101
|
Miller LE, Cawley-Bennett A, Longo MR, Saygin AP. The recalibration of tactile perception during tool use is body-part specific. Exp Brain Res 2017; 235:2917-2926. [PMID: 28702834 DOI: 10.1007/s00221-017-5028-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 07/07/2017] [Indexed: 11/30/2022]
Abstract
Two decades of research have demonstrated that using a tool modulates spatial representations of the body. Whether this embodiment is specific to representations of the tool-using limb or extends to representations of other body parts has received little attention. Several studies of other perceptual phenomena have found that modulations to the primary somatosensory representation of the hand transfers to the face, due in part to their close proximity in primary somatosensory cortex. In the present study, we investigated whether tool-induced recalibration of tactile perception on the hand transfers to the cheek. Participants verbally estimated the distance between two tactile points applied to either their hand or face, before and after using a hand-shaped tool. Tool use recalibrated tactile distance perception on the hand-in line with previous findings-but left perception on the cheek unchanged. This finding provides support for the idea that embodiment is body-part specific. Furthermore, it suggests that tool-induced perceptual recalibration occurs at a level of somatosensory processing, where representations of the hand and face have become functionally disentangled.
Collapse
Affiliation(s)
- Luke E Miller
- Department of Cognitive Science, University of California, San Diego, USA. .,Kavli Institute for Brain and Mind, University of California, San Diego, USA.
| | | | - Matthew R Longo
- Department of Psychological Sciences, Birkbeck, University of London, London, UK
| | - Ayse P Saygin
- Department of Cognitive Science, University of California, San Diego, USA.,Kavli Institute for Brain and Mind, University of California, San Diego, USA
| |
Collapse
|
102
|
Won AS, Bailey J, Bailenson J, Tataru C, Yoon IA, Golianu B. Immersive Virtual Reality for Pediatric Pain. CHILDREN (BASEL, SWITZERLAND) 2017; 4:E52. [PMID: 28644422 PMCID: PMC5532544 DOI: 10.3390/children4070052] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 05/24/2017] [Accepted: 06/16/2017] [Indexed: 12/29/2022]
Abstract
Children must often endure painful procedures as part of their treatment for various medical conditions. Those with chronic pain endure frequent or constant discomfort in their daily lives, sometimes severely limiting their physical capacities. With the advent of affordable consumer-grade equipment, clinicians have access to a promising and engaging intervention for pediatric pain, both acute and chronic. In addition to providing relief from acute and procedural pain, virtual reality (VR) may also help to provide a corrective psychological and physiological environment to facilitate rehabilitation for pediatric patients suffering from chronic pain. The special qualities of VR such as presence, interactivity, customization, social interaction, and embodiment allow it to be accepted by children and adolescents and incorporated successfully into their existing medical therapies. However, the powerful and transformative nature of many VR experiences may also pose some risks and should be utilized with caution. In this paper, we review recent literature in pediatric virtual reality for procedural pain and anxiety, acute and chronic pain, and some rehabilitation applications. We also discuss the practical considerations of using VR in pediatric care, and offer specific suggestions and information for clinicians wishing to adopt these engaging therapies into their daily clinical practice.
Collapse
Affiliation(s)
- Andrea Stevenson Won
- Department of Communication, Cornell University, 417 Mann Library Building, Ithaca, NY 14853, USA.
| | - Jakki Bailey
- Department of Anesthesiology and Perioperative Medicine, Stanford University, 300 Pasteur Dr. H3580A, Stanford, CA 94305, USA.
| | - Jeremy Bailenson
- Department of Anesthesiology and Perioperative Medicine, Stanford University, 300 Pasteur Dr. H3580A, Stanford, CA 94305, USA.
| | - Christine Tataru
- Department of Anesthesiology and Perioperative Medicine, Stanford University, 300 Pasteur Dr. H3580A, Stanford, CA 94305, USA.
| | - Isabel A Yoon
- Department of Anesthesiology and Perioperative Medicine, Stanford University, 300 Pasteur Dr. H3580A, Stanford, CA 94305, USA.
| | - Brenda Golianu
- Department of Anesthesiology and Perioperative Medicine, Stanford University, 300 Pasteur Dr. H3580A, Stanford, CA 94305, USA.
| |
Collapse
|
103
|
Pirio Richardson S, Altenmüller E, Alter K, Alterman RL, Chen R, Frucht S, Furuya S, Jankovic J, Jinnah HA, Kimberley TJ, Lungu C, Perlmutter JS, Prudente CN, Hallett M. Research Priorities in Limb and Task-Specific Dystonias. Front Neurol 2017; 8:170. [PMID: 28515706 PMCID: PMC5413505 DOI: 10.3389/fneur.2017.00170] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 04/11/2017] [Indexed: 11/13/2022] Open
Abstract
Dystonia, which causes intermittent or sustained abnormal postures and movements, can present in a focal or a generalized manner. In the limbs, focal dystonia can occur in either the upper or lower limbs and may be task-specific causing abnormal motor performance for only a specific task, such as in writer’s cramp, runner’s dystonia, or musician’s dystonia. Focal limb dystonia can be non-task-specific and may, in some circumstances, be associated with parkinsonian disorders. The true prevalence of focal limb dystonia is not known and is likely currently underestimated, leaving a knowledge gap and an opportunity for future research. The pathophysiology of focal limb dystonia shares some commonalities with other dystonias with a loss of inhibition in the central nervous system and a loss of the normal regulation of plasticity, called homeostatic plasticity. Functional imaging studies revealed abnormalities in several anatomical networks that involve the cortex, basal ganglia, and cerebellum. Further studies should focus on distinguishing cause from effect in both physiology and imaging studies to permit focus on most relevant biological correlates of dystonia. There is no specific therapy for the treatment of limb dystonia given the variability in presentation, but off-label botulinum toxin therapy is often applied to focal limb and task-specific dystonia. Various rehabilitation techniques have been applied and rehabilitation interventions may improve outcomes, but small sample size and lack of direct comparisons between methods to evaluate comparative efficacy limit conclusions. Finally, non-invasive and invasive therapeutic modalities have been explored in small studies with design limitations that do not yet clearly provide direction for larger clinical trials that could support new clinical therapies. Given these gaps in our clinical, pathophysiologic, and therapeutic knowledge, we have identified priorities for future research including: the development of diagnostic criteria for limb dystonia, more precise phenotypic characterization and innovative clinical trial design that considers clinical heterogeneity, and limited available number of participants.
Collapse
Affiliation(s)
- Sarah Pirio Richardson
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Eckart Altenmüller
- Institute for Music Physiology and Musicians' Medicine (IMMM), Hannover University of Music, Drama and Media, Hannover, Germany
| | - Katharine Alter
- Functional and Applied Biomechanics Section, Rehabilitation Medicine, National Institute of Child Health and Development, National Institutes of Health, Bethesda, MD, USA
| | - Ron L Alterman
- Division of Neurosurgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Robert Chen
- Division of Neurology, Department of Medicine (Neurology), Krembil Research Institute, University of Toronto, Toronto, ON, Canada
| | - Steven Frucht
- Robert and John M. Bendheim Parkinson and Movement Disorders Center, Mount Sinai Hospital, New York, NY, USA
| | - Shinichi Furuya
- Musical Skill and Injury Center (MuSIC), Sophia University, Tokyo, Japan
| | - Joseph Jankovic
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - H A Jinnah
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.,Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.,Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Teresa J Kimberley
- Department of Rehabilitation Medicine, Division of Physical Therapy and Rehabilitation Science, University of Minnesota, Minneapolis, MN, USA
| | - Codrin Lungu
- Division of Clinical Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Joel S Perlmutter
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.,Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA.,Department of Neurosciences, Washington University School of Medicine, St. Louis, MO, USA.,Department of Physical Therapy, Washington University School of Medicine, St. Louis, MO, USA.,Department of Occupational Therapy, Washington University School of Medicine, St. Louis, MO, USA
| | - Cecília N Prudente
- Department of Rehabilitation Medicine, Division of Physical Therapy and Rehabilitation Science, University of Minnesota, Minneapolis, MN, USA
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
104
|
Hahamy A, Macdonald SN, van den Heiligenberg F, Kieliba P, Emir U, Malach R, Johansen-Berg H, Brugger P, Culham JC, Makin TR. Representation of Multiple Body Parts in the Missing-Hand Territory of Congenital One-Handers. Curr Biol 2017; 27:1350-1355. [PMID: 28434861 PMCID: PMC5434257 DOI: 10.1016/j.cub.2017.03.053] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 01/30/2017] [Accepted: 03/22/2017] [Indexed: 12/19/2022]
Abstract
Individuals born without one hand (congenital one-handers) provide a unique model for understanding the relationship between focal reorganization in the sensorimotor cortex and everyday behavior. We previously reported that the missing hand’s territory of one-handers becomes utilized by its cortical neighbor (residual arm representation), depending on residual arm usage in daily life to substitute for the missing hand’s function [1, 2]. However, the repertoire of compensatory behaviors may involve utilization of other body parts that do not cortically neighbor the hand territory. Accordingly, the pattern of brain reorganization may be more extensive [3]. Here we studied unconstrained compensatory strategies under ecological conditions in one-handers, as well as changes in activation, connectivity, and neurochemical profile in their missing hand’s cortical territory. We found that compensatory behaviors in one-handers involved multiple body parts (residual arm, lips, and feet). This diversified compensatory profile was associated with large-scale cortical reorganization, regardless of cortical proximity to the hand territory. Representations of those body parts used to substitute hand function all mapped onto the cortical territory of the missing hand, as evidenced by task-based and resting-state fMRI. The missing-hand territory also exhibited reduced GABA levels, suggesting a reduction in connectional selectivity to enable the expression of diverse cortical inputs. Because the same body parts used for compensatory purposes are those showing increased representation in the missing hand’s territory, we suggest that the typical hand territory may not necessarily represent the hand per se, but rather any other body part that shares the functionality of the missing hand [4]. Compensatory behavior in one-handers involves utilization of multiple body parts Multiple body parts benefit from increased representation in the missing-hand area The missing-hand area showed reduced connectional selectivity (lower GABA levels)
Collapse
Affiliation(s)
- Avital Hahamy
- Department of Neurobiology, Weizmann Institute of Science, Herzl Street, Rehovot 7610001, Israel
| | - Scott N Macdonald
- Graduate Program in Neuroscience, University of Western Ontario, London, Ontario N6A 5B7, Canada; Brain and Mind Institute, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Fiona van den Heiligenberg
- FMRIB Centre, Nuffield Department of Clinical Neuroscience, University of Oxford, Headington, Oxford OX3 9DU, UK
| | - Paullina Kieliba
- FMRIB Centre, Nuffield Department of Clinical Neuroscience, University of Oxford, Headington, Oxford OX3 9DU, UK
| | - Uzay Emir
- FMRIB Centre, Nuffield Department of Clinical Neuroscience, University of Oxford, Headington, Oxford OX3 9DU, UK
| | - Rafael Malach
- Department of Neurobiology, Weizmann Institute of Science, Herzl Street, Rehovot 7610001, Israel
| | - Heidi Johansen-Berg
- FMRIB Centre, Nuffield Department of Clinical Neuroscience, University of Oxford, Headington, Oxford OX3 9DU, UK
| | - Peter Brugger
- Department of Neurology, Neuropsychology Unit, University Hospital Zurich, Frauenklinikstrasse 26, 8091 Zurich, Switzerland
| | - Jody C Culham
- Graduate Program in Neuroscience, University of Western Ontario, London, Ontario N6A 5B7, Canada; Brain and Mind Institute, University of Western Ontario, London, Ontario N6A 5B7, Canada; Department of Psychology, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Tamar R Makin
- FMRIB Centre, Nuffield Department of Clinical Neuroscience, University of Oxford, Headington, Oxford OX3 9DU, UK; Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, UK.
| |
Collapse
|
105
|
Seo CH, Park CH, Jung MH, Jang S, Joo SY, Kang Y, Ohn SH. Preliminary Investigation of Pain-Related Changes in Cerebral Blood Volume in Patients With Phantom Limb Pain. Arch Phys Med Rehabil 2017; 98:2206-2212. [PMID: 28392326 DOI: 10.1016/j.apmr.2017.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/27/2017] [Accepted: 03/15/2017] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To investigate changes in the pain network associated with phantom limb pain, magnetic resonance imaging (MRI) was used to measure cerebral blood volume (CBV) in patients who had undergone unilateral arm amputation after electrical injury. DESIGN Case-controlled exploratory MRI study of CBV via MRI. SETTING University hospital. PARTICIPANTS Participants (N=26) comprised patients with phantom limb pain after unilateral arm amputation (n=10) and healthy, age-matched persons (n=16). INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES The intensity of phantom limb pain was measured using the visual analog scale (VAS). Depressive mood was assessed using the Hamilton Depression Rating Scale, and cognitive function was assessed using the Korean version of the Mini-Mental State Examination. Voxel-wise comparisons of relative CBV maps were made between amputees and controls over the entire brain volume. The relationship between individual participant CBV (measured in voxels) and VAS score was also examined. RESULTS Compared with control participants, amputees exhibited greater degrees of depression; significantly higher CBV in the bilateral medial frontal area (orbitofrontal cortex [OFC] and pregenual anterior cingulate cortex [pACC]); and significantly lower CBV in the right midcingulate cortex, posterior cingulate cortex, and primary somatosensory cortex. CBV increased in the contralateral and ipsilateral hemispheres of the amputated arm, regardless of the amputation side. This CBV increase in the OFC and pACC was strongly correlated with pain intensity in all amputees. CONCLUSIONS We observed increased CBV in regions associated with emotion in the cerebral pain network of patients who had undergone unilateral arm amputation after electrical injury. This study suggests that CBV changes were related to neuroplasticity associated with phantom limb pain.
Collapse
Affiliation(s)
- Cheong Hoon Seo
- Department of Physical Medicine and Rehabilitation, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Chang-Hyun Park
- Department of Psychiatry, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea
| | - Myung Hun Jung
- Department of Psychiatry, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Republic of Korea
| | - Soyeon Jang
- Department of Physical Medicine and Rehabilitation, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Republic of Korea
| | - So Young Joo
- Department of Physical Medicine and Rehabilitation, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Yoonkyeong Kang
- Department of Physical Medicine and Rehabilitation, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Suk Hoon Ohn
- Department of Physical Medicine and Rehabilitation, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Republic of Korea.
| |
Collapse
|
106
|
Cirstea CM, Choi IY, Lee P, Peng H, Kaufman CL, Frey SH. Magnetic resonance spectroscopy of current hand amputees reveals evidence for neuronal-level changes in former sensorimotor cortex. J Neurophysiol 2017; 117:1821-1830. [PMID: 28179478 DOI: 10.1152/jn.00329.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 01/23/2017] [Accepted: 01/23/2017] [Indexed: 11/22/2022] Open
Abstract
Deafferentation is accompanied by large-scale functional reorganization of maps in the primary sensory and motor areas of the hemisphere contralateral to injury. Animal models of deafferentation suggest a variety of cellular-level changes including depression of neuronal metabolism and even neuronal death. Whether similar neuronal changes contribute to patterns of reorganization within the contralateral sensorimotor cortex of chronic human amputees is uncertain. We used functional MRI-guided proton magnetic resonance spectroscopy to test the hypothesis that unilateral deafferentation is associated with lower levels of N-acetylaspartate (NAA, a putative marker of neuronal integrity) in the sensorimotor hand territory located contralateral to the missing hand in chronic amputees (n = 19) compared with the analogous hand territory of age- and sex-matched healthy controls (n = 28). We also tested whether former amputees [i.e., recipients of replanted (n = 3) or transplanted (n = 2) hands] exhibit NAA levels that are indistinguishable from controls, possible evidence for reversal of the effects of deafferentation. As predicted, relative to controls, current amputees exhibited lower levels of NAA that were negatively and significantly correlated with the time after amputation. Contrary to our prediction, NAA levels in both replanted and transplanted patients fell within the range of the current amputees. We suggest that lower levels of NAA in current amputees reflects altered neuronal integrity consequent to chronic deafferentation. Thus local changes in NAA levels may provide a means of assessing neuroplastic changes in deafferented cortex. Results from former amputees suggest that these changes may not be readily reversible through reafferentation.NEW & NOTEWORTHY This study is the first to use functional magnetic resonance-guided magnetic resonance spectroscopy to examine neurochemical mechanisms underlying functional reorganization in the primary somatosensory and motor cortices consequent to upper extremity amputation and its potential reversal through hand replantation or transplantation. We provide evidence for selective alteration of cortical neuronal integrity associated with amputation-related deafferentation that may not be reversible.
Collapse
Affiliation(s)
- Carmen M Cirstea
- Department of Physical Medicine and Rehabilitation, University of Missouri, Columbia, Missouri; .,Department of Neurology, Kansas University Medical Center, Kansas City, Kansas
| | - In-Young Choi
- Department of Neurology, Kansas University Medical Center, Kansas City, Kansas
| | - Phil Lee
- Department of Molecular and Integrative Physiology, Kansas University Medical Center, Kansas City, Kansas
| | - Huiling Peng
- Department of Psychological Sciences, University of Missouri, Columbia, Missouri.,Brain Imaging Center, University of Missouri, Columbia, Missouri; and
| | | | - Scott H Frey
- Department of Psychological Sciences, University of Missouri, Columbia, Missouri
| |
Collapse
|
107
|
Makin TR, Bensmaia SJ. Stability of Sensory Topographies in Adult Cortex. Trends Cogn Sci 2017; 21:195-204. [PMID: 28214130 DOI: 10.1016/j.tics.2017.01.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 12/30/2016] [Accepted: 01/03/2017] [Indexed: 01/03/2023]
Abstract
Textbooks teach us that the removal of sensory input to sensory cortex, for example, following arm amputation, results in massive reorganisation in the adult brain. In this opinion article, we critically examine evidence for functional reorganisation of sensory cortical representations, focusing on the sequelae of arm amputation on somatosensory topographies. Based on literature from human and non-human primates, we conclude that the cortical representation of the limb remains remarkably stable despite the loss of its main peripheral input. Furthermore, the purportedly massive reorganisation results primarily from the formation or potentiation of new pathways in subcortical structures and does not produce novel functional sensory representations. We discuss the implications of the stability of sensory representations on the development of upper-limb neuroprostheses.
Collapse
Affiliation(s)
- Tamar R Makin
- FMRIB Centre, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX39DU, UK; Institute of Cognitive Neuroscience, University College London, London WC1N 3AR, UK.
| | - Sliman J Bensmaia
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| |
Collapse
|
108
|
High-Resolution fMRI of Auditory Cortical Map Changes in Unilateral Hearing Loss and Tinnitus. Brain Topogr 2017; 30:685-697. [DOI: 10.1007/s10548-017-0547-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 01/18/2017] [Indexed: 12/19/2022]
|
109
|
Walters ET. How is chronic pain related to sympathetic dysfunction and autonomic dysreflexia following spinal cord injury? Auton Neurosci 2017; 209:79-89. [PMID: 28161248 DOI: 10.1016/j.autneu.2017.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 12/29/2022]
Abstract
Autonomic dysreflexia (AD) and neuropathic pain occur after severe injury to higher levels of the spinal cord. Mechanisms underlying these problems have rarely been integrated in proposed models of spinal cord injury (SCI). Several parallels suggest significant overlap of these mechanisms, although the relationships between sympathetic function (dysregulated in AD) and nociceptive function (dysregulated in neuropathic pain) are complex. One general mechanism likely to be shared is central sensitization - enhanced responsiveness and synaptic reorganization of spinal circuits that mediate sympathetic reflexes or that process and relay pain-related information to the brain. Another is enhanced sensory input to spinal circuits caused by extensive alterations in primary sensory neurons. Both AD and SCI-induced neuropathic pain are associated with spinal sprouting of peptidergic nociceptors that might increase synaptic input to the circuits involved in AD and SCI pain. In addition, numerous nociceptors become hyperexcitable, hypersensitive to chemicals associated with injury and inflammation, and spontaneously active, greatly amplifying sensory input to sensitized spinal circuits. As discussed with the aid of a preliminary functional model, these effects are likely to have mutually reinforcing relationships with each other, and with consequences of SCI-induced interruption of descending excitatory and inhibitory influences on spinal circuits, with SCI-induced inflammation in the spinal cord and in DRGs, and with activity in sympathetic fibers within DRGs that promotes local inflammation and spontaneous activity in sensory neurons. This model suggests that interventions selectively targeting hyperactivity in C-nociceptors might be useful for treating chronic pain and AD after high SCI.
Collapse
Affiliation(s)
- Edgar T Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA.
| |
Collapse
|
110
|
|
111
|
Limanowski J, Kirilina E, Blankenburg F. Neuronal correlates of continuous manual tracking under varying visual movement feedback in a virtual reality environment. Neuroimage 2016; 146:81-89. [PMID: 27845254 DOI: 10.1016/j.neuroimage.2016.11.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 11/02/2016] [Accepted: 11/05/2016] [Indexed: 12/31/2022] Open
Abstract
To accurately guide one's actions online, the brain predicts sensory action feedback ahead of time based on internal models, which can be updated by sensory prediction errors. The underlying operations can be experimentally investigated in sensorimotor adaptation tasks, in which moving under perturbed sensory action feedback requires internal model updates. Here we altered healthy participants' visual hand movement feedback in a virtual reality setup, while assessing brain activity with functional magnetic resonance imaging (fMRI). Participants tracked a continually moving virtual target object with a photorealistic, three-dimensional (3D) virtual hand controlled online via a data glove. During the continuous tracking task, the virtual hand's movements (i.e., visual movement feedback) were repeatedly periodically delayed, which participants had to compensate for to maintain accurate tracking. This realistic task design allowed us to simultaneously investigate processes likely operating at several levels of the brain's motor control hierarchy. FMRI revealed that the length of visual feedback delay was parametrically reflected by activity in the inferior parietal cortex and posterior temporal cortex. Unpredicted changes in visuomotor mapping (at transitions from synchronous to delayed visual feedback periods or vice versa) activated biological motion-sensitive regions in the lateral occipitotemporal cortex (LOTC). Activity in the posterior parietal cortex (PPC), focused on the contralateral anterior intraparietal sulcus (aIPS), correlated with tracking error, whereby this correlation was stronger in participants with higher tracking performance. Our results are in line with recent proposals of a wide-spread cortical motor control hierarchy, where temporoparietal regions seem to evaluate visuomotor congruence and thus possibly ground a self-attribution of movements, the LOTC likely processes early visual prediction errors, and the aIPS computes action goal errors and possibly corresponding motor corrections.
Collapse
Affiliation(s)
- Jakub Limanowski
- Neurocomputation and Neuroimaging Unit, Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany; Center for Cognitive Neuroscience Berlin, Freie Universität Berlin, Berlin, Germany.
| | - Evgeniya Kirilina
- Neurocomputation and Neuroimaging Unit, Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany; Center for Cognitive Neuroscience Berlin, Freie Universität Berlin, Berlin, Germany; Department of Neurophysics, Max Planck Institute for Cognitive and Brain Sciences, Leipzig, Germany
| | - Felix Blankenburg
- Neurocomputation and Neuroimaging Unit, Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany; Center for Cognitive Neuroscience Berlin, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
112
|
Yanagisawa T, Fukuma R, Seymour B, Hosomi K, Kishima H, Shimizu T, Yokoi H, Hirata M, Yoshimine T, Kamitani Y, Saitoh Y. Induced sensorimotor brain plasticity controls pain in phantom limb patients. Nat Commun 2016; 7:13209. [PMID: 27807349 PMCID: PMC5095287 DOI: 10.1038/ncomms13209] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 09/12/2016] [Indexed: 12/02/2022] Open
Abstract
The cause of pain in a phantom limb after partial or complete deafferentation is an important problem. A popular but increasingly controversial theory is that it results from maladaptive reorganization of the sensorimotor cortex, suggesting that experimental induction of further reorganization should affect the pain, especially if it results in functional restoration. Here we use a brain–machine interface (BMI) based on real-time magnetoencephalography signals to reconstruct affected hand movements with a robotic hand. BMI training induces significant plasticity in the sensorimotor cortex, manifested as improved discriminability of movement information and enhanced prosthetic control. Contrary to our expectation that functional restoration would reduce pain, the BMI training with the phantom hand intensifies the pain. In contrast, BMI training designed to dissociate the prosthetic and phantom hands actually reduces pain. These results reveal a functional relevance between sensorimotor cortical plasticity and pain, and may provide a novel treatment with BMI neurofeedback. Pain in a phantom limb after limb deafferentation may be due to maladaptive sensorimotor representation. Here the authors find that sensorimotor plasticity induced by BMI training with the phantom hand, contrary to expectation, increased pain while dissociating prosthetic movements from the phantom arm relieved the pain.
Collapse
Affiliation(s)
- Takufumi Yanagisawa
- Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.,Division of Functional Diagnostic Science, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.,Department of Neuroinformatics, ATR Computational Neuroscience Laboratories, 2-2-2 Hikaridai, Seika-cho, Kyoto 619-0288, Japan.,Department of Neuroinformatics, CiNet Computational Neuroscience Laboratories, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.,JST PRESTO, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.,Division of Clinical Neuroengineering, Osaka University, Global Center for Medical Engineering and Informactics, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ryohei Fukuma
- Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.,Department of Neuroinformatics, ATR Computational Neuroscience Laboratories, 2-2-2 Hikaridai, Seika-cho, Kyoto 619-0288, Japan.,Department of Neuroinformatics, CiNet Computational Neuroscience Laboratories, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.,Graduate School of Information Science, Nara Institute of Science and Technology, 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| | - Ben Seymour
- Department of Engineering, University of Cambridge, Computational and Biological Learning Laboratory, Trumpington Street, Cambridge CB2 1PZ, UK.,National Institute for Information and Communications Technology, Center for Information and Neural Networks, 1-3 Suita, Osaka 565-0871, Japan
| | - Koichi Hosomi
- Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.,Department of Neuromodulation and Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Haruhiko Kishima
- Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takeshi Shimizu
- Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.,Department of Neuromodulation and Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroshi Yokoi
- Department of Mechanical Engineering and Intelligent Systems, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
| | - Masayuki Hirata
- Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.,Department of Neuroinformatics, CiNet Computational Neuroscience Laboratories, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.,Division of Clinical Neuroengineering, Osaka University, Global Center for Medical Engineering and Informactics, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshiki Yoshimine
- Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.,Department of Neuroinformatics, CiNet Computational Neuroscience Laboratories, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.,Division of Clinical Neuroengineering, Osaka University, Global Center for Medical Engineering and Informactics, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yukiyasu Kamitani
- Department of Neuroinformatics, ATR Computational Neuroscience Laboratories, 2-2-2 Hikaridai, Seika-cho, Kyoto 619-0288, Japan.,Graduate School of Information Science, Nara Institute of Science and Technology, 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan.,Graduate School of Informatics, Kyoto University, Yoshidahonmachi, Sakyoku, Kyoto 606-8501, Japan
| | - Youichi Saitoh
- Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.,Department of Neuromodulation and Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
113
|
Senkowski D, Heinz A. Chronic pain and distorted body image: Implications for multisensory feedback interventions. Neurosci Biobehav Rev 2016; 69:252-9. [DOI: 10.1016/j.neubiorev.2016.08.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 08/01/2016] [Accepted: 08/06/2016] [Indexed: 12/14/2022]
|
114
|
Kikkert S, Kolasinski J, Jbabdi S, Tracey I, Beckmann CF, Johansen-Berg H, Makin TR. Revealing the neural fingerprints of a missing hand. eLife 2016; 5. [PMID: 27552053 PMCID: PMC5040556 DOI: 10.7554/elife.15292] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 08/22/2016] [Indexed: 01/06/2023] Open
Abstract
The hand area of the primary somatosensory cortex contains detailed finger topography, thought to be shaped and maintained by daily life experience. Here we utilise phantom sensations and ultra high-field neuroimaging to uncover preserved, though latent, representation of amputees’ missing hand. We show that representation of the missing hand’s individual fingers persists in the primary somatosensory cortex even decades after arm amputation. By demonstrating stable topography despite amputation, our finding questions the extent to which continued sensory input is necessary to maintain organisation in sensory cortex, thereby reopening the question what happens to a cortical territory once its main input is lost. The discovery of persistent digit topography of amputees’ missing hand could be exploited for the development of intuitive and fine-grained control of neuroprosthetics, requiring neural signals of individual digits. DOI:http://dx.doi.org/10.7554/eLife.15292.001 The brain has a remarkable ability to adapt to changes in circumstances. But what happens to the brain when it loses a key source of input, for example, following the amputation of a limb? A region of the brain known as primary somatosensory cortex processes sensory inputs from all over the body. The more sensitive an area of the body is, the more fine-grained its representation is in the cortex. For example, the hand is represented with a highly detailed map, with each finger represented seperately. The brain is thought to require ongoing sensory signals from the body to maintain these detailed representations in the cortex. Indeed, textbooks typically state that the brain will ‘overwrite’ its representation of a body part if input from that area no longer arrives. According to this view, people who have lost a hand should show little or no activity in the area of primary somatosensory cortex that used to represent it. However, many people who have had a limb amputated continue to experience vivid sensations of the missing limb long after its loss. When asked to move their so-called ‘phantom’ limb, these individuals report being able to feel the movement. Kikkert, Kolasinski et al. now show, using advanced imaging techniques, that the brains of individuals with phantom hands continue to represent the missing hand several decades after its loss. Indeed, asking the subjects to move individual fingers of their phantom hand activates fine-grained representations of those fingers, similar to those seen in two-handed controls. By showing that the brain ‘remembers’ an amputated hand, Kikkert, Kolasinski et al. demonstrate that ongoing sensory input is not required to maintain representations of the body in somatosensory cortex. This, in turn, offers new hope for developing prosthetic limbs that are under direct brain control. If the brain continues to represent individual fingers many years after their loss, it should be possible to exploit those pathways to achieve intuitive fine-grained control of artificial fingers. DOI:http://dx.doi.org/10.7554/eLife.15292.002
Collapse
Affiliation(s)
- Sanne Kikkert
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - James Kolasinski
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.,University College, Oxford, United Kingdom
| | - Saad Jbabdi
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Irene Tracey
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.,Nuffield Division of Anaesthetics, University of Oxford, Oxford, United Kingdom
| | - Christian F Beckmann
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands.,Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Heidi Johansen-Berg
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Tamar R Makin
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
115
|
Reed JL, Liao CC, Qi HX, Kaas JH. Plasticity and Recovery After Dorsal Column Spinal Cord Injury in Nonhuman Primates. J Exp Neurosci 2016; 10:11-21. [PMID: 27578996 PMCID: PMC4991577 DOI: 10.4137/jen.s40197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/26/2016] [Accepted: 06/28/2016] [Indexed: 12/15/2022] Open
Abstract
Here, we review recent work on plasticity and recovery after dorsal column spinal cord injury in nonhuman primates. Plasticity in the adult central nervous system has been established and studied for the past several decades; however, capacities and limits of plasticity are still under investigation. Studies of plasticity include assessing multiple measures before and after injury in animal models. Such studies are particularly important for improving recovery after injury in patients. In summarizing work by our research team and others, we suggest how the findings from plasticity studies in nonhuman primate models may affect therapeutic interventions for conditions involving sensory loss due to spinal cord injury.
Collapse
Affiliation(s)
- Jamie L Reed
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Chia-Chi Liao
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Hui-Xin Qi
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Jon H Kaas
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
116
|
Qi HX, Wang F, Liao CC, Friedman RM, Tang C, Kaas JH, Avison MJ. Spatiotemporal trajectories of reactivation of somatosensory cortex by direct and secondary pathways after dorsal column lesions in squirrel monkeys. Neuroimage 2016; 142:431-453. [PMID: 27523450 DOI: 10.1016/j.neuroimage.2016.08.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/23/2016] [Accepted: 08/09/2016] [Indexed: 11/17/2022] Open
Abstract
After lesions of the somatosensory dorsal column (DC) pathway, the cortical hand representation can become unresponsive to tactile stimuli, but considerable responsiveness returns over weeks of post-lesion recovery. The reactivation suggests that preserved subthreshold sensory inputs become potentiated and axon sprouting occurs over time to mediate recovery. Here, we studied the recovery process in 3 squirrel monkeys, using high-resolution cerebral blood volume-based functional magnetic resonance imaging (CBV-fMRI) mapping of contralateral somatosensory cortex responsiveness to stimulation of distal finger pads with low and high level electrocutaneous stimulation (ES) before and 2, 4, and 6weeks after a mid-cervical level contralateral DC lesion. Both low and high intensity ES of digits revealed the expected somatotopy of the area 3b hand representation in pre-lesion monkeys, while in areas 1 and 3a, high intensity stimulation was more effective in activating somatotopic patterns. Six weeks post-lesion, and irrespective of the severity of loss of direct DC inputs (98%, 79%, 40%), somatosensory cortical area 3b of all three animals showed near complete recovery in terms of somatotopy and responsiveness to low and high intensity ES. However there was significant variability in the patterns and amplitudes of reactivation of individual digit territories within and between animals, reflecting differences in the degree of permanent and/or transient silencing of primary DC and secondary inputs 2weeks post-lesion, and their spatio-temporal trajectories of recovery between 2 and 6weeks. Similar variations in the silencing and recovery of somatotopy and responsiveness to high intensity ES in areas 3a and 1 are consistent with individual differences in damage to and recovery of DC and spinocuneate pathways, and possibly the potentiation of spinothalamic pathways. Thus, cortical deactivation and subsequent reactivation depends not only on the degree of DC lesion, but also on the severity and duration of loss of secondary as well as primary inputs revealed by low and high intensity ES.
Collapse
Affiliation(s)
- Hui-Xin Qi
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA.
| | - Feng Wang
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37240, USA; Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37240, USA
| | - Chia-Chi Liao
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA
| | - Robert M Friedman
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA
| | - Chaohui Tang
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37240, USA; Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37240, USA
| | - Jon H Kaas
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA; Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37240, USA
| | - Malcolm J Avison
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37240, USA; Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37240, USA; Pharmacology, Vanderbilt University, Nashville, TN 37240, USA
| |
Collapse
|
117
|
Abstract
In this review, we examine how tactile misperceptions provide evidence regarding body representations. First, we propose that tactile detection and localization are serial processes, in contrast to parallel processing hypotheses based on patients with numbsense. Second, we discuss how information in primary somatosensory maps projects to body size and shape representations to localize touch on the skin surface, and how responses after use-dependent plasticity reflect changes in this mapping. Third, we review situations in which our body representations are inconsistent with our actual body shape, specifically discussing phantom limb phenomena and anesthetization. We discuss problems with the traditional remapping hypothesis in amputees, factors that modulate perceived body size and shape, and how changes in perceived body form influence tactile localization. Finally, we review studies in which brain-damaged individuals perceive touch on the opposite side of the body, and demonstrate how interhemispheric mechanisms can give rise to these anomalous percepts.
Collapse
Affiliation(s)
- Jared Medina
- a Department of Psychology , University of Delaware , Newark , DE , USA
| | - H Branch Coslett
- b Department of Neurology, Center for Cognitive Neuroscience , University of Pennsylvania , Philadelphia , PA , USA
| |
Collapse
|
118
|
Mavromatis N, Gagné M, Voisin JIAV, Reilly KT, Mercier C. Experimental tonic hand pain modulates the corticospinal plasticity induced by a subsequent hand deafferentation. Neuroscience 2016; 330:403-9. [PMID: 27291642 DOI: 10.1016/j.neuroscience.2016.06.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 05/30/2016] [Accepted: 06/04/2016] [Indexed: 02/06/2023]
Abstract
Sensorimotor reorganization is believed to play an important role in the development and maintenance of phantom limb pain, but pain itself might modulate sensorimotor plasticity induced by deafferentation. Clinical and basic research support this idea, as pain prior to amputation increases the risk of developing post-amputation pain. The aim of this study was to examine the influence of experimental tonic cutaneous hand pain on the plasticity induced by temporary ischemic hand deafferentation. Sixteen healthy subjects participated in two experimental sessions (Pain, No Pain) in which transcranial magnetic stimulation was used to assess corticospinal excitability in two forearm muscles (flexor carpi radialis and flexor digitorum superficialis) before (T0, T10, T20, and T40) and after (T60 and T75) inflation of a cuff around the wrist. The cuff was inflated at T45 in both sessions and in the Pain session capsaicin cream was applied on the dorsum of the hand at T5. Corticospinal excitability was significantly greater during the Post-inflation phase (p=0.002) and increased similarly in both muscles (p=0.861). Importantly, the excitability increase in the Post-inflation phase was greater for the Pain than the No-Pain condition (p=0.006). Post-hoc analyses revealed a significant difference between the two conditions during the Post-inflation phase (p=0.030) but no difference during the Pre-inflation phase (p=0.601). In other words, the corticospinal facilitation was greater when pain was present prior to cuff inflation. These results indicate that pain can modulate the plasticity induced by another event, and could partially explain the sensorimotor reorganization often reported in chronic pain populations.
Collapse
Affiliation(s)
- N Mavromatis
- Center for Interdisciplinary Research in Rehabilitation and Social Integration, Québec, Canada; Department of Rehabilitation, Laval University, Québec, Canada
| | - M Gagné
- Center for Interdisciplinary Research in Rehabilitation and Social Integration, Québec, Canada
| | - J I A V Voisin
- Center for Interdisciplinary Research in Rehabilitation and Social Integration, Québec, Canada; Department of Rehabilitation, Laval University, Québec, Canada
| | - K T Reilly
- INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, ImpAct Team, Lyon, France; University Claude Bernard Lyon I, Lyon, France
| | - C Mercier
- Center for Interdisciplinary Research in Rehabilitation and Social Integration, Québec, Canada; Department of Rehabilitation, Laval University, Québec, Canada.
| |
Collapse
|
119
|
Kawashima N, Mita T. Psychophysical Evaluation of the Capability for Phantom Limb Movement in Forearm Amputees. PLoS One 2016; 11:e0156349. [PMID: 27227973 PMCID: PMC4882045 DOI: 10.1371/journal.pone.0156349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 05/12/2016] [Indexed: 11/28/2022] Open
Abstract
A phantom limb is the sensation that an amputated limb is still attached to the body and is moving together with other body parts. Phantom limb phenomenon is often described on the basis of the patient’s subjective sense, for example as represented using a visual analog scale (VAS). The aim of this study was to propose a novel quantification method for behavioral aspect of phantom limb by psychophysics. Twelve unilateral forearm amputees were asked to perform phantom wrist motion with various motion frequencies (60, 80, 100, 120, 140, 160, 180, 200, 220, 240% of preferred speed). The attainment of phantom limb motion in each session was rated by the VAS ranging from 0 (hard) to 10 (easy). The relationship between the VAS and motion frequency was mathematically fitted by quadric function, and the value of shift and the degree of steepness were obtained as evaluation variables for the phantom limb movement. In order to test whether the proposed method can reasonably quantify the characteristics of phantom limb motion, we compared the variables among three different phantom limb movement conditions: (1) unilateral (phantom only), (2) bimanual, and (3) bimanual wrist movement with mirror reflection-induced visual feedback (MVF). While VAS rating showed a larger extent of inter- and intra-subject variability, the relationship of the VAS in response to motion frequency could be fitted by quadric curve, and the obtained parameters based on quadric function well characterize task-dependent changes in phantom limb movement. The present results suggest the potential usefulness of psychophysical evaluation as a validate assessment tool of phantom limb condition.
Collapse
Affiliation(s)
- Noritaka Kawashima
- Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Saitama, Japan
- * E-mail:
| | - Tomoki Mita
- Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Saitama, Japan
| |
Collapse
|
120
|
Raffin E, Richard N, Giraux P, Reilly KT. Primary motor cortex changes after amputation correlate with phantom limb pain and the ability to move the phantom limb. Neuroimage 2016; 130:134-144. [DOI: 10.1016/j.neuroimage.2016.01.063] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 01/11/2016] [Accepted: 01/15/2016] [Indexed: 01/25/2023] Open
|
121
|
Weiss T. Plasticity and Cortical Reorganization Associated With Pain. ZEITSCHRIFT FUR PSYCHOLOGIE-JOURNAL OF PSYCHOLOGY 2016. [DOI: 10.1027/2151-2604/a000241] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Abstract. This review focuses on plasticity and reorganization associated with pain. It is well established that noxious stimulation activates a large network of neural structures in the human brain, which is often denominated as the neuromatrix of pain. Repeated stimulation is able to induce plasticity in nearly all structures of this neuromatrix. While the plasticity to short-term stimulation is usually transient, long-term stimulation might induce persistent changes within the neuromatrix network and reorganize its functions and structures. Interestingly, a large longitudinal study on patients with subacute back pain found predictors for the persistence of pain versus remission in mesolimbic structures not usually included in the neuromatrix of pain. From these results, new concepts of nociception, pain, and transition from acute to chronic pain emerged. Overall, this review outlines a number of plastic changes in response to pain. However, the role of plasticity for chronic pain has still to be established.
Collapse
Affiliation(s)
- Thomas Weiss
- Department of Biological and Clinical Psychology, Friedrich Schiller University Jena, Germany
| |
Collapse
|
122
|
Muret D, Daligault S, Dinse HR, Delpuech C, Mattout J, Reilly KT, Farnè A. Neuromagnetic correlates of adaptive plasticity across the hand-face border in human primary somatosensory cortex. J Neurophysiol 2016; 115:2095-104. [PMID: 26888099 DOI: 10.1152/jn.00628.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 02/16/2016] [Indexed: 11/22/2022] Open
Abstract
It is well established that permanent or transient reduction of somatosensory inputs, following hand deafferentation or anesthesia, induces plastic changes across the hand-face border, supposedly responsible for some altered perceptual phenomena such as tactile sensations being referred from the face to the phantom hand. It is also known that transient increase of hand somatosensory inputs, via repetitive somatosensory stimulation (RSS) at a fingertip, induces local somatosensory discriminative improvement accompanied by cortical representational changes in the primary somatosensory cortex (SI). We recently demonstrated that RSS at the tip of the right index finger induces similar training-independent perceptual learning across the hand-face border, improving somatosensory perception at the lips (Muret D, Dinse HR, Macchione S, Urquizar C, Farnè A, Reilly KT.Curr Biol24: R736-R737, 2014). Whether neural plastic changes across the hand-face border accompany such remote and adaptive perceptual plasticity remains unknown. Here we used magnetoencephalography to investigate the electrophysiological correlates underlying RSS-induced behavioral changes across the hand-face border. The results highlight significant changes in dipole location after RSS both for the stimulated finger and for the lips. These findings reveal plastic changes that cross the hand-face border after an increase, instead of a decrease, in somatosensory inputs.
Collapse
Affiliation(s)
- Dollyane Muret
- ImpAct Team, Lyon Neuroscience Research Centre, INSERM U1028, CNRS UMR5292, Lyon, France; University Claude Bernard Lyon I, Lyon, France;
| | | | - Hubert R Dinse
- Neural Plasticity Laboratory, Institute of Neuroinformatics, Ruhr University, Bochum, Germany; Clinic of Neurology, BG University Hospital Bergmannsheil, Bochum, Germany; and
| | | | - Jérémie Mattout
- University Claude Bernard Lyon I, Lyon, France; Dycog Team, Lyon Neuroscience Research Centre, INSERM U1028, CNRS UMR5292, Lyon, France
| | - Karen T Reilly
- ImpAct Team, Lyon Neuroscience Research Centre, INSERM U1028, CNRS UMR5292, Lyon, France; University Claude Bernard Lyon I, Lyon, France
| | - Alessandro Farnè
- ImpAct Team, Lyon Neuroscience Research Centre, INSERM U1028, CNRS UMR5292, Lyon, France; University Claude Bernard Lyon I, Lyon, France
| |
Collapse
|
123
|
Kuttikat A, Noreika V, Shenker N, Chennu S, Bekinschtein T, Brown CA. Neurocognitive and Neuroplastic Mechanisms of Novel Clinical Signs in CRPS. Front Hum Neurosci 2016; 10:16. [PMID: 26858626 PMCID: PMC4728301 DOI: 10.3389/fnhum.2016.00016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 01/12/2016] [Indexed: 12/16/2022] Open
Abstract
Complex regional pain syndrome (CRPS) is a chronic, debilitating pain condition that usually arises after trauma to a limb, but its precise etiology remains elusive. Novel clinical signs based on body perceptual disturbances have been reported, but their pathophysiological mechanisms remain poorly understood. Investigators have used functional neuroimaging techniques (including MEG, EEG, fMRI, and PET) to study changes mainly within the somatosensory and motor cortices. Here, we provide a focused review of the neuroimaging research findings that have generated insights into the potential neurocognitive and neuroplastic mechanisms underlying perceptual disturbances in CRPS. Neuroimaging findings, particularly with regard to somatosensory processing, have been promising but limited by a number of technique-specific factors (such as the complexity of neuroimaging investigations, poor spatial resolution of EEG/MEG, and use of modeling procedures that do not draw causal inferences) and more general factors including small samples sizes and poorly characterized patients. These factors have led to an underappreciation of the potential heterogeneity of pathophysiology that may underlie variable clinical presentation in CRPS. Also, until now, neurological deficits have been predominantly investigated separately from perceptual and cognitive disturbances. Here, we highlight the need to identify neurocognitive phenotypes of patients with CRPS that are underpinned by causal explanations for perceptual disturbances. We suggest that a combination of larger cohorts, patient phenotyping, the use of both high temporal, and spatial resolution neuroimaging methods, and the identification of simplified biomarkers is likely to be the most fruitful approach to identifying neurocognitive phenotypes in CRPS. Based on our review, we explain how such phenotypes could be characterized in terms of hierarchical models of perception and corresponding disturbances in recurrent processing involving the somatosensory, salience and executive brain networks. We also draw attention to complementary neurological factors that may explain some CRPS symptoms, including the possibility of central neuroinflammation and neuronal atrophy, and how these phenomena may overlap but be partially separable from neurocognitive deficits.
Collapse
Affiliation(s)
- Anoop Kuttikat
- Department of Rheumatology, Addenbrooke's Hospital , Cambridge , UK
| | - Valdas Noreika
- Cognition and Brain Sciences Unit, Medical Research Council , Cambridge , UK
| | - Nicholas Shenker
- Department of Rheumatology, Addenbrooke's Hospital , Cambridge , UK
| | - Srivas Chennu
- Cognition and Brain Sciences Unit, Medical Research Council, Cambridge, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Tristan Bekinschtein
- Cognition and Brain Sciences Unit, Medical Research Council, Cambridge, UK; Department of Psychology, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
124
|
Jensen TS, Finnerup NB. Plasticity of pain revisited in 2015. Lancet Neurol 2016; 15:19-21. [DOI: 10.1016/s1474-4422(15)00343-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 11/09/2015] [Indexed: 01/30/2023]
|
125
|
Azañón E, Tamè L, Maravita A, Linkenauger S, Ferrè E, Tajadura-Jiménez A, Longo M. Multimodal Contributions to Body Representation. Multisens Res 2016. [DOI: 10.1163/22134808-00002531] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Our body is a unique entity by which we interact with the external world. Consequently, the way we represent our body has profound implications in the way we process and locate sensations and in turn perform appropriate actions. The body can be the subject, but also the object of our experience, providing information from sensations on the body surface and viscera, but also knowledge of the body as a physical object. However, the extent to which different senses contribute to constructing the rich and unified body representations we all experience remains unclear. In this review, we aim to bring together recent research showing important roles for several different sensory modalities in constructing body representations. At the same time, we hope to generate new ideas of how and at which level the senses contribute to generate the different levels of body representations and how they interact. We will present an overview of some of the most recent neuropsychological evidence about multisensory control of pain, and the way that visual, auditory, vestibular and tactile systems contribute to the creation of coherent representations of the body. We will focus particularly on some of the topics discussed in the symposium on Multimodal Contributions to Body Representation held on the 15th International Multisensory Research Forum (2015, Pisa, Italy).
Collapse
Affiliation(s)
- Elena Azañón
- Department of Psychological Sciences, Birkbeck, University of London, WC1E 7HX, London, UK
| | - Luigi Tamè
- Department of Psychological Sciences, Birkbeck, University of London, WC1E 7HX, London, UK
| | - Angelo Maravita
- Department of Psychology, Università degli studi di Milano-Bicocca, Italy
- Neuromi: Milan Center for Neuroscience, Milano, Italy
| | | | - Elisa R. Ferrè
- Institute of Cognitive Neuroscience, University College London, UK
- Department of Psychology, Royal Holloway University of London, UK
| | - Ana Tajadura-Jiménez
- Laboratorio de Neurociencia Humana, Departamento de Psicología, Universidad Loyola Andalucía, Spain
- UCL Interaction Centre, University College London, UK
| | - Matthew R. Longo
- Department of Psychological Sciences, Birkbeck, University of London, WC1E 7HX, London, UK
| |
Collapse
|
126
|
Jutzeler CR, Curt A, Kramer JLK. Relationship between chronic pain and brain reorganization after deafferentation: A systematic review of functional MRI findings. NEUROIMAGE-CLINICAL 2015; 9:599-606. [PMID: 26740913 PMCID: PMC4644246 DOI: 10.1016/j.nicl.2015.09.018] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/25/2015] [Accepted: 09/29/2015] [Indexed: 11/08/2022]
Abstract
Background Mechanisms underlying the development of phantom limb pain and neuropathic pain after limb amputation and spinal cord injury, respectively, are poorly understood. The goal of this systematic review was to assess the robustness of evidence in support of “maladaptive plasticity” emerging from applications of advanced functional magnetic resonance imaging (MRI). Methods Using MeSH heading search terms in PubMed and SCOPUS, a systematic review was performed querying published manuscripts. Results From 146 candidate publications, 10 were identified as meeting the inclusion criteria. Results from fMRI investigations provided some level of support for maladaptive cortical plasticity, including longitudinal studies that demonstrated a change in functional organization related to decreases in pain. However, a number of studies have reported no relationship between reorganization, pain and deafferentation, and emerging evidence has also suggested the opposite — that is, chronic pain is associated with preserved cortical function. Conclusion Based solely on advanced functional neuroimaging results, there is only limited evidence for a relationship between chronic pain intensity and reorganization after deafferentation. The review demonstrates the need for additional neuroimaging studies to clarify the relationship between chronic pain and reorganization. There is evidence of a relationship between brain reorganization, deafferentation, and chronic pain. Emerging evidence suggests that reorganization in the CNS could be an adaptive process, preventing the emergence of pain. Future studies adopting standardized protocols are needed to clarify the role of chronic pain and plasticity in the brain.
Collapse
Affiliation(s)
- C R Jutzeler
- Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland
| | - A Curt
- Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland
| | - J L K Kramer
- Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland; ICORD, School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
127
|
Osumi M, Sumitani M, Wake N, Sano Y, Ichinose A, Kumagaya SI, Kuniyoshi Y, Morioka S. Structured movement representations of a phantom limb associated with phantom limb pain. Neurosci Lett 2015; 605:7-11. [DOI: 10.1016/j.neulet.2015.08.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/25/2015] [Accepted: 08/05/2015] [Indexed: 02/06/2023]
|