101
|
Kan SH, Le SQ, Bui QD, Benedict B, Cushman J, Sands MS, Dickson PI. Behavioral deficits and cholinergic pathway abnormalities in male Sanfilippo B mice. Behav Brain Res 2016; 312:265-71. [PMID: 27340089 DOI: 10.1016/j.bbr.2016.06.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/12/2016] [Accepted: 06/13/2016] [Indexed: 01/01/2023]
Abstract
Sanfilippo B syndrome is a progressive neurological disorder caused by inability to catabolize heparan sulfate glycosaminoglycans. We studied neurobehavior in male Sanfilippo B mice and heterozygous littermate controls from 16 to 20 weeks of age. Affected mice showed reduced anxiety, with a decrease in the number of stretch-attend postures during the elevated plus maze (p=0.001) and an increased tendency to linger in the center of an open field (p=0.032). Water maze testing showed impaired spatial learning, with reduced preference for the target quadrant (p=0.01). In radial arm maze testing, affected mice failed to achieve above-chance performance in a win-shift working memory task (t-test relative to 50% chance: p=0.289), relative to controls (p=0.037). We found a 12.4% reduction in mean acetylcholinesterase activity (p<0.001) and no difference in choline acetyltransferase activity or acetylcholine in whole brain of affected male animals compared to controls. Cholinergic pathways are affected in adult-onset dementias, including Alzheimer disease. Our results suggest that male Sanfilippo B mice display neurobehavioral deficits at a relatively early age, and that as in adult dementias, they may display deficits in cholinergic pathways.
Collapse
Affiliation(s)
- Shih-Hsin Kan
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Steven Q Le
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Quang D Bui
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Braeden Benedict
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jesse Cushman
- Department of Psychology, Behavioral Testing Core, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mark S Sands
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Patricia I Dickson
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA.
| |
Collapse
|
102
|
Jha MK, Lee IK, Suk K. Metabolic reprogramming by the pyruvate dehydrogenase kinase-lactic acid axis: Linking metabolism and diverse neuropathophysiologies. Neurosci Biobehav Rev 2016; 68:1-19. [PMID: 27179453 DOI: 10.1016/j.neubiorev.2016.05.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/11/2016] [Accepted: 05/09/2016] [Indexed: 12/12/2022]
Abstract
Emerging evidence indicates that there is a complex interplay between metabolism and chronic disorders in the nervous system. In particular, the pyruvate dehydrogenase (PDH) kinase (PDK)-lactic acid axis is a critical link that connects metabolic reprogramming and the pathophysiology of neurological disorders. PDKs, via regulation of PDH complex activity, orchestrate the conversion of pyruvate either aerobically to acetyl-CoA, or anaerobically to lactate. The kinases are also involved in neurometabolic dysregulation under pathological conditions. Lactate, an energy substrate for neurons, is also a recently acknowledged signaling molecule involved in neuronal plasticity, neuron-glia interactions, neuroimmune communication, and nociception. More recently, the PDK-lactic acid axis has been recognized to modulate neuronal and glial phenotypes and activities, contributing to the pathophysiologies of diverse neurological disorders. This review covers the recent advances that implicate the PDK-lactic acid axis as a novel linker of metabolism and diverse neuropathophysiologies. We finally explore the possibilities of employing the PDK-lactic acid axis and its downstream mediators as putative future therapeutic strategies aimed at prevention or treatment of neurological disorders.
Collapse
Affiliation(s)
- Mithilesh Kumar Jha
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 PLUS KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea; Department of Neurology, Division of Neuromuscular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - In-Kyu Lee
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 PLUS KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea.
| |
Collapse
|
103
|
Immune-Mediated Inflammation May Contribute to the Pathogenesis of Cardiovascular Disease in Mucopolysaccharidosis Type I. PLoS One 2016; 11:e0150850. [PMID: 26986213 PMCID: PMC4795702 DOI: 10.1371/journal.pone.0150850] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 02/19/2016] [Indexed: 01/12/2023] Open
Abstract
Background Cardiovascular disease, a progressive manifestation of α-L-iduronidase deficiency or mucopolysaccharidosis type I, continues in patients both untreated and treated with hematopoietic stem cell transplantation or intravenous enzyme replacement. Few studies have examined the effects of α-L-iduronidase deficiency and subsequent glycosaminoglycan storage upon arterial gene expression to understand the pathogenesis of cardiovascular disease. Methods Gene expression in carotid artery, ascending, and descending aortas from four non-tolerized, non-enzyme treated 19 month-old mucopolysaccharidosis type I dogs was compared with expression in corresponding vascular segments from three normal, age-matched dogs. Data were analyzed using R and whole genome network correlation analysis, a bias-free method of categorizing expression level and significance into discrete modules. Genes were further categorized based on module-trait relationships. Expression of clusterin, a protein implicated in other etiologies of cardiovascular disease, was assessed in canine and murine mucopolysaccharidosis type I aortas via Western blot and in situ immunohistochemistry. Results Gene families with more than two-fold, significant increased expression involved lysosomal function, proteasome function, and immune regulation. Significantly downregulated genes were related to cellular adhesion, cytoskeletal elements, and calcium regulation. Clusterin gene overexpression (9-fold) and protein overexpression (1.3 to 1.62-fold) was confirmed and located specifically in arterial plaques of mucopolysaccharidosis-affected dogs and mice. Conclusions Overexpression of lysosomal and proteasomal-related genes are expected responses to cellular stress induced by lysosomal storage in mucopolysaccharidosis type I. Upregulation of immunity-related genes implicates the potential involvement of glycosaminoglycan-induced inflammation in the pathogenesis of mucopolysaccharidosis-related arterial disease, for which clusterin represents a potential biomarker.
Collapse
|
104
|
Salazar DA, Rodríguez-López A, Herreño A, Barbosa H, Herrera J, Ardila A, Barreto GE, González J, Alméciga-Díaz CJ. Systems biology study of mucopolysaccharidosis using a human metabolic reconstruction network. Mol Genet Metab 2016; 117:129-39. [PMID: 26276570 DOI: 10.1016/j.ymgme.2015.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 07/30/2015] [Accepted: 08/01/2015] [Indexed: 12/11/2022]
Abstract
Mucopolysaccharidosis (MPS) is a group of lysosomal storage diseases (LSD), characterized by the deficiency of a lysosomal enzyme responsible for the degradation of glycosaminoglycans (GAG). This deficiency leads to the lysosomal accumulation of partially degraded GAG. Nevertheless, deficiency of a single lysosomal enzyme has been associated with impairment in other cell mechanism, such as apoptosis and redox balance. Although GAG analysis represents the main biomarker for MPS diagnosis, it has several limitations that can lead to a misdiagnosis, whereby the identification of new biomarkers represents an important issue for MPS. In this study, we used a system biology approach, through the use of a genome-scale human metabolic reconstruction to understand the effect of metabolism alterations in cell homeostasis and to identify potential new biomarkers in MPS. In-silico MPS models were generated by silencing of MPS-related enzymes, and were analyzed through a flux balance and variability analysis. We found that MPS models used approximately 2286 reactions to satisfy the objective function. Impaired reactions were mainly involved in cellular respiration, mitochondrial process, amino acid and lipid metabolism, and ion exchange. Metabolic changes were similar for MPS I and II, and MPS III A to C; while the remaining MPS showed unique metabolic profiles. Eight and thirteen potential high-confidence biomarkers were identified for MPS IVB and VII, respectively, which were associated with the secondary pathologic process of LSD. In vivo evaluation of predicted intermediate confidence biomarkers (β-hexosaminidase and β-glucoronidase) for MPS IVA and VI correlated with the in-silico prediction. These results show the potential of a computational human metabolic reconstruction to understand the molecular mechanisms this group of diseases, which can be used to identify new biomarkers for MPS.
Collapse
Affiliation(s)
- Diego A Salazar
- Grupo Bioquímica Computacional y Bioinformática, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Alexander Rodríguez-López
- Institute for the Study of Inborn Errors of Metabolism, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia; Chemistry Department, School of Science, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Angélica Herreño
- Institute for the Study of Inborn Errors of Metabolism, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Hector Barbosa
- Institute for the Study of Inborn Errors of Metabolism, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Juliana Herrera
- Institute for the Study of Inborn Errors of Metabolism, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Andrea Ardila
- Institute for the Study of Inborn Errors of Metabolism, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia; Hospital Universitario San Ignacio, Bogotá D.C., Colombia
| | - George E Barreto
- Grupo Bioquímica Computacional y Bioinformática, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Janneth González
- Grupo Bioquímica Computacional y Bioinformática, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia.
| | - Carlos J Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia.
| |
Collapse
|
105
|
Fedele AO. Sanfilippo syndrome: causes, consequences, and treatments. APPLICATION OF CLINICAL GENETICS 2015; 8:269-81. [PMID: 26648750 PMCID: PMC4664539 DOI: 10.2147/tacg.s57672] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Sanfilippo syndrome, or mucopolysaccharidosis (MPS) type III, refers to one of five autosomal recessive, neurodegenerative lysosomal storage disorders (MPS IIIA to MPS IIIE) whose symptoms are caused by the deficiency of enzymes involved exclusively in heparan sulfate degradation. The primary characteristic of MPS III is the degeneration of the central nervous system, resulting in mental retardation and hyperactivity, typically commencing during childhood. The significance of the order of events leading from heparan sulfate accumulation through to downstream changes in the levels of biomolecules within the cell and ultimately the (predominantly neuropathological) clinical symptoms is not well understood. The genes whose deficiencies cause the MPS III subtypes have been identified, and their gene products, as well as a selection of disease-causing mutations, have been characterized to varying degrees with respect to both frequency and direct biochemical consequences. A number of genetic and biochemical diagnostic methods have been developed and adopted by diagnostic laboratories. However, there is no effective therapy available for any form of MPS III, with treatment currently limited to clinical management of neurological symptoms. The availability of animal models for all forms of MPS III, whether spontaneous or generated via gene targeting, has contributed to improved understanding of the MPS III subtypes, and has provided and will deliver invaluable tools to appraise emerging therapies. Indeed, clinical trials to evaluate intrathecally-delivered enzyme replacement therapy in MPS IIIA patients, and gene therapy for MPS IIIA and MPS IIIB patients are planned or underway.
Collapse
Affiliation(s)
- Anthony O Fedele
- Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| |
Collapse
|
106
|
Sato N, Morishita R. The roles of lipid and glucose metabolism in modulation of β-amyloid, tau, and neurodegeneration in the pathogenesis of Alzheimer disease. Front Aging Neurosci 2015; 7:199. [PMID: 26557086 PMCID: PMC4615808 DOI: 10.3389/fnagi.2015.00199] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 10/04/2015] [Indexed: 12/20/2022] Open
Abstract
Diabetes is a risk factor for Alzheimer disease (AD). Apolipoprotein E (ApoE) and several genes related to AD have recently been identified by genome-wide association studies (GWAS) as being closely linked to lipid metabolism. Lipid metabolism and glucose-energy metabolism are closely related. Here, we review the emerging evidence regarding the roles of lipid and glucose metabolism in the modulation of β-amyloid, tau, and neurodegeneration during the pathogenesis of AD. Disruption of homeostasis of lipid and glucose metabolism affects production and clearance of β-amyloid and tau phosphorylation, and induces neurodegeneration. A more integrated understanding of the interactions among lipid, glucose, and protein metabolism is required to elucidate the pathogenesis of AD and to develop next-generation therapeutic options.
Collapse
Affiliation(s)
- Naoyuki Sato
- Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka UniversitySuita, Japan
- Department of Geriatric Medicine, Graduate School of Medicine, Osaka UniversitySuita, Japan
| | - Ryuichi Morishita
- Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka UniversitySuita, Japan
| |
Collapse
|
107
|
Canals I, Soriano J, Orlandi JG, Torrent R, Richaud-Patin Y, Jiménez-Delgado S, Merlin S, Follenzi A, Consiglio A, Vilageliu L, Grinberg D, Raya A. Activity and High-Order Effective Connectivity Alterations in Sanfilippo C Patient-Specific Neuronal Networks. Stem Cell Reports 2015; 5:546-57. [PMID: 26411903 PMCID: PMC4625033 DOI: 10.1016/j.stemcr.2015.08.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 08/26/2015] [Accepted: 08/26/2015] [Indexed: 01/01/2023] Open
Abstract
Induced pluripotent stem cell (iPSC) technology has been successfully used to recapitulate phenotypic traits of several human diseases in vitro. Patient-specific iPSC-based disease models are also expected to reveal early functional phenotypes, although this remains to be proved. Here, we generated iPSC lines from two patients with Sanfilippo type C syndrome, a lysosomal storage disorder with inheritable progressive neurodegeneration. Mature neurons obtained from patient-specific iPSC lines recapitulated the main known phenotypes of the disease, not present in genetically corrected patient-specific iPSC-derived cultures. Moreover, neuronal networks organized in vitro from mature patient-derived neurons showed early defects in neuronal activity, network-wide degradation, and altered effective connectivity. Our findings establish the importance of iPSC-based technology to identify early functional phenotypes, which can in turn shed light on the pathological mechanisms occurring in Sanfilippo syndrome. This technology also has the potential to provide valuable readouts to screen compounds, which can prevent the onset of neurodegeneration. Fibroblasts from two Sanfilippo C patients were reprogrammed to obtain iPSCs iPSCs were successfully differentiated to neural cells that mimic the disease Networks of patients’ neurons show altered activity and connectivity Early functional phenotypes are prevented in gene-corrected patients’ neurons
Collapse
Affiliation(s)
- Isaac Canals
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, 28029 Madrid, Spain; Institut de Biomedicina de la Universitat de Barcelona, 08028 Barcelona, Spain
| | - Jordi Soriano
- Departament d'Estructura i Constituents de la Matèria, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Javier G Orlandi
- Departament d'Estructura i Constituents de la Matèria, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Roger Torrent
- Institut de Biomedicina de la Universitat de Barcelona, 08028 Barcelona, Spain
| | - Yvonne Richaud-Patin
- Centre de Medicina Regenerativa de Barcelona and Control of Stem Cell Potency Group, Institut de Bioenginyeria de Catalunya, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomaterials y Nanomedicina, 28029 Madrid, Spain
| | - Senda Jiménez-Delgado
- Centre de Medicina Regenerativa de Barcelona and Control of Stem Cell Potency Group, Institut de Bioenginyeria de Catalunya, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomaterials y Nanomedicina, 28029 Madrid, Spain
| | - Simone Merlin
- Health Sciences Department, Universita' del Piemonte Orientale, 28100 Novara, Italy
| | - Antonia Follenzi
- Health Sciences Department, Universita' del Piemonte Orientale, 28100 Novara, Italy
| | - Antonella Consiglio
- Institut de Biomedicina de la Universitat de Barcelona, 08028 Barcelona, Spain; Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Lluïsa Vilageliu
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, 28029 Madrid, Spain; Institut de Biomedicina de la Universitat de Barcelona, 08028 Barcelona, Spain
| | - Daniel Grinberg
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, 28029 Madrid, Spain; Institut de Biomedicina de la Universitat de Barcelona, 08028 Barcelona, Spain.
| | - Angel Raya
- Centre de Medicina Regenerativa de Barcelona and Control of Stem Cell Potency Group, Institut de Bioenginyeria de Catalunya, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomaterials y Nanomedicina, 28029 Madrid, Spain; Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain.
| |
Collapse
|
108
|
Lim JA, Kakhlon O, Li L, Myerowitz R, Raben N. Pompe disease: Shared and unshared features of lysosomal storage disorders. Rare Dis 2015; 3:e1068978. [PMID: 26619007 PMCID: PMC4620984 DOI: 10.1080/21675511.2015.1068978] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 06/25/2015] [Accepted: 06/29/2015] [Indexed: 01/29/2023] Open
Abstract
Pompe disease, an inherited deficiency of lysosomal acid α-glucosidase (GAA), is a severe metabolic myopathy with a wide range of clinical manifestations. It is the first recognized lysosomal storage disorder and the first neuromuscular disorder for which a therapy (enzyme replacement) has been approved. As GAA is the only enzyme that hydrolyses glycogen to glucose in the acidic environment of the lysosome, its deficiency leads to glycogen accumulation within and concomitant enlargement of this organelle. Since the introduction of the therapy, the overall understanding of the disease has progressed significantly, but the pathophysiology of muscle damage is still not fully understood. The emerging complex picture of the pathological cascade involves disturbance of calcium homeostasis, mitochondrial abnormalities, dysfunctional autophagy, accumulation of toxic undegradable materials, and accelerated production of lipofuscin deposits that are unrelated to aging. The relationship of Pompe disease to other lysosomal storage disorders and potential therapeutic interventions for Pompe disease are discussed.
Collapse
Affiliation(s)
- Jeong-A Lim
- Laboratory of Muscle Stem Cells and Gene Regulation; National Institute of Arthritis and Musculoskeletal and Skin Diseases; National Institutes of Health ; Bethesda, MD USA
| | - Or Kakhlon
- Department of Neurology; Hadassah-Hebrew University Medical Center ; Ein Kerem, Jerusalem, Israel
| | - Lishu Li
- Laboratory of Muscle Stem Cells and Gene Regulation; National Institute of Arthritis and Musculoskeletal and Skin Diseases; National Institutes of Health ; Bethesda, MD USA
| | - Rachel Myerowitz
- Laboratory of Muscle Stem Cells and Gene Regulation; National Institute of Arthritis and Musculoskeletal and Skin Diseases; National Institutes of Health ; Bethesda, MD USA ; St. Mary's College of Maryland ; St. Mary's City, MD USA
| | - Nina Raben
- Laboratory of Muscle Stem Cells and Gene Regulation; National Institute of Arthritis and Musculoskeletal and Skin Diseases; National Institutes of Health ; Bethesda, MD USA
| |
Collapse
|
109
|
Pshezhetsky AV. Crosstalk between 2 organelles: Lysosomal storage of heparan sulfate causes mitochondrial defects and neuronal death in mucopolysaccharidosis III type C. Rare Dis 2015; 3:e1049793. [PMID: 26459666 PMCID: PMC4588229 DOI: 10.1080/21675511.2015.1049793] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/13/2015] [Accepted: 04/29/2015] [Indexed: 12/05/2022] Open
Abstract
More than 30% of all lysosomal diseases are mucopolysaccharidoses, disorders affecting the enzymes needed for the stepwise degradation of glycosaminoglycans (mucopolysaccharides). Mucopolysaccharidosis type IIIC (MPS IIIC) is a severe neurologic disease caused by genetic deficiency of heparan sulfate acetyl-CoA: α-glucosaminide N-acetyltransferase (HGSNAT). Through our studies, we have cloned the gene, identified molecular defects in MPS IIIC patients and most recently completed phenotypic characterization of the first animal model of the disease, a mouse with a germline inactivation of the Hgsnat gene.1 The obtained data have led us to propose that Hgsnat deficiency and lysosomal accumulation of heparan sulfate in microglial cells followed by their activation and cytokine release result in mitochondrial dysfunction in the neurons causing their death which explains why MPS IIIC manifests primarily as a neurodegenerative disease. The goal of this addendum is to summarize data yielding new insights into the mechanism of MPS IIIC and promising novel therapeutic solutions for this and similar disorders.
Collapse
Affiliation(s)
- Alexey V Pshezhetsky
- CHU Ste-Justine and Departments of Pediatrics and Biochemistry; University of Montreal ; Montreal, QC, Canada
| |
Collapse
|
110
|
Abstract
INTRODUCTION Sialidosis is a neurosomatic, lysosomal storage disease (LSD) caused by mutations in the NEU1 gene, encoding the lysosomal sialidase NEU1. Deficient enzyme activity results in impaired processing/degradation of sialo-glycoproteins, and accumulation of oversialylated metabolites. Sialidosis is considered an orphan disorder for which no therapy is currently available. AREAS COVERED The review describes the clinical forms of sialidosis and the NEU1 mutations so far identified; NEU1 requirement to complex with the protective protein/cathepsin A for stability and activation; and the pathogenic effects of NEU1 deficiency. Studies of the molecular mechanisms of pathogenesis in animal models uncovered basic cellular pathways downstream of NEU1 and its substrates, which may be implicated in more common adult (neurodegenerative) diseases. The development of a Phase I/II clinical trial for patients with galactosialidosis may prove suitable for sialidosis patients with the attenuated form of the disease. EXPERT OPINION Recently, there has been a renewed interest in the development of therapies for orphan LSDs, like sialidosis. Given the small number of potentially eligible patients, the way to treat sialidosis would be through the coordinated effort of clinical centers, which provide diagnosis and care for these patients, and the basic research labs that work towards understanding the disease pathogenesis.
Collapse
Affiliation(s)
- Alessandra d'Azzo
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Eda Machado
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ida Annunziata
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|