal
- School of Informatics and Computing, Indiana University Bloomington, Informatics West, Bloomington, 47408, Indiana, USA
| | - David J Wild
- School of Informatics and Computing, Indiana University Bloomington, Informatics West, Bloomington, 47408, Indiana, USA.
| |
Collapse
|
121
|
Modeling association detection in order to discover compounds to inhibit oral cancer. J Biomed Inform 2018; 84:159-163. [PMID: 30004020 DOI: 10.1016/j.jbi.2018.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/02/2018] [Accepted: 07/07/2018] [Indexed: 11/24/2022]
Abstract
In the past, algorithms exploiting varying semantics in interactions between biological objects such as genes and diseases have been used in bioinformatics to uncover latent relationships within biological datasets. In this paper, we consider the algorithm Medusa in parallel with binary classification in order to find potential compounds to inhibit oral cancer. Oral cancer affects the mouth and pharynx and has a high mortality rate due to its late discovery. Current methods of oral cancer treatment, such as chemoradiation and surgery, fail to provide better chances for survival, warranting an alternative approach. By running Medusa on a data fusion graph consisting of biological objects, we incorporate binary classification to model the algorithm's association detection to discover compounds with the potential to mitigate the effects of oral cancer.
Collapse
|
122
|
Olayan RS, Ashoor H, Bajic VB. DDR: efficient computational method to predict drug-target interactions using graph mining and machine learning approaches. Bioinformatics 2018; 34:3779. [PMID: 29917050 PMCID: PMC6198857 DOI: 10.1093/bioinformatics/bty417] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|