101
|
Horváth Z, Kovalszky I, Fullár A, Kiss K, Schaff Z, Iozzo RV, Baghy K. Decorin deficiency promotes hepatic carcinogenesis. Matrix Biol 2013; 35:194-205. [PMID: 24361483 DOI: 10.1016/j.matbio.2013.11.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/26/2013] [Accepted: 11/26/2013] [Indexed: 12/16/2022]
Abstract
Hepatocellular carcinoma represents one of the most-rapidly spreading cancers in the world. In the majority of cases, an inflammation-driven fibrosis or cirrhosis precedes the development of the tumor. During malignant transformation, the tumor microenvironment undergoes qualitative and quantitative changes that modulate the behavior of the malignant cells. A key constituent for the hepatic microenvironment is the small leucine-rich proteoglycan decorin, known to interfere with cellular events of tumorigenesis mainly by blocking various receptor tyrosine kinases (RTK) such as EGFR, Met, IGF-IR, PDGFR and VEGFR2. In this study, we characterized cell signaling events evoked by decorin deficiency in two experimental models of hepatocarcinogenesis using thioacetamide or diethyl nitrosamine as carcinogens. Genetic ablation of decorin led to enhanced tumor occurrence as compared to wild-type animals. These findings correlated with decreased levels of the cyclin-dependent kinase inhibitor p21(WAF1/CIP1) and a concurrent elevation in retinoblastoma protein phosphorylation via cyclin dependent kinase 4. Decreased steady state p21(Waf1/Cip1) levels correlated with enhanced expression of transcription factor AP4, a known transcriptional repressor of p21(Waf1/Cip1), and enhanced c-Myc protein levels. In addition, translocation of β-catenin was a typical event in diethyl nitrosamine-evoked tumors. In parallel, decreased phosphorylation of both c-Myc and β-catenin was observed in Dcn(-/-) livers likely due to the hindered GSK3β-mediated targeting of these proteins to proteasomal degradation. We discovered that in a genetic background lacking decorin, four RTKs were constitutively activated (phosphorylated), including three known targets of decorin such as PDGFRα, EGFR, IGF-IR, and a novel RTK MSPR/RON. Our findings provide powerful genetic evidence for a crucial in vivo role of decorin during hepatocarcinogenesis as lack of decorin in the liver and hepatic stroma facilitates experimental carcinogenesis by providing an environment devoid of this potent pan-RTK inhibitor. Thus, our results support future utilization of decorin as an antitumor agent in liver cancer.
Collapse
Affiliation(s)
- Zsolt Horváth
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Ilona Kovalszky
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Alexandra Fullár
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Katalin Kiss
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Zsuzsa Schaff
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Renato V Iozzo
- Department of Pathology, Anatomy, and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Kornélia Baghy
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
102
|
Yu X, Zou Y, Li Q, Mao Y, Zhu H, Huang G, Ji G, Luo X, Yu C, Zhang X. Decorin-mediated inhibition of cholangiocarcinoma cell growth and migration and promotion of apoptosis are associated with E-cadherin in vitro. Tumour Biol 2013; 35:3103-12. [PMID: 24272200 DOI: 10.1007/s13277-013-1402-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 11/06/2013] [Indexed: 01/09/2023] Open
Abstract
Emerging evidences have shown that decorin expression is significantly reduced in many cancer tissues and cancer cells. However, its biological role and clinical significance in cholangiocarcinoma development and progression are unknown. In this study, immunohistochemistry was conducted to investigate the expression of decorin in cholangiocarcinomas. The results showed that decorin levels markedly decreased in 44 cholangiocarcinoma tissues compared to 40 adjacent normal tissues. The analysis between decorin expression and clinicopathological characteristics in cholangiocarcinoma patients showed that patients with low levels of decorin expression had a relatively poor prognosis. Moreover, recombinant human decorin treatment and overexpression of decorin in cholangiocarcinoma cells could inhibit cell proliferation, migration, and invasion and promote apoptosis. Furthermore, the E-cadherin expression significantly increased after decorin overexpression or use of recombinant human decorin in cholangiocarcinoma cells. Our findings indicated that downregulation of decorin may be identified as a poor prognostic biomarker in cholangiocarcinomas. Also, decorin-mediated inhibition of cholangiocarcinoma cell growth, migration, and invasion and promotion of cell apoptosis might be through regulation of the expression of E-cadherin in vitro.
Collapse
Affiliation(s)
- Xiang Yu
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiangjiayuan, Xiaguan District, Nanjing, 210000, China,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Fang X, Sittadjody S, Gyabaah K, Opara EC, Balaji KC. Novel 3D co-culture model for epithelial-stromal cells interaction in prostate cancer. PLoS One 2013; 8:e75187. [PMID: 24073251 PMCID: PMC3779160 DOI: 10.1371/journal.pone.0075187] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 08/11/2013] [Indexed: 11/19/2022] Open
Abstract
Paracrine function is a major mechanism of cell-cell communication within tissue microenvironment in normal development and disease. In vitro cell culture models simulating tissue or tumor microenvironment are necessary tools to delineate epithelial-stromal interactions including paracrine function, yet an ideal three-dimensional (3D) tumor model specifically studying paracrine function is currently lacking. In order to fill this void we developed a novel 3D co-culture model in double-layered alginate hydrogel microspheres, incorporating prostate cancer epithelial and stromal cells in separate compartments of the microspheres. The cells remained confined and viable within their respective spheres for over 30 days. As a proof of principle regarding paracrine function of the model, we measured shedded component of E-cadherin (sE-cad) in the conditioned media, a major membrane bound cell adhesive molecule that is highly dysregulated in cancers including prostate cancer. In addition to demonstrating that sE-cad can be reliably quantified in the conditioned media, the time course experiments also demonstrated that the amount of sE-cad is influenced by epithelial-stromal interaction. In conclusion, the study establishes a novel 3D in vitro co-culture model that can be used to study cell-cell paracrine interaction.
Collapse
Affiliation(s)
- Xiaolan Fang
- Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States of America
- Department of Cancer Biology, Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States of America
| | - Sivanandane Sittadjody
- Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States of America
| | - Kenneth Gyabaah
- Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States of America
- Department of Cancer Biology, Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States of America
| | - Emmanuel C. Opara
- Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States of America
| | - Kethandapatti C. Balaji
- Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States of America
- Department of Cancer Biology, Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States of America
- Department of Urology, Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
104
|
Sukocheva OA, Wee C, Ansar A, Hussey DJ, Watson DI. Effect of estrogen on growth and apoptosis in esophageal adenocarcinoma cells. Dis Esophagus 2013; 26:628-635. [PMID: 23163347 DOI: 10.1111/dote.12000] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The epidemiology of esophageal adenocarcinoma demonstrates a strong gender bias with a sex ratio of 8-9:1 in favor of males. A potential explanation for this is that estrogen might protect against esophageal adenocarcinoma. Estrogen has previously been shown to stimulate apoptosis in esophageal squamous cancer cells. However, the effect of estrogen on esophageal adenocarcinoma cells has not been determined. We used immunoblotting analysis to determine the expression of estrogen receptors, cell adhesion marker E-cadherin, and proliferation marker Ki-67 in cell lines derived from esophageal adenocarcinoma (OE-19, OE-33) and Barrett's esophagus (QhTRT, ChTRT, GihTRT). Estrogen and selective estrogen receptor modulator (SERM)-dependent effects on cell growth were determined by the CellTiter-96 Aqueous Proliferation Assay. Apoptosis was determined by Annexin V/Propidium Iodide cell labeling and flow cytometry. We detected that physiological and supra-physiological concentrations of 17β-estradiol and SERM decreased cell growth in esophageal adenocarcinoma cells. In Barrett's esophagus cells (QhTRT, ChTRT), decreased growth was also detected in response to estrogen/SERM. The level of estrogen receptor expression in the cell lines correlated with the level of anti-growth effects induced by the receptor agonists. Flow cytometry analysis confirmed estrogen/SERM stimulated apoptosis in esophageal adenocarcinoma cells. Estrogen/SERM treatments were associated with a decrease in the expression of Ki-67 and an increase in E-cadherin expression in esophageal adenocarcinoma cells. This study suggests that esophageal adenocarcinoma and Barrett's esophagus cells respond to treatment with selective estrogen receptor ligands, resulting in decreased cell growth and apoptosis. Further research to explore potential therapeutic applications is warranted.
Collapse
Affiliation(s)
- O A Sukocheva
- Department of Surgery, Flinders Centre for Cancer Prevention and Control, Flinders Medical Centre, Flinders University, Bedford Park, South Australia, Australia.
| | | | | | | | | |
Collapse
|
105
|
Kristensen IB, Pedersen L, Rø TB, Christensen JH, Lyng MB, Rasmussen LM, Ditzel HJ, Børset M, Abildgaard N. Decorin is down-regulated in multiple myeloma and MGUS bone marrow plasma and inhibits HGF-induced myeloma plasma cell viability and migration. Eur J Haematol 2013; 91:196-200. [PMID: 23607294 DOI: 10.1111/ejh.12125] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2013] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Decorin is a stromal-produced small leucine-rich proteoglycan known to attenuate tumour pro-survival, migration, proliferation and angiogenic signalling pathways. Recent studies have shown that decorin interacts with the hepatocyte growth factor (HGF) receptor c-Met, a potential key pathway in multiple myeloma (MM). METHODS Decorin levels in paired peripheral blood and bone marrow plasma samples from healthy volunteers (HV) (n = 23), and patients with monoclonal gammopathy of undetermined significance (MGUS) (n = 41) and MM (n = 19) were determined by ELISA. Further, the ability of decorin to inhibit HGF-induced effects on MM cell lines were analysed in vitro using cell viability and Transwell migration assays. RESULTS We found that decorin concentrations were significantly higher (P < 0.05) in bone marrow (BM) plasma from HVs (median 35.2 ng/mL; range, 15.3-99.1) compared with MGUS (median 22.5 ng/mL; range, 11.1-59.5) and patients with MM (median 21.5 ng/mL; range, 10.6-35.9). Decorin levels were higher in BM plasma than in peripheral blood in all groups, with a BM/PB ratio of 3.9, 3.4 and 2.5 for HV, MGUS and MM, respectively. A positive correlation (Spearman's ρ = 0.51, P < 0.05) was found between simultaneously measured levels of HGF and decorin in BM plasma in HVs, but not in MGUS or MM samples. Functionally, decorin inhibited HGF-induced migration and viability of INA-6 and ANBL-6 MM cell lines, independent of c-Met down-regulation. CONCLUSION Our results show that decorin is down-regulated in MGUS and MM bone marrow plasma and that it inhibits HGF-induced viability and migration of myeloma cell lines in vitro.
Collapse
Affiliation(s)
- Ida B Kristensen
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark; Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark; Department of Haematology, Odense University Hospital, Odense, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Abstract
Decorin is a member of the extracellular matrix small leucine-rich proteoglycans family that exists and functions in stromal and epithelial cells. Accumulating evidence suggests that decorin affects the biology of various types of cancer by directly or indirectly targeting the signaling molecules involved in cell growth, survival, metastasis, and angiogenesis. More recent studies show that decorin plays important roles during tumor development and progression and is a potential cancer therapeutic agent. In this article, we summarize recent studies of decorin in cancer and discuss decorin's therapeutic and prognostic value.
Collapse
Affiliation(s)
- Xiu-Li Bi
- Liaoning University, Shenyang, Liaoning, People's Republic of China.
| | | |
Collapse
|
107
|
Baghy K, Horváth Z, Regős E, Kiss K, Schaff Z, Iozzo RV, Kovalszky I. Decorin interferes with platelet-derived growth factor receptor signaling in experimental hepatocarcinogenesis. FEBS J 2013; 280:2150-64. [PMID: 23448253 DOI: 10.1111/febs.12215] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 02/14/2013] [Accepted: 02/20/2013] [Indexed: 12/18/2022]
Abstract
Decorin, a secreted small leucine-rich proteoglycan, acts as a tumor repressor in a variety of cancers, mainly by blocking the action of several receptor tyrosine kinases such as the receptors for hepatocyte, epidermal and insulin-like growth factors. In the present study we investigated the effects of decorin in an experimental model of thioacetamide-induced hepatocarcinogenesis and its potential role in modulating the signaling of platelet-derived growth factor receptor-α (PDGFRα). Genetic ablation of decorin in mice led to enhanced tumor prevalence and a higher tumor count compared with wild-type mice. These findings correlated with decreased levels of the cyclin-dependent kinase inhibitor p21(Waf1/Cip1) and concurrent activation (phosphorylation) of PDGFRα in the hepatocellular carcinomas generated in the decorin-null vis-à-vis wild-type mice. Notably, in normal liver PDGFRα localized primarily to the membrane of nonparenchymal cells, whereas in the malignant counterpart PDGFRα was expressed by the malignant cells at their cell surfaces. This process was facilitated by a genetic background lacking endogenous decorin. Double immunostaining of the proteoglycan and the receptor revealed only minor colocalization, leading to the hypothesis that decorin would bind to the natural ligand PDGF rather than to the receptor itself. Indeed, we found, using purified proteins and immune-blot assays, that decorin binds to PDGF. Collectively, our findings support the idea that decorin acts as a secreted tumor repressor during hepatocarcinogenesis by hindering the action of another receptor tyrosine kinase, such as the PDGFRα, and could be a novel therapeutic agent in the battle against liver cancer.
Collapse
Affiliation(s)
- Kornélia Baghy
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
108
|
Neill T, Jones HR, Crane-Smith Z, Owens RT, Schaefer L, Iozzo RV. Decorin induces rapid secretion of thrombospondin-1 in basal breast carcinoma cells via inhibition of Ras homolog gene family, member A/Rho-associated coiled-coil containing protein kinase 1. FEBS J 2013; 280:2353-68. [PMID: 23350987 DOI: 10.1111/febs.12148] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/07/2013] [Accepted: 01/14/2013] [Indexed: 01/28/2023]
Abstract
Pathological neovascularization relies on an imbalance between potent proangiogenic agents and equally effective antiangiogenic cues. Collectively, these factors contribute to an angiogenic niche within the tumor microenvironment. Oncogenic events and hypoxia contribute to augmented levels of angiokines, and thereby activate the so-called angiogenic switch to promote aggressive tumorigenic and metastatic growth. Soluble decorin functions as a paracrine pan-inhibitor of receptor tyrosine kinases, such as Met and epidermal growth factor receptor, and thus is capable of suppressing angiogenesis under normoxia. This leads to noncanonical repression of hypoxia-inducible factor 1-alpha and vascular endothelial growth factor A (VEGFA), and concurrent induction of thrombospondin-1. The substantial induction of endogenous tumor cell-derived thrombospondin-1, a potent antiangiogenic effector, led us to the discovery of an unexpected secretory phenotype occurring very rapidly (within 5 min) after decorin treatment of the triple-negative basal breast carcinoma cell line MDA-MB-231. Surprisingly, the effect was not mediated by Met receptor antagonism, as initially hypothesized, but required epidermal growth factor receptor signaling to achieve swift and robust thrombospondin-1 release. Furthermore, this effect was ultimately dependent on the prompt degradation of Ras homolog gene family member A, via the 26S proteasome, leading to direct inactivation of Rho-associated coiled-coil containing protein kinase 1. The latter led to derepression of thrombospondin-1 secretion. Collectively, these data provide a novel mechanistic role for Rho-associated coiled-coil containing protein kinase 1, in addition to providing the first conclusive evidence of decorin exclusively targeting a receptor tyrosine kinase to achieve a specific effect. The overall effects of soluble decorin on the tumor microenvironment would cause an immediately-early as well as a sustained antiangiogenic response in vivo.
Collapse
Affiliation(s)
- Thomas Neill
- Department of Pathology, Anatomy, and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | |
Collapse
|
109
|
Morrione A, Neill T, Iozzo RV. Dichotomy of decorin activity on the insulin-like growth factor-I system. FEBS J 2013; 280:2138-49. [PMID: 23351020 DOI: 10.1111/febs.12149] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 01/08/2013] [Accepted: 01/14/2013] [Indexed: 12/27/2022]
Abstract
The stromal-specific proteoglycan decorin has emerged in recent years as a critical regulator of tumor initiation and progression. Decorin regulates the biology of various types of cancer by modulating the activity of several receptor tyrosine kinases coordinating growth, survival, migration, and angiogenesis. Decorin binds to surface receptors for epidermal growth factor and hepatocyte growth factor with high affinity, and negatively regulates their activity and signaling via robust internalization and eventual degradation. The insulin-like growth factor (IGF)-I system plays a critical role in the regulation of cell growth both in vivo and in vitro. The IGF-I receptor (IGF-IR) is also essential for cellular transformation, owing to its ability to enhance cell proliferation and protect cancer cells from apoptosis. Recent data have pointed to a role of decorin in regulating the IGF-I system in both nontransformed and transformed cells. Significantly, there is a surprising dichotomy in the mechanism of decorin action on IGF-IR signaling, which differs considerably between physiological and pathological cellular models. In this review, we summarize the current knowledge on decorin regulation of the IGF-I system in normal and transformed cells, and discuss possible decorin-based therapeutic approaches to target IGF-IR-driven tumors.
Collapse
Affiliation(s)
- Andrea Morrione
- Department of Urology and the Biology of Prostate Cancer Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | |
Collapse
|
110
|
Contribution of cells undergoing epithelial–mesenchymal transition to the tumour microenvironment. J Proteomics 2013; 78:545-57. [DOI: 10.1016/j.jprot.2012.10.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 09/28/2012] [Accepted: 10/15/2012] [Indexed: 02/07/2023]
|
111
|
Sofeu Feugaing DD, Götte M, Viola M. More than matrix: the multifaceted role of decorin in cancer. Eur J Cell Biol 2012; 92:1-11. [PMID: 23058688 DOI: 10.1016/j.ejcb.2012.08.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 08/06/2012] [Accepted: 08/22/2012] [Indexed: 10/27/2022] Open
Abstract
The small leucine-rich proteoglycan, decorin, has incrementally been shown to be a powerful inhibitor of growth in a wide variety of tumour cells, an effect specifically mediated by the interaction of decorin core protein with the epidermal growth factor receptor (EGFR) and other ErbB family proteins. Nowadays, this matrikine has become the main focus of various cancer studies. Decorin is an important component of the cellular microenvironment or extracellular matrix (ECM). Its interactions with matrix and cell membrane components have been implicated in many physiological and pathophysiological processes including matrix organisation, signal transduction, wound healing, cell migration, inhibition of metastasis, and angiogenesis. This review summarises recent findings on decorin's interactions and behaviour related to cancer. Highlighted are key functions of decorin such as interaction with cell surface receptors, as well as with ECM components, and the therapeutic potential of this multifunctional molecule.
Collapse
|
112
|
Henke A, Grace OC, Ashley GR, Stewart GD, Riddick ACP, Yeun H, O’Donnell M, Anderson RA, Thomson AA. Stromal expression of decorin, Semaphorin6D, SPARC, Sprouty1 and Tsukushi in developing prostate and decreased levels of decorin in prostate cancer. PLoS One 2012; 7:e42516. [PMID: 22880013 PMCID: PMC3411755 DOI: 10.1371/journal.pone.0042516] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 07/09/2012] [Indexed: 11/18/2022] Open
Abstract
Background and Aim During prostate development, mesenchymal-epithelial interactions regulate organ growth and differentiation. In adult prostate, stromal-epithelial interactions are important for tissue homeostasis and also play a significant role in prostate cancer. In this study we have identified molecules that show a mesenchymal expression pattern in the developing prostate, and one of these showed reduced expression in prostate cancer stroma. Methodology and Principal Findings Five candidate molecules identified by transcript profiling of developmental prostate mesenchyme were selected using a wholemount in situ hybridisation screen and studied Decorin (Dcn), Semaphorin6D (Sema6D), SPARC/Osteonectin (SPARC), Sprouty1 (Spry-1) and Tsukushi (Tsku). Expression in rat tissues was evaluated using wholemount in situ hybridisation (postnatal day (P) 0.5) and immunohistochemistry (embryonic day (E) E17.5, E19.5; P0.5; P6; 28 & adult). Four candidates (Decorin, SPARC, Spry-1, Tsukushi) were immunolocalised in human foetal prostate (weeks 14, 16, 19) and expression of Decorin was evaluated on a human prostate cancer tissue microarray. In embryonic and perinatal rats Decorin, Semaphorin6D, SPARC, Spry-1 and Tsukushi were expressed with varying distribution patterns throughout the mesenchyme at E17.5, E19.5, P0.5 and P6.5. In P28 and adult prostates there was either a decrease in the expression (Semaphorin6D) or a switch to epithelial expression of SPARC, and Spry-1, whereas Decorin and Tsukushi were specific to mesenchyme/stroma at all ages. Expression of Decorin, SPARC, Spry-1 and Tsukushi in human foetal prostates paralleled that in rat. Decorin showed mesenchymal and stromal-specific expression at all ages and was further examined in prostate cancer, where stromal expression was significantly reduced compared with non-malignant prostate. Conclusion and Significance We describe the spatio-temporal expression of Decorin, Semaphorin6D, SPARC, Spry-1 and Tsukushi in developing prostate and observed similar mesenchymal expression patterns in rat and human. Additionally, Decorin showed reduced expression in prostate cancer stroma compared to non-malignant prostate stroma.
Collapse
Affiliation(s)
- Alexander Henke
- Medical Research Council, Centre for Reproductive Health, The Queens’s Medical Research Institute, Edinburgh, Scotland, United Kingdom
- * E-mail: (AH); (AAT)
| | - O. Cathal Grace
- Medical Research Council, Centre for Reproductive Health, The Queens’s Medical Research Institute, Edinburgh, Scotland, United Kingdom
| | - George R. Ashley
- Medical Research Council, Centre for Reproductive Health, The Queens’s Medical Research Institute, Edinburgh, Scotland, United Kingdom
| | - Grant D. Stewart
- Edinburgh Urological Cancer Group, Division of Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Antony C. P. Riddick
- Edinburgh Urological Cancer Group, Division of Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Henry Yeun
- Edinburgh Urological Cancer Group, Division of Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Marie O’Donnell
- Edinburgh Urological Cancer Group, Division of Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Richard A. Anderson
- Medical Research Council, Centre for Reproductive Health, The Queens’s Medical Research Institute, Edinburgh, Scotland, United Kingdom
| | - Axel A. Thomson
- Medical Research Council, Centre for Reproductive Health, The Queens’s Medical Research Institute, Edinburgh, Scotland, United Kingdom
- * E-mail: (AH); (AAT)
| |
Collapse
|
113
|
Yuan F, Zhou CF, Jin XL. Lumican protein expression in pancreatic ductal adenocarcinoma: clinical significance and correlation with expression of Ki-67, VEGF and mutated P53. Shijie Huaren Xiaohua Zazhi 2012; 20:1018-1024. [DOI: 10.11569/wcjd.v20.i12.1018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To detect the expression of Lumican in pancreatic ductal adenocarcinoma and to analyze its correlation with expression of Ki-67, VEGF and mutated P53.
METHODS: One hundred surgically resected cancer samples collected from patients with pathologically confirmed pancreatic ductal adenocarcinoma and 15 tumor-adjacent pancreatic tissue samples were used in the study. Lumican expression in these tissue samples was detected by immunohistochemistry (IHC) and reverse transcription-polymerase chain reaction (RT-PCR). Expression of Ki-67, VEGF and mutated P53 was detected by IHC.
RESULTS: The expression levels of Lumican mRNA and protein in cancer tissue were significantly higher than those in tumor-adjacent tissue. The positive rate of Lumican expression in tumor stroma was 83.0% (83/100). In poorly differentiated samples, stromal expression of Lumican was significantly correlated with TNM stage (χ2 = 6.446, P < 0.05), but not with age, gender, lymph node metastasis or distant metastasis. In well differentiated samples, stromal expression of Lumican had a significant negative correlation with expression of Ki-67 (r = -0.28, P = 0.017), VEGF (r = -0.264, P = 0.025) and mutated P53 (r = -0.253, P = 0.032), but had no correlation with pathological characteristics of pancreatic ductal adenocarcinoma.
CONCLUSION: Lumican expression is higher in pancreatic ductal adenocarcinoma than in tumor-adjacent tissue and correlates with TNM stage in poor differentiated samples. There is a negative correlation between expression of Lumican and that of Ki-67, VEGF and mutated P53 mutation in well differentiated samples.
Collapse
|