101
|
Holzer M, Trieb M, Konya V, Wadsack C, Heinemann A, Marsche G. Aging affects high-density lipoprotein composition and function. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1442-8. [PMID: 23792422 PMCID: PMC3787738 DOI: 10.1016/j.bbalip.2013.06.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/07/2013] [Accepted: 06/13/2013] [Indexed: 02/07/2023]
Abstract
Most coronary deaths occur in patients older than 65years. Age associated alterations in the composition and function of high-density lipoproteins (HDL) may contribute to cardiovascular mortality. The effect of advanced age on the composition and function of HDL is not well understood. HDL was isolated from healthy young and elderly subjects. HDL composition, cellular cholesterol efflux/uptake, anti-oxidant properties and paraoxonase activity were assessed. We observed a 3-fold increase of the acute phase protein serum amyloid A, an increased content of complement C3 and proteins involved in endopeptidase/protease inhibition in HDL of elderly subjects, whereas levels of apolipoprotein E were significantly decreased. HDL from elderly subjects contained less cholesterol but increased sphingomyelin. Most importantly, HDL from elderly subjects showed defective antioxidant properties, lower paraoxonase 1 activity and was more rapidly taken up by macrophages, whereas cholesterol efflux capability was not altered. These findings suggest that aging alters HDL composition, resulting in functional impairment that may contribute to the onset/progression of cardiovascular disease.
Collapse
Affiliation(s)
- Michael Holzer
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Austria
| | | | | | | | | | | |
Collapse
|
102
|
|
103
|
Triolo M, Annema W, Dullaart RPF, Tietge UJF. Assessing the functional properties of high-density lipoproteins: an emerging concept in cardiovascular research. Biomark Med 2013; 7:457-72. [DOI: 10.2217/bmm.13.35] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Although plasma concentrations of high-density lipoprotein (HDL) cholesterol correlate inversely with the incidence of atherosclerotic cardiovascular disease, results from recent epidemiological, genetic and pharmacological intervention studies resulted in a shift of concept. Rather than HDL cholesterol mass levels, the functionality of HDL particles is increasingly regarded as potentially clinically important. This review provides an overview of four key functional properties of HDL, namely cholesterol efflux and reverse cholesterol transport; antioxidative activities; anti-inflammatory activities; and the ability of HDL to increase vascular nitric oxide production resulting in vasorelaxation. Currently available assays are put into context with different HDL isolation procedures yielding compositional heterogeneity of the particle. Gathered knowledge on the impact of different disease states on HDL function is discussed together with potential underlying causative factors modulating HDL functionalities. In addition, a perspective is provided regarding how a better understanding of the determinants of (dys)functional HDL might impact clinical practice and the future design of rational and specific therapeutic approaches targeting atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Michela Triolo
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Wijtske Annema
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
- Top Institute Food & Nutrition, Wageningen, The Netherlands
| | - Robin PF Dullaart
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Uwe JF Tietge
- Top Institute Food & Nutrition, Wageningen, The Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| |
Collapse
|
104
|
Schaefer EJ. Effects of cholesteryl ester transfer protein inhibitors on human lipoprotein metabolism: why have they failed in lowering coronary heart disease risk? Curr Opin Lipidol 2013; 24:259-64. [PMID: 23652567 DOI: 10.1097/mol.0b013e3283612454] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW To examine the recent advances in our knowledge of cholesteryl ester transfer protein (CETP) inhibitors, heart disease risk reduction, and human lipoprotein metabolism. RECENT FINDINGS CETP inhibitors block the transfer of cholesteryl ester from HDLs to triglyceride-rich lipoproteins (TRLs), thereby raising HDL cholesterol and lowering TRL cholesterol, and in some cases LDL cholesterol. Two CETP inhibitors, dalcetrapib and torcetrapib, have been tested in large clinical trials in statin-treated coronary heart disease patients and have shown no clinical benefit compared to placebo. Anacetrapib and evacetrapib, two potent CETP inhibitors, are now being tested in large clinical trials. Torcetrapib has been shown to decrease the fractional catabolic rate (FCR) of HDL apolipoproteins (apo) A-I and A-II, enhance the FCR of TRL apoB-100 and apoE, and decrease TRL apoB-48 production, but has no significant effects on fecal cholesterol excretion in humans. Anacetrapib also delays the FCR of HDL apoA-I. SUMMARY CETP inhibitors form a complex between themselves, CETP, and HDL particles, which may interfere with the many physiologic functions of HDL, including reverse cholesterol transport. Available data would suggest that CETP inhibitors will fail as lipid-altering medications to reduce coronary heart disease risk because of interference with normal human HDL metabolism.
Collapse
Affiliation(s)
- Ernst J Schaefer
- Lipid Metabolism Laboratory, Tufts University, Boston, Massachusetts 02111, USA.
| |
Collapse
|
105
|
Kon V, Ikizler TA, Fazio S. Importance of high-density lipoprotein quality: evidence from chronic kidney disease. Curr Opin Nephrol Hypertens 2013; 22:259-65. [PMID: 23470818 PMCID: PMC6558988 DOI: 10.1097/mnh.0b013e32835fe47f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
PURPOSE OF REVIEW This review will examine advances in our understanding of the association between high-density lipoprotein (HDL) function and cardiovascular disease (CVD) in patients with chronic kidney disease (CKD). RECENT FINDINGS Large randomized statin trials and related meta-analyses confirm that lipid-lowering therapy benefits patients with mild to moderate CKD, leaving a degree of residual cardiovascular risk similar to that documented in the general population. However, patients with advanced CKD on dialysis show little to no cardiovascular benefits from lipid-lowering therapy and have an exaggerated residual cardiovascular risk. HDL quantity and functionality may explain some of the residual risk. CKD modulates the level, composition and functionality of HDL, including impaired cholesterol acceptor function and pro-inflammatory effects. Although these abnormalities prevail in CKD, they do not track together and thus support the idea of separate and distinct mechanistic pathways for each of these critical functions of HDL. SUMMARY CKD-induced perturbations in HDL composition, metabolism and functionality may contribute to the excess CVD in patients with CKD and present new therapeutic targets for intervention in this population.
Collapse
Affiliation(s)
- Valentina Kon
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - T. Alp Ikizler
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sergio Fazio
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
106
|
Chung YM, Goyette J, Tedla N, Hsu K, Geczy CL. S100A12 suppresses pro-inflammatory, but not pro-thrombotic functions of serum amyloid A. PLoS One 2013; 8:e62372. [PMID: 23638054 PMCID: PMC3634854 DOI: 10.1371/journal.pone.0062372] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 03/20/2013] [Indexed: 12/15/2022] Open
Abstract
S100A12 is elevated in the circulation in patients with chronic inflammatory diseases and recent studies indicate pleiotropic functions. Serum amyloid A induces monocyte cytokines and tissue factor. S100A12 did not stimulate IL-6, IL-8, IL-1β or TNF-α production by human peripheral blood mononuclear cells but low amounts consistently reduced cytokine mRNA and protein levels induced by serum amyloid A, by ∼49% and ∼46%, respectively. However, S100A12 did not affect serum amyloid A-induced monocyte tissue factor. In marked contrast, LPS-induced cytokines or tissue factor were not suppressed by S100A12. S100A12 did not alter cytokine mRNA stability or the cytokine secretory pathway. S100A12 and serum amyloid A did not appear to form complexes and although they may have common receptors, suppression was unlikely via receptor competition. Serum amyloid A induces cytokines via activation of NF-κB and the MAPK pathways. S100A12 reduced serum amyloid A-, but not LPS-induced ERK1/2 phosphorylation to baseline. It did not affect JNK or p38 phosphorylation or the NF-κB pathway. Reduction in ERK1/2 phosphorylation by S100A12 was unlikely due to changes in intracellular reactive oxygen species, Ca2+ flux or to recruitment of phosphatases. We suggest that S100A12 may modulate sterile inflammation by blunting pro-inflammatory properties of lipid-poor serum amyloid A deposited in chronic lesions where both proteins are elevated as a consequence of macrophage activation.
Collapse
Affiliation(s)
- Yuen Ming Chung
- Inflammation and Infection Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Jesse Goyette
- Inflammation and Infection Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Nicodemus Tedla
- Inflammation and Infection Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Kenneth Hsu
- Inflammation and Infection Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Carolyn L. Geczy
- Inflammation and Infection Research Centre, University of New South Wales, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
107
|
Mahdy Ali K, Wonnerth A, Huber K, Wojta J. Cardiovascular disease risk reduction by raising HDL cholesterol--current therapies and future opportunities. Br J Pharmacol 2013; 167:1177-94. [PMID: 22725625 DOI: 10.1111/j.1476-5381.2012.02081.x] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Since the first discovery of an inverse correlation between high-density lipoprotein-cholesterol (HDL-C) levels and coronary heart disease in the 1950s the life cycle of HDL, its role in atherosclerosis and the therapeutic modification of HDL-C levels have been major research topics. The Framingham study and others that followed could show that HDL-C is an independent cardiovascular risk factor and that the increase of HDL-C of only 10 mg·L(-1) leads to a risk reduction of 2-3%. While statin therapy and therefore low-density lipoprotein-cholesterol (LDL-C) reduction could lower coronary heart disease considerably; cardiovascular morbidity and mortality still occur in a significant portion of subjects already receiving therapy. Therefore, new strategies and therapies are needed to further reduce the risk. Raising HDL-C was thought to achieve this goal. However, established drug therapies resulting in substantial HDL-C increase are scarce and their effect is controversial. Furthermore, it is becoming increasingly evident that HDL particle functionality is at least as important as HDL-C levels since HDL particles not only promote reverse cholesterol transport from the periphery (mainly macrophages) to the liver but also exert pleiotropic effects on inflammation, haemostasis and apoptosis. This review deals with the biology of HDL particles, the established and future therapeutic options to increase HDL-C and discusses the results and conclusions of the most important studies published in the last years. Finally, an outlook on future diagnostic tools and therapeutic opportunities regarding coronary artery disease is given.
Collapse
Affiliation(s)
- K Mahdy Ali
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | | | | | | |
Collapse
|
108
|
Li H, Ooi SQ, Heng CK. The role of NF-кB in SAA-induced peroxisome proliferator-activated receptor γ activation. Atherosclerosis 2013; 227:72-8. [DOI: 10.1016/j.atherosclerosis.2012.12.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 11/19/2012] [Accepted: 12/09/2012] [Indexed: 12/11/2022]
|
109
|
Marsche G, Saemann MD, Heinemann A, Holzer M. Inflammation alters HDL composition and function: Implications for HDL-raising therapies. Pharmacol Ther 2013; 137:341-51. [DOI: 10.1016/j.pharmthera.2012.12.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
110
|
Yamamoto S, Yancey PG, Ikizler TA, Jerome WG, Kaseda R, Cox B, Bian A, Shintani A, Fogo AB, Linton MF, Fazio S, Kon V. Dysfunctional high-density lipoprotein in patients on chronic hemodialysis. J Am Coll Cardiol 2012; 60:2372-9. [PMID: 23141484 DOI: 10.1016/j.jacc.2012.09.013] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 09/05/2012] [Accepted: 09/05/2012] [Indexed: 12/24/2022]
Abstract
OBJECTIVES This study examined the functionality of high-density lipoprotein (HDL) in individuals with end-stage renal disease on dialysis (ESRD-HD). BACKGROUND The high rate of cardiovascular disease (CVD) in chronic kidney disease is not explained by standard risk factors, especially in patients with ESRD-HD who appear resistant to benefits of statin therapy. HDL is antiatherogenic because it extracts tissue cholesterol and reduces inflammation. METHODS Cellular cholesterol efflux and inflammatory response were assessed in macrophages exposed to HDL of patients with ESRD-HD or controls. RESULTS HDL from patients with ESRD-HD was dramatically less effective than normal HDL in accepting cholesterol from macrophages (median 6.9%; interquartile range [IQR]: 1.4% to 10.2%) versus control (median 14.9%; IQR: 9.8% to 17.8%; p < 0.001). The profound efflux impairment was also seen in patients with ESRD-HD and diabetes compared with patients with diabetes without renal disease (median 8.1%; IQR: 3.3% to 12.9%) versus control (median 13.6%; IQR: 11.0% to 15.9%; p = 0.009). In vitro activation of cellular cholesterol transporters increased cholesterol efflux to both normal and uremic HDL. HDL of patients with ESRD-HD had reduced antichemotactic ability and increased macrophage cytokine response (tumor necrosis factor-alpha, interleukin-6, and interleukin-1-beta). HDL of patients with ESRD-HD on statin therapy had reduced inflammatory response while maintaining impaired cholesterol acceptor function. Interestingly, impaired HDL-mediated efflux did not correlate with circulating C-reactive protein levels or cellular inflammatory response. CONCLUSIONS These findings suggest that abnormal HDL capacity to mediate cholesterol efflux is a key driver of excess CVD in patients on chronic hemodialysis and may explain why statins have limited effect to decrease CV events. The findings also suggest cellular cholesterol transporters as potential therapeutic targets to decrease CV risk in this population.
Collapse
Affiliation(s)
- Suguru Yamamoto
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Holzer M, Wolf P, Curcic S, Birner-Gruenberger R, Weger W, Inzinger M, El-Gamal D, Wadsack C, Heinemann A, Marsche G. Psoriasis alters HDL composition and cholesterol efflux capacity. J Lipid Res 2012; 53:1618-24. [PMID: 22649206 DOI: 10.1194/jlr.m027367] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Psoriasis, a chronic inflammatory skin disease, has been linked to increased myocardial infarction and stroke. Functional impairment of HDL may contribute to the excess cardiovascular mortality of psoriatic patients. However, data available regarding the impact of psoriasis on HDL composition and function are limited. HDL from psoriasis patients and healthy controls was isolated by ultracentrifugation and shotgun proteomics, and biochemical methods were used to monitor changed HDL composition. We observed a significant reduction in apoA-I levels of HDL from psoriatic patients, whereas levels of apoA-II and proteins involved in acute-phase response, immune response, and endopeptidase/protease inhibition were increased. Psoriatic HDL contained reduced phospholipid and cholesterol. With regard to function, these compositional alterations impaired the ability of psoriatic HDL to promote cholesterol efflux from macrophages. Importantly, HDL-cholesterol efflux capability negatively correlated with psoriasis area and severity index. We observed that control HDL, as well as psoriatic HDL, inhibited dihydrorhodamine (DHR) oxidation to a similar extent, suggesting that the anti-oxidative activity of psoriatic HDL is not significantly altered. Our observations suggest that the compositional alterations observed in psoriatic HDL reflect a shift to a pro-inflammatory profile that impairs cholesterol efflux capacity of HDL and may provide a link between psoriasis and cardiovascular disease.
Collapse
Affiliation(s)
- Michael Holzer
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Abstract
Kidney dysfunction leads to disturbed renal metabolic activities and to impaired glomerular filtration, resulting in the retention of toxic solutes affecting all organs of the body. Cardiovascular disease (CVD) and infections are the main causes for the increased occurrence of morbidity and mortality among patients with chronic kidney disease (CKD). Both complications are directly or indirectly linked to a compromised immune defense. The specific coordinated roles of polymorphonuclear leukocytes (PMNLs), monocytes/macrophages, lymphocytes and antigen-presenting cells (APCs) in maintaining an efficient immune response are affected. Their normal response can be impaired, giving rise to infectious diseases or pre-activated/primed, leading to inflammation and consequently to CVD. Whereas the coordinated removal via apoptosis of activated immune cells is crucial for the resolution of inflammation, inappropriately high apoptotic rates lead to a diminished immune response. In uremia, the balance between pro- and anti-inflammatory and between pro- and anti-apoptotic factors is disturbed. This review summarizes the interrelated parameters interfering with the immune response in uremia, with a special focus on the non-specific immune response and the role of uremic toxins.
Collapse
Affiliation(s)
- Gerald Cohen
- Abteilung für Nephrologie und Dialyse, Univ.-Klinik für Innere Medizin III, Währinger Gürtel 18-20, Wien A-1090, Austria.
| | | |
Collapse
|