101
|
Cameron SJS, Lewis KE, Huws SA, Lin W, Hegarty MJ, Lewis PD, Mur LAJ, Pachebat JA. Metagenomic Sequencing of the Chronic Obstructive Pulmonary Disease Upper Bronchial Tract Microbiome Reveals Functional Changes Associated with Disease Severity. PLoS One 2016; 11:e0149095. [PMID: 26872143 PMCID: PMC4752236 DOI: 10.1371/journal.pone.0149095] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 01/27/2016] [Indexed: 01/01/2023] Open
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a major source of mortality and morbidity worldwide. The microbiome associated with this disease may be an important component of the disease, though studies to date have been based on sequencing of the 16S rRNA gene, and have revealed unequivocal results. Here, we employed metagenomic sequencing of the upper bronchial tract (UBT) microbiome to allow for greater elucidation of its taxonomic composition, and revealing functional changes associated with the disease. The bacterial metagenomes within sputum samples from eight COPD patients and ten 'healthy' smokers (Controls) were sequenced, and suggested significant changes in the abundance of bacterial species, particularly within the Streptococcus genus. The functional capacity of the COPD UBT microbiome indicated an increased capacity for bacterial growth, which could be an important feature in bacterial-associated acute exacerbations. Regression analyses correlated COPD severity (FEV1% of predicted) with differences in the abundance of Streptococcus pneumoniae and functional classifications related to a reduced capacity for bacterial sialic acid metabolism. This study suggests that the COPD UBT microbiome could be used in patient risk stratification and in identifying novel monitoring and treatment methods, but study of a longitudinal cohort will be required to unequivocally relate these features of the microbiome with COPD severity.
Collapse
Affiliation(s)
- Simon J S Cameron
- Institute of Biological, Environmental and Rural Sciences, Edward Llywd Building, Penglais Campus, Aberystwyth, Ceredigion, SY23 3FG, United Kingdom
| | - Keir E Lewis
- Department of Respiratory Medicine, Prince Phillip Hospital, Hywel Dda University Health Board, Llanelli, SA14 8QF, United Kingdom.,College of Medicine, Swansea University, Swansea, SA2 8PP, United Kingdom
| | - Sharon A Huws
- Institute of Biological, Environmental and Rural Sciences, Edward Llywd Building, Penglais Campus, Aberystwyth, Ceredigion, SY23 3FG, United Kingdom
| | - Wanchang Lin
- Institute of Biological, Environmental and Rural Sciences, Edward Llywd Building, Penglais Campus, Aberystwyth, Ceredigion, SY23 3FG, United Kingdom
| | - Matthew J Hegarty
- Institute of Biological, Environmental and Rural Sciences, Edward Llywd Building, Penglais Campus, Aberystwyth, Ceredigion, SY23 3FG, United Kingdom
| | - Paul D Lewis
- College of Medicine, Swansea University, Swansea, SA2 8PP, United Kingdom
| | - Luis A J Mur
- Institute of Biological, Environmental and Rural Sciences, Edward Llywd Building, Penglais Campus, Aberystwyth, Ceredigion, SY23 3FG, United Kingdom
| | - Justin A Pachebat
- Institute of Biological, Environmental and Rural Sciences, Edward Llywd Building, Penglais Campus, Aberystwyth, Ceredigion, SY23 3FG, United Kingdom
| |
Collapse
|
102
|
Pearce OMT, Läubli H. Sialic acids in cancer biology and immunity. Glycobiology 2015; 26:111-28. [DOI: 10.1093/glycob/cwv097] [Citation(s) in RCA: 259] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 10/26/2015] [Indexed: 02/07/2023] Open
|
103
|
Lai JD, Georgescu MT, Hough C, Lillicrap D. To clear or to fear: An innate perspective on factor VIII immunity. Cell Immunol 2015; 301:82-9. [PMID: 26547364 PMCID: PMC7124272 DOI: 10.1016/j.cellimm.2015.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 10/26/2015] [Accepted: 10/26/2015] [Indexed: 12/12/2022]
Abstract
FVIII inhibitor development involves a combination of innate immune modulators. Clearance and immunity is influenced at 3 levels: the protein, cell, and location. Cells associated with FVIII half-life may influence the immune response against FVIII.
The enigma that is factor VIII immunogenicity remains ever pertinent in the treatment of hemophilia A. Development of neutralizing antibodies against the therapeutic protein in 25–30% of patients likely depends on the appropriate activation of the innate immune response shortly following antigen encounter. Our understanding of this important immunological synapse remains ill-defined. In this review, we examine the three distinct factors contributing to the fate of factor VIII almost immediately after infusion: the characteristics of the protein, the cell, and the microenvironment. We propose a continuum between clearance and antigen presentation that facilitates removal of FVIII from circulation leading to either tolerance or immunity.
Collapse
Affiliation(s)
- Jesse Derek Lai
- Department of Pathology & Molecular Medicine, Queen's University, Kingston, Canada
| | | | - Christine Hough
- Department of Pathology & Molecular Medicine, Queen's University, Kingston, Canada
| | - David Lillicrap
- Department of Pathology & Molecular Medicine, Queen's University, Kingston, Canada.
| |
Collapse
|
104
|
Fong JJ, Sreedhara K, Deng L, Varki NM, Angata T, Liu Q, Nizet V, Varki A. Immunomodulatory activity of extracellular Hsp70 mediated via paired receptors Siglec-5 and Siglec-14. EMBO J 2015; 34:2775-88. [PMID: 26459514 DOI: 10.15252/embj.201591407] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 09/18/2015] [Indexed: 12/16/2022] Open
Abstract
The intracellular chaperone heat-shock protein 70 (Hsp70) can be secreted from cells, but its extracellular role is unclear, as the protein has been reported to both activate and suppress the innate immune response. Potential immunomodulatory receptors on myelomonocytic lineage cells that bind extracellular Hsp70 are not well defined. Siglecs are Ig-superfamily lectins on mammalian leukocytes that recognize sialic acid-bearing glycans and thereby modulate immune responses. Siglec-5 and Siglec-14, expressed on monocytes and neutrophils, share identical ligand-binding domains but have opposing signaling functions. Based on phylogenetic analyses of these receptors, we predicted that endogenous sialic acid-independent ligands should exist. An unbiased screen revealed Hsp70 as a ligand for Siglec-5 and Siglec-14. Hsp70 stimulation through Siglec-5 delivers an anti-inflammatory signal, while stimulation through Siglec-14 is pro-inflammatory. The functional consequences of this interaction are also addressed in relation to a SIGLEC14 polymorphism found in humans. Our results demonstrate that an endogenous non-sialic acid-bearing molecule can be either a danger-associated or self-associated signal through paired Siglecs, and may explain seemingly contradictory prior reports on extracellular Hsp70 action.
Collapse
Affiliation(s)
- Jerry J Fong
- Glycobiology Research and Training Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA, USA Department of Cellular and Molecular Medicine, Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA, USA
| | - Karthik Sreedhara
- Glycobiology Research and Training Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA, USA Department of Cellular and Molecular Medicine, Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA, USA
| | - Liwen Deng
- Glycobiology Research and Training Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA, USA Department of Pathology, Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA, USA
| | - Nissi M Varki
- Glycobiology Research and Training Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA, USA Department of Pathology, Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA, USA Department of Medicine, Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA, USA
| | - Takashi Angata
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Qinglian Liu
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Victor Nizet
- Glycobiology Research and Training Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA, USA Department of Pediatrics, Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA, USA UC San Diego School of Medicine, Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA, USA Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA, USA
| | - Ajit Varki
- Glycobiology Research and Training Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA, USA Department of Cellular and Molecular Medicine, Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA, USA Department of Medicine, Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA, USA UC San Diego School of Medicine, Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA, USA
| |
Collapse
|
105
|
Morello E, Mallet A, Konto-Ghiorghi Y, Chaze T, Mistou MY, Oliva G, Oliveira L, Di Guilmi AM, Trieu-Cuot P, Dramsi S. Evidence for the Sialylation of PilA, the PI-2a Pilus-Associated Adhesin of Streptococcus agalactiae Strain NEM316. PLoS One 2015; 10:e0138103. [PMID: 26407005 PMCID: PMC4583379 DOI: 10.1371/journal.pone.0138103] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/25/2015] [Indexed: 01/20/2023] Open
Abstract
Streptococcus agalactiae (or Group B Streptococcus, GBS) is a commensal bacterium present in the intestinal and urinary tracts of approximately 30% of humans. We and others previously showed that the PI-2a pilus polymers, made of the backbone pilin PilB, the tip adhesin PilA and the cell wall anchor protein PilC, promote adhesion to host epithelia and biofilm formation. Affinity-purified PI-2a pili from GBS strain NEM316 were recognized by N-acetylneuraminic acid (NeuNAc, also known as sialic acid) specific lectins such as Elderberry Bark Lectin (EBL) suggesting that pili are sialylated. Glycan profiling with twenty different lectins combined with monosaccharide composition by HPLC suggested that affinity-purified PI-2a pili are modified by N-glycosylation and decorated with sialic acid attached to terminal galactose. Analysis of various relevant mutants in the PI-2a pilus operon by flow-cytometry and electron microscopy analyses pointed to PilA as the pilus subunit modified by glycosylation. Double labeling using PilB antibody and EBL lectin, which specifically recognizes N-acetylneuraminic acid attached to galactose in α-2, 6, revealed a characteristic binding of EBL at the tip of the pilus structures, highly reminiscent of PilA localization. Expression of a secreted form of PilA using an inducible promoter showed that this recombinant PilA binds specifically to EBL lectin when produced in the native GBS context. In silico search for potentially glycosylated asparagine residues in PilA sequence pointed to N427 and N597, which appear conserved and exposed in the close homolog RrgA from S. pneumoniae, as likely candidates. Conversion of these two asparagyl residues to glutamyl resulted in a higher instability of PilA. Our results provide the first evidence that the tip PilA adhesin can be glycosylated, and suggest that this modification is critical for PilA stability and may potentially influence interactions with the host.
Collapse
Affiliation(s)
- Eric Morello
- Institut Pasteur, Unité des Bactéries Pathogènes à Gram positif, Paris, France
- Centre National de la Recherche Scientifique (CNRS ERL 3526), Paris, France
| | - Adeline Mallet
- Institut Pasteur, Imagopole, Ultrastructural Microscopy Platform, Paris, France
| | - Yoan Konto-Ghiorghi
- Institut Pasteur, Unité des Bactéries Pathogènes à Gram positif, Paris, France
- Centre National de la Recherche Scientifique (CNRS ERL 3526), Paris, France
| | - Thibault Chaze
- Institut Pasteur, Spectrométrie de Masse Structurale et Protéomique, Paris, France
- INRA UMR 1319, MICALIS, Jouy-en-Josas, France
| | | | - Giulia Oliva
- Institut Pasteur, Unité des Bactéries Pathogènes à Gram positif, Paris, France
- Centre National de la Recherche Scientifique (CNRS ERL 3526), Paris, France
| | - Liliana Oliveira
- Institut Pasteur, Unité des Bactéries Pathogènes à Gram positif, Paris, France
- Centre National de la Recherche Scientifique (CNRS ERL 3526), Paris, France
| | - Anne-Marie Di Guilmi
- Université Grenoble Alpes, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Patrick Trieu-Cuot
- Institut Pasteur, Unité des Bactéries Pathogènes à Gram positif, Paris, France
- Centre National de la Recherche Scientifique (CNRS ERL 3526), Paris, France
| | - Shaynoor Dramsi
- Institut Pasteur, Unité des Bactéries Pathogènes à Gram positif, Paris, France
- Centre National de la Recherche Scientifique (CNRS ERL 3526), Paris, France
- * E-mail:
| |
Collapse
|
106
|
Freire-de-Lima L, Fonseca LM, Oeltmann T, Mendonça-Previato L, Previato JO. The trans-sialidase, the major Trypanosoma cruzi virulence factor: Three decades of studies. Glycobiology 2015. [PMID: 26224786 DOI: 10.1093/glycob/cwv057] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chagas' disease is a potentially life-threatening disease caused by the protozoan parasite Trypanosoma cruzi. Since the description of Chagas'disease in 1909 extensive research has identified important events in the disease in order to understand the biochemical mechanism that modulates T. cruzi-host cell interactions and the ability of the parasite to ensure its survival in the infected host. Exactly 30 years ago, we presented evidence for the first time of a trans-sialidase activity in T. cruzi (T. cruzi-TS). This enzyme transfers sialic acid from the host glycoconjugates to the terminal β-galactopyranosyl residues of mucin-like molecules on the parasite's cell surface. Thenceforth, many articles have provided convincing data showing that T. cruzi-TS is able to govern relevant mechanisms involved in the parasite's survival in the mammalian host, such as invasion, escape from the phagolysosomal vacuole, differentiation, down-modulation of host immune responses, among others. The aim of this review is to cover the history of the discovery of T. cruzi-TS, as well as some well-documented biological effects encompassed by this parasite's virulence factor, an enzyme with potential attributes to become a drug target against Chagas disease.
Collapse
Affiliation(s)
- L Freire-de-Lima
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21944902, Rio de Janeiro, RJ, Brasil
| | - L M Fonseca
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21944902, Rio de Janeiro, RJ, Brasil
| | - T Oeltmann
- Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - L Mendonça-Previato
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21944902, Rio de Janeiro, RJ, Brasil
| | - J O Previato
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21944902, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
107
|
Wu NH, Meng F, Seitz M, Valentin-Weigand P, Herrler G. Sialic acid-dependent interactions between influenza viruses and Streptococcus suis affect the infection of porcine tracheal cells. J Gen Virol 2015; 96:2557-2568. [PMID: 26297001 DOI: 10.1099/jgv.0.000223] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bacterial co-infections are a major complication in influenza-virus-induced disease in both humans and animals. Either of the pathogens may induce a host response that affects the infection by the other pathogen. A unique feature in the co-infection by swine influenza viruses (SIV) and Streptococcus suis serotype 2 is the direct interaction between the two pathogens. It is mediated by the haemagglutinin of SIV that recognizes the α2,6-linked sialic acid present in the capsular polysaccharide of Streptococcus suis. In the present study, this interaction was demonstrated for SIV of both H1N1 and H3N2 subtypes as well as for human influenza viruses that recognize α2,6-linked sialic acid. Binding of SIV to Streptococcus suis resulted in co-sedimentation of virus with bacteria during low-speed centrifugation. Viruses bound to bacteria retained infectivity but induced only tiny plaques compared with control virus. Infection of porcine tracheal cells by SIV facilitated adherence of Streptococcus suis, which was evident by co-staining of bacterial and viral antigen. Sialic-acid-dependent binding of Streptococcus suis was already detectable after incubation for 30 min. By contrast, bacterial co-infection had a negative effect on the replication of SIV as indicated by lower virus titres in the supernatant and a delay in the kinetics of virus release.
Collapse
Affiliation(s)
- Nai-Huei Wu
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Fandan Meng
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Maren Seitz
- Institute of Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Peter Valentin-Weigand
- Institute of Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Georg Herrler
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
108
|
Host-like carbohydrates promote bloodstream survival of Vibrio vulnificus in vivo. Infect Immun 2015; 83:3126-36. [PMID: 26015477 PMCID: PMC4496609 DOI: 10.1128/iai.00345-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/13/2015] [Indexed: 01/15/2023] Open
Abstract
Sialic acids are found on all vertebrate cell surfaces and are part of a larger class of molecules known as nonulosonic acids. Many bacterial pathogens synthesize related nine-carbon backbone sugars; however, the role(s) of these non-sialic acid molecules in host-pathogen interactions is poorly understood. Vibrio vulnificus is the leading cause of seafood-related death in the United States due to its ability to quickly access the host bloodstream, which it can accomplish through gastrointestinal or wound infection. However, little is known about how this organism persists systemically. Here we demonstrate that sialic acid-like molecules are present on the lipopolysaccharide of V. vulnificus, are required for full motility and biofilm formation, and also contribute to the organism's natural resistance to polymyxin B. Further experiments in a murine model of intravenous V. vulnificus infection demonstrated that expression of nonulosonic acids had a striking benefit for bacterial survival during bloodstream infection and dissemination to other tissues in vivo. In fact, levels of bacterial persistence in the blood corresponded to the overall levels of these molecules expressed by V. vulnificus isolates. Taken together, these results suggest that molecules similar to sialic acids evolved to facilitate the aquatic lifestyle of V. vulnificus but that their emergence also resulted in a gain of function with life-threatening potential in the human host.
Collapse
|
109
|
Schnaar RL. Glycans and glycan-binding proteins in immune regulation: A concise introduction to glycobiology for the allergist. J Allergy Clin Immunol 2015; 135:609-15. [PMID: 25649080 DOI: 10.1016/j.jaci.2014.10.057] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 10/28/2014] [Indexed: 12/30/2022]
Abstract
Cells are endowed with a rich surface coat of glycans that are carried as glycoproteins and glycolipids on the outer leaflets of their plasma membranes and constitute a major molecular interface between cells and their environment. Each cell's glycome, the sum of its diverse glycan structures, comprises a distinct cellular signature defined by expression levels of the enzymes responsible for glycan biosynthesis. This signature can be read by complementary glycan-binding proteins (GBPs) that translate glycan recognition into function. Nowhere is this more evident than in the immune system, where glycans and GBPs are integral to pathogen recognition and control of inflammatory responses. Glycobiology, the study of glycan structures and their functions, increasingly provides insight into immunoregulatory mechanisms and thereby provides opportunities for therapeutic intervention. This review briefly examines the makeup of the human glycome and the GBPs that translate glycan recognition into function and provides examples of glycan recognition events that are responsible for immune system regulation to promote wider appreciation of this rapidly expanding area of research.
Collapse
Affiliation(s)
- Ronald L Schnaar
- Department of Pharmacology and Molecular Science and the Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Md.
| |
Collapse
|
110
|
Bochner BS, Zimmermann N. Role of siglecs and related glycan-binding proteins in immune responses and immunoregulation. J Allergy Clin Immunol 2015; 135:598-608. [PMID: 25592986 DOI: 10.1016/j.jaci.2014.11.031] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 11/14/2014] [Accepted: 11/25/2014] [Indexed: 12/16/2022]
Abstract
Virtually all cells and extracellular material are heavily decorated by various glycans, yet our understanding of the structure and function of these moieties lags behind the understanding of nucleic acids, lipids, and proteins. Recent years have seen a tremendous acceleration of knowledge in the field of glycobiology, revealing many intricacies and functional contributions that were previously poorly appreciated or even unrecognized. This review highlights several topics relevant to glycoimmunology in which mammalian and pathogen-derived glycans displayed on glycoproteins and other scaffolds are recognized by specific glycan-binding proteins (GBPs), leading to a variety of proinflammatory and anti-inflammatory cellular responses. The focus for this review is mainly on 2 families of GBPs, sialic acid-binding immunoglobulin-like lectins (siglecs) and selectins, that are involved in multiple steps of the immune response, including distinguishing pathogens from self, cell trafficking to sites of inflammation, fine-tuning of immune responses leading to activation or tolerance, and regulation of cell survival. Importantly for the clinician, accelerated rates of discovery in the field of glycoimmunology are being translated into innovative medical approaches that harness the interaction of glycans and GBPs to the benefit of the host and might soon lead to novel diagnostics and therapeutics.
Collapse
Affiliation(s)
- Bruce S Bochner
- Department of Medicine, Division of Allergy-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Ill.
| | - Nives Zimmermann
- Department of Pediatrics, Division of Allergy and Immunology, Children's Hospital Medical Center, and Department of Pathology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
111
|
Beaussart A, Péchoux C, Trieu-Cuot P, Hols P, Mistou MY, Dufrêne YF. Molecular mapping of the cell wall polysaccharides of the human pathogen Streptococcus agalactiae. NANOSCALE 2014; 6:14820-14827. [PMID: 25358409 DOI: 10.1039/c4nr05280c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The surface of many bacterial pathogens is covered with polysaccharides that play important roles in mediating pathogen-host interactions. In Streptococcus agalactiae, the capsular polysaccharide (CPS) is recognized as a major virulence factor while the group B carbohydrate (GBC) is crucial for peptidoglycan biosynthesis and cell division. Despite the important roles of CPS and GBC, there is little information available on the molecular organization of these glycopolymers on the cell surface. Here, we use atomic force microscopy (AFM) and transmission electron microscopy (TEM) to analyze the nanoscale distribution of CPS and GBC in wild-type (WT) and mutant strains of S. agalactiae. TEM analyses reveal that in WT bacteria, peptidoglycan is covered with a very thin (few nm) layer of GBC (the "pellicle") overlaid by a 15-45 nm thick layer of CPS (the "capsule"). AFM-based single-molecule mapping with specific antibody probes shows that CPS is exposed on WT cells, while it is hardly detected on mutant cells impaired in CPS production (ΔcpsE mutant). By contrast, both TEM and AFM show that CPS is over-expressed in mutant cells altered in GBC expression (ΔgbcO mutant), indicating that the production of the two surface glycopolymers is coordinated in WT cells. In addition, AFM topographic imaging and molecular mapping with specific lectin probes demonstrate that removal of CPS (ΔcpsE), but not of GBC (ΔgbcO), leads to the exposure of peptidoglycan, organized into 25 nm wide bands running parallel to the septum. These results indicate that CPS forms a homogeneous barrier protecting the underlying peptidoglycan from environmental exposure, while the presence of GBC does not prevent peptidoglycan detection. This work shows that single-molecule AFM, combined with high-resolution TEM, represents a powerful platform for analysing the molecular arrangement of the cell wall polymers of bacterial pathogens.
Collapse
Affiliation(s)
- Audrey Beaussart
- Université Catholique de Louvain, Institute of Life Sciences, B-1348 Louvain-la-Neuve, Belgium.
| | | | | | | | | | | |
Collapse
|
112
|
Macauley MS, Crocker PR, Paulson JC. Siglec-mediated regulation of immune cell function in disease. Nat Rev Immunol 2014; 14:653-66. [PMID: 25234143 DOI: 10.1038/nri3737] [Citation(s) in RCA: 801] [Impact Index Per Article: 72.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
All mammalian cells display a diverse array of glycan structures that differ from those that are found on microbial pathogens. Siglecs are a family of sialic acid-binding immunoglobulin-like receptors that participate in the discrimination between self and non-self, and that regulate the function of cells in the innate and adaptive immune systems through the recognition of their glycan ligands. In this Review, we describe the recent advances in our understanding of the roles of Siglecs in the regulation of immune cell function in infectious diseases, inflammation, neurodegeneration, autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Matthew S Macauley
- Departments of Cell and Molecular Biology, Immunology and Microbial Science, and Physiological Chemistry, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Paul R Crocker
- Division of Cell Signalling and Immunology, Wellcome Trust Building, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - James C Paulson
- Departments of Cell and Molecular Biology, Immunology and Microbial Science, and Physiological Chemistry, The Scripps Research Institute, La Jolla, California 92037, USA
| |
Collapse
|