101
|
Buratini J, Dellaqua TT, de Lima PF, Renzini MM, Canto MD, Price CA. Oocyte secreted factors control genes regulating FSH signaling and the maturation cascade in cumulus cells: the oocyte is not in a hurry. J Assist Reprod Genet 2023; 40:1961-1971. [PMID: 37204638 PMCID: PMC10371970 DOI: 10.1007/s10815-023-02822-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/29/2023] [Indexed: 05/20/2023] Open
Abstract
PURPOSE To assess the effects of the oocyte on mRNA abundance of FSHR, AMH and major genes of the maturation cascade (AREG, EREG, ADAM17, EGFR, PTGS2, TNFAIP6, PTX3, and HAS2) in bovine cumulus cells. METHODS (1) Intact cumulus-oocyte complexes, (2) microsurgically oocytectomized cumulus-oolema complexes (OOX), and (3) OOX + denuded oocytes (OOX+DO) were subjected to in vitro maturation (IVM) stimulated with FSH for 22 h or with AREG for 4 and 22 h. After IVM, cumulus cells were separated and relative mRNA abundance was measured by RT-qPCR. RESULTS After 22 h of FSH-stimulated IVM, oocytectomy increased FSHR mRNA levels (p=0.005) while decreasing those of AMH (p=0.0004). In parallel, oocytectomy increased mRNA abundance of AREG, EREG, ADAM17, PTGS2, TNFAIP6, and PTX3, while decreasing that of HAS2 (p<0.02). All these effects were abrogated in OOX+DO. Oocytectomy also reduced EGFR mRNA levels (p=0.009), which was not reverted in OOX+DO. The stimulatory effect of oocytectomy on AREG mRNA abundance (p=0.01) and its neutralization in OOX+DO was again observed after 4 h of AREG-stimulated IVM. After 22 h of AREG-stimulated IVM, oocytectomy and addition of DOs to OOX caused the same effects on gene expression observed after 22 h of FSH-stimulated IVM, except for ADAM17 (p<0.025). CONCLUSION These findings suggest that oocyte-secreted factors inhibit FSH signaling and the expression of major genes of the maturation cascade in cumulus cells. These may be important actions of the oocyte favoring its communication with cumulus cells and preventing premature activation of the maturation cascade.
Collapse
Affiliation(s)
- Jose Buratini
- Biogenesi, Reproductive Medicine Centre, Monza, Italy
- Clinica EUGIN, Milan, Italy
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP Brazil
| | - Thaisy Tino Dellaqua
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP Brazil
| | - Paula Fernanda de Lima
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP Brazil
| | | | | | - Christopher A. Price
- Centre de Recherche en Reproduction Animale, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Canada
| |
Collapse
|
102
|
Wu J, Liang C, Wang X, Huang Y, Liu W, Wang R, Cao J, Su X, Yin T, Wang X, Zhang Z, Shen L, Li D, Zou W, Wu J, Qiu L, Di W, Cao Y, Ji D, Qian K. Efficient Metabolic Fingerprinting of Follicular Fluid Encodes Ovarian Reserve and Fertility. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302023. [PMID: 37311196 PMCID: PMC10427401 DOI: 10.1002/advs.202302023] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/30/2023] [Indexed: 06/15/2023]
Abstract
Ovarian reserve (OR) and fertility are critical in women's healthcare. Clinical methods for encoding OR and fertility rely on the combination of tests, which cannot serve as a multi-functional platform with limited information from specific biofluids. Herein, metabolic fingerprinting of follicular fluid (MFFF) from follicles is performed, using particle-assisted laser desorption/ionization mass spectrometry (PALDI-MS) to encode OR and fertility. PALDI-MS allows efficient MFFF, showing fast speed (≈30 s), high sensitivity (≈60 fmol), and desirable reproducibility (coefficients of variation <15%). Further, machine learning of MFFF is applied to diagnose diminished OR (area under the curve of 0.929) and identify high-quality oocytes/embryos (p < 0.05) by a single PALDI-MS test. Meanwhile, metabolic biomarkers from MFFF are identified, which also determine oocyte/embryo quality (p < 0.05) from the sampling follicles toward fertility prediction in clinics. This approach offers a powerful platform in women's healthcare, not limited to OR and fertility.
Collapse
|
103
|
Gordon CE, Combelles CM, Lanes A, Patel J, Racowsky C. Cumulus cell co-culture in media drops does not improve rescue in vitro maturation of vitrified-warmed immature oocytes. F&S SCIENCE 2023; 4:185-192. [PMID: 37201752 DOI: 10.1016/j.xfss.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/10/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023]
Abstract
OBJECTIVE To assess whether co-culture with vitrified-warmed cumulus cells (CCs) in media drops improves rescue in vitro maturation (IVM) of previously vitrified immature oocytes. Previous studies have shown improved rescue IVM of fresh immature oocytes when cocultured with CCs in a three-dimensional matrix. However, the scheduling and workload of embryologists would benefit from a simpler IVM approach, particularly in the setting of time-sensitive oncofertility oocyte cryopreservation (OC) cases. Although the yield of developmentally competent mature metaphase II (MII) oocytes is increased when rescue IVM is performed before cryopreservation, it is unknown whether maturation of previously vitrified immature oocytes is improved after coculture with CCs in a simple system not involving a three-dimensional matrix. DESIGN Randomized controlled trial. SETTING Academic hospital. PATIENTS A total of 320 (160 germinal vesicles [GVs] and 160 metaphase I [MI]) immature oocytes and autologous CC clumps were vitrified from patients who were undergoing planned OC or intracytoplasmic sperm injection from July 2020 until September 2021. INTERVENTIONS On warming, the oocytes were randomized to culture in IVM media with CCs (+CC) or without CCs (-CC). Germinal vesicles and MI oocytes were cultured in 25 μL (SAGE IVM medium) for 32 hours and 20-22 hours, respectively. MAIN OUTCOME MEASURES Oocytes with a polar body (MII) were randomized to confocal microscopy for analysis of spindle integrity and chromosomal alignment to assess nuclear maturity or to parthenogenetic activation to assess cytoplasmic maturity. Wilcoxon rank sum tests for continuous variables and the chi square or Fisher's exact test for categorical variables assessed statistical significance. Relative risks (RRs) and 95% confidence intervals (CIs) were calculated. RESULTS Patient demographic characteristics were similar for both the GV and MI groups after randomization to +CC vs. -CC. No statistically significant differences were observed between +CC vs. -CC groups regarding the percentage of MII from either GV (42.5% [34/80] vs. 52.5% [42/80]; RR 0.81; 95% CI: 0.57-1.15]) or MI (76.3% [61/80]; vs. 72.5% [58/80]; RR 1.05; 95% CI: 0.88-1.26]) oocytes. An increased percentage of GV-matured MIIs underwent parthenogenetic activation in the +CC group (92.3% [12/13] vs. 70.8% [17/24]), but the difference was not statistically significant (RR 1.30; 95% CI: 0.97-1.75), whereas the activation rate was identical for MI-matured oocytes (74.3% [26/35] vs. 75.0% [18/24], CC+ vs. CC-; RR 0.99; 95% CI: 0.74-1.32). No significant differences were observed between +CC vs. -CC groups for cleavage of parthenotes from GV-matured oocytes (91.7% [11/12] vs. 82.4% [14/17]) or blastulation (0 for both) or for MI-matured oocytes (cleavage: 80.8% [21/26] vs. 94.4% [17/18]; blastulation: 0 [0/26] vs. 16.7% [3/18]). Further, no significant differences were observed between +CC vs. -CC for GV-matured oocytes regarding incidence of bipolar spindles (38.9% [7/18] vs. 33.3% [5/15]) or aligned chromosomes (22.2% [4/18] vs. 0.0 [0/15]); or for MI-matured oocytes (bipolar spindle: 38.9% [7/18] vs. 42.9% [2/28]); aligned chromosomes (35.3% [6/17] vs. 24.1% [7/29]). CONCLUSIONS Cumulus cell co-culture in this simple two-dimensional system does not improve rescue IVM of vitrified, warmed immature oocytes, at least by the markers assessed here. Further work is required to assess the efficacy of this system given its potential to provide flexibility in a busy, in vitro fertilization clinic.
Collapse
Affiliation(s)
- Catherine E Gordon
- Brigham and Women's Hospital Center for Infertility and Reproductive Surgery, Harvard Medical School, Boston, Massachusetts.
| | | | - Andrea Lanes
- Brigham and Women's Hospital Center for Infertility and Reproductive Surgery, Harvard Medical School, Boston, Massachusetts
| | - Jay Patel
- Brigham and Women's Hospital Center for Infertility and Reproductive Surgery, Harvard Medical School, Boston, Massachusetts
| | - Catherine Racowsky
- Brigham and Women's Hospital Center for Infertility and Reproductive Surgery, Harvard Medical School, Boston, Massachusetts; Department of Obstetrics, Gynecology and Reproductive Medicine, Hôpital Foch, Suresnes, France
| |
Collapse
|
104
|
Ma X, Wang M, Wang J, Zhang Q, Pu S, Wang R, Yu S, Wang L, Pan Y. Dynamic Changes in Proteome during Yak Oocyte Maturation Analyzed Using iTRAQ Technology. Animals (Basel) 2023; 13:2085. [PMID: 37443883 DOI: 10.3390/ani13132085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
The aim of this study was to investigate protein regulation at different time points during the in vitro maturation of yak oocytes. Yak oocytes at GV, MI, and MII stages were collected during in vitro maturation, and differential proteomics sequencing was performed using iTRAQ technology. GO functional classification indicated that the differential proteins were closely associated with biological processes such as "metabolic processes", and molecular events such as "binding" molecular-function-related categories were active. KOG analysis showed that energy-metabolism-related activities were vigorous during oocyte development from the GV phase to MI phase, and genetic material preparation activities were more active when oocytes developed from the MI stage to MII stage. KEGG pathway analysis showed that the PPAR metabolic pathway, Hippo signaling pathway, and ECM-receptor interaction and metabolic pathway were enriched from the GV to the MI stages. The PI3K-Akt, TGF-β, and phagosome pathways were enriched from the MI stage to the MII stage. These results indicate that transient dynamic changes occurred in the proteome during the maturation of yak oocytes, and the physiological functions mediated by these were also different. The accurate identification of the differential proteins in the three stages of GV, MI, and MII was helpful in further analyzing the molecular regulatory mechanism of yak oocyte maturation.
Collapse
Affiliation(s)
- Xin Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou 730070, China
| | - Meng Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou 730070, China
| | - Jinglei Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou 730070, China
| | - Qian Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou 730070, China
| | - Sisi Pu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Rui Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Sijiu Yu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou 730070, China
| | - Libin Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou 730070, China
| | - Yangyang Pan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou 730070, China
| |
Collapse
|
105
|
Huang L, Li W, Dai X, Zhao S, Xu B, Wang F, Jin RT, Luo L, Wu L, Jiang X, Cheng Y, Zou J, Xu C, Tong X, Fan HY, Zhao H, Bao J. Biallelic variants in MAD2L1BP ( p31comet) cause female infertility characterized by oocyte maturation arrest. eLife 2023; 12:e85649. [PMID: 37334967 PMCID: PMC10319434 DOI: 10.7554/elife.85649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 06/15/2023] [Indexed: 06/21/2023] Open
Abstract
Human oocyte maturation arrest represents one of the severe conditions for female patients with primary infertility. However, the genetic factors underlying this human disease remain largely unknown. The spindle assembly checkpoint (SAC) is an intricate surveillance mechanism that ensures accurate segregation of chromosomes throughout cell cycles. Once the kinetochores of chromosomes are correctly attached to bipolar spindles and the SAC is satisfied, the MAD2L1BP, best known as p31comet, binds mitosis arrest deficient 2 (MAD2) and recruits the AAA+-ATPase TRIP13 to disassemble the mitotic checkpoint complex (MCC), leading to the cell-cycle progression. In this study, by whole-exome sequencing (WES), we identified homozygous and compound heterozygous MAD2L1BP variants in three families with female patients diagnosed with primary infertility owing to oocyte metaphase I (MI) arrest. Functional studies revealed that the protein variants resulting from the C-terminal truncation of MAD2L1BP lost their binding ability to MAD2. cRNA microinjection of full-length or truncated MAD2L1BP uncovered their discordant roles in driving the extrusion of polar body 1 (PB1) in mouse oocytes. Furthermore, the patient's oocytes carrying the mutated MAD2L1BP resumed polar body extrusion (PBE) when rescued by microinjection of full-length MAD2L1BP cRNAs. Together, our studies identified and characterized novel biallelic variants in MAD2L1BP responsible for human oocyte maturation arrest at MI, and thus prompted new therapeutic avenues for curing female primary infertility.
Collapse
Affiliation(s)
- Lingli Huang
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Anhui Provincial Hospital Affiliated to Anhui Medical UniversityHefeiChina
| | - Wenqing Li
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC)HefeiChina
| | - Xingxing Dai
- Life Sciences Institute, Zhejiang UniversityHangzhouChina
- International Institutes of Medicine, the Fourth Affiliated Hospital of Zhejiang University School of MedicineYiwuChina
| | - Shuai Zhao
- Hospital for Reproductive Medicine, State Key Laboratory of Reproductive Medicine and Offspring Health, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Clinical Research Center for Reproductive Health, Shandong UniversityJinanChina
| | - Bo Xu
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
| | - Fengsong Wang
- School of Life Science, Anhui Medical UniversityHefeiChina
| | - Ren-Tao Jin
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
| | - Lihua Luo
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
| | - Limin Wu
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
| | - Xue Jiang
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC)HefeiChina
| | - Yu Cheng
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC)HefeiChina
| | - Jiaqi Zou
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC)HefeiChina
| | - Caoling Xu
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC)HefeiChina
| | - Xianhong Tong
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
| | - Heng-Yu Fan
- Life Sciences Institute, Zhejiang UniversityHangzhouChina
| | - Han Zhao
- Hospital for Reproductive Medicine, State Key Laboratory of Reproductive Medicine and Offspring Health, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Clinical Research Center for Reproductive Health, Shandong UniversityJinanChina
| | - Jianqiang Bao
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC)HefeiChina
| |
Collapse
|
106
|
Coxir SA, Costa GMJ, Santos CFD, Alvarenga RDLLS, Lacerda SMDSN. From in vivo to in vitro: exploring the key molecular and cellular aspects of human female gametogenesis. Hum Cell 2023:10.1007/s13577-023-00921-7. [PMID: 37237248 DOI: 10.1007/s13577-023-00921-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
Human oogenesis is a highly complex and not yet fully understood process due to ethical and technological barriers that limit studies in the field. In this context, replicating female gametogenesis in vitro would not only provide a solution for some infertility problems, but also be an excellent study model to better understand the biological mechanisms that determine the formation of the female germline. In this review, we explore the main cellular and molecular aspects involved in human oogenesis and folliculogenesis in vivo, from the specification of primordial germ cells (PGCs) to the formation of the mature oocyte. We also sought to describe the important bidirectional relationship between the germ cell and the follicular somatic cells. Finally, we address the main advances and different methodologies used in the search for obtaining cells of the female germline in vitro.
Collapse
Affiliation(s)
- Sarah Abreu Coxir
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Guilherme Mattos Jardim Costa
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Camilla Fernandes Dos Santos
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | | | - Samyra Maria Dos Santos Nassif Lacerda
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
107
|
Martinez CA, Rizos D, Rodriguez-Martinez H, Funahashi H. Oocyte-cumulus cells crosstalk: New comparative insights. Theriogenology 2023; 205:87-93. [PMID: 37105091 DOI: 10.1016/j.theriogenology.2023.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023]
Abstract
Mammalian follicles are constituted of a complex structure composed of several layers of granulosa cells surrounding the oocyte and of theca cells that reside beneath its basement membrane. During folliculogenesis, granulosa cells separate into two anatomically and functionally distinct sub-types; the mural cells lining the follicle wall and the oocyte-surrounding cumulus cells, i.e. those in intimate metabolic contact with the oocyte. The cumulus cells connecting with the oocyte have trans-zonal cytoplasmic projections which, penetrating the zona pellucida, form the cumulus-oocyte complex. The connections through gap junctions allow the transfer of small molecules between oocyte and cumulus cells, such as ions, metabolites, and amino acids necessary for oocyte growth, as well as small regulatory molecules that control oocyte development. The bi-directional communication between the oocyte and cumulus cells is crucial for the development and functions of both cell types. Our current knowledge of the relationship between the oocyte and its surrounding cumulus cells continues to change as we gain a greater understanding of factors regulating oocyte development and folliculogenesis. This review will mainly focus on the reciprocal interaction between oocytes and cumulus cells during the latter stages of follicle development i.e. through antral development to periovulatory events including oocyte maturation, expansion, and degradation of the cumulus matrix.
Collapse
Affiliation(s)
- Cristina A Martinez
- Department of Animal Science, Okayama University, Okayama, Japan; Department of Animal Reproduction, INIA-CSIC, Madrid, Spain; Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
| | | | | | | |
Collapse
|
108
|
Ma XY, Zhu Y, Xu YR, Saleem MAU, Jian PA, Yi BJ, Li XN, Li JL. Mitocytosis Is Critical for Phthalate-Induced Injury to the Ovarian Granulosa Cell Layer in Quail ( Coturnix japonica). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5745-5755. [PMID: 36977485 DOI: 10.1021/acs.jafc.2c08601] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Phthalates are widely used synthetic chemicals that determine endocrine disruption effects on female reproductivity and oviposition. Our study demonstrated that the mitochondrial quality in ovarian granulosa cells (GCs) is associated with a poor prognosis in female reproduction. However, the molecular mechanism of di-(2-ethylhexyl) phthalate (DEHP) exposure on the quail ovarian GC layer is still unknown. To validate the effects of DEHP on the GC layer, 8 days' old 150 female Japanese quail were treated orally with DEHP (250, 500, and 750 mg/kg BW/day) for 45 days to explore the toxic effects of DEHP on the ovarian GC layer. Histopathological assessment and ultrastructure observation found that DEHP decreased the thickness of the GC layer, resulted in mitochondrial damage, and activated mitocytosis. Additionally, the results further suggested that DEHP impacted the secretion of steroid hormones (reduced FSH, E2, and T levels and boosted Prog, PRL, and LH levels) by triggering mitocytosis (enhanced transcription of MYO19 and protein of KIF5B levels), mitochondrial dynamics (increasing mRNA and protein levels of OPA1, DRP1, MFN1, and MFN2), mitophagy (increasing mRNA and protein levels of Parkin, LC3B, and P62), and inducing GC function disorder. In conclusion, our research provided a new idea to explain the mechanism of DEHP toxicity of the ovarian GC layer in quail and presented insights into the role of mitocytosis in DEHP-induced ovarian GC layer injury.
Collapse
Affiliation(s)
- Xiang-Yu Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Yu Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Ya-Ru Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | | | - Ping-An Jian
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Bao-Jin Yi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, P. R. China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, P. R. China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| |
Collapse
|
109
|
Peserico A, Di Berardino C, Capacchietti G, Camerano Spelta Rapini C, Liverani L, Boccaccini AR, Russo V, Mauro A, Barboni B. IVM Advances for Early Antral Follicle-Enclosed Oocytes Coupling Reproductive Tissue Engineering to Inductive Influences of Human Chorionic Gonadotropin and Ovarian Surface Epithelium Coculture. Int J Mol Sci 2023; 24:ijms24076626. [PMID: 37047595 PMCID: PMC10095509 DOI: 10.3390/ijms24076626] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/26/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
In vitro maturation (IVM) is not a routine assisted reproductive technology (ART) for oocytes collected from early antral (EA) follicles, a large source of potentially available gametes. Despite substantial improvements in IVM in the past decade, the outcomes remain low for EA-derived oocytes due to their reduced developmental competences. To optimize IVM for ovine EA-derived oocytes, a three-dimensional (3D) scaffold-mediated follicle-enclosed oocytes (FEO) system was compared with a validated cumulus-oocyte complex (COC) protocol. Gonadotropin stimulation (eCG and/or hCG) and/or somatic cell coculture (ovarian vs. extraovarian-cell source) were supplied to both systems. The maturation rate and parthenogenetic activation were significantly improved by combining hCG stimulation with ovarian surface epithelium (OSE) cells coculture exclusively on the FEO system. Based on the data, the paracrine factors released specifically from OSE enhanced the hCG-triggering of oocyte maturation mechanisms by acting through the mural compartment (positive effect on FEO and not on COC) by stimulating the EGFR signaling. Overall, the FEO system performed on a developed reproductive scaffold proved feasible and reliable in promoting a synergic cytoplasmatic and nuclear maturation, offering a novel cultural strategy to widen the availability of mature gametes for ART.
Collapse
Affiliation(s)
- Alessia Peserico
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Chiara Di Berardino
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Giulia Capacchietti
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Chiara Camerano Spelta Rapini
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Liliana Liverani
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander University of Erlangen-Nuremberg, 91054 Erlangen, Germany
- DGS S.p.A., 00142 Rome, Italy
| | - Aldo Roberto Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Valentina Russo
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Annunziata Mauro
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Barbara Barboni
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| |
Collapse
|
110
|
Leonurine improves bovine oocyte maturation and subsequent embryonic development by reducing oxidative stress and improving mitochondrial function. Theriogenology 2023; 199:11-18. [PMID: 36680865 DOI: 10.1016/j.theriogenology.2023.01.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/30/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
It is acknowledged that excessive reactive oxygen species (ROS) level attributes greatly to the compromised developmental potential of oocytes matured in vitro. Although agents were applied to alleviate ROS levels, results were varied because of the distinct antioxidative activity and cell toxicity. Leonurine (LEO), extracted from the natural Chinese herb motherwort, is considered to be a potent free radical scavenger. Yet, it is undetermined whether LEO is benefit for oocyte development during in vitro maturation (IVM). In the present study, the effect of LEO on the quality of bovine oocyte as well as the underlying mechanism was investigated. We found that maturation rate (P < 0.01), subsequent blastocyst formation rate (P < 0.05), and the total blastocyst cell number (P < 0.05) after parthenogenetic activation were significantly increased in the group treated with 20 μM LEO. Moreover, a dramatic decline in ROS (P < 0.01), decreased lipid content (P < 0.01), elevated MMP level (P < 0.05), increased ATP content (P < 0.05), and reduced mitochondrial temperature (P < 0.01) were observed in oocytes treated with LEO. Furthermore, the expression level of anti-apoptotic protein BCL2 was significantly higher in LEO treated oocytes (P < 0.01), and the ratio of BAX/BCL2 was obvious decreased (P < 0.01). Finally, we found that LC3B intensity was significantly reduced (P < 0.05) while the rate of EdU positive nuclei was markedly increased (P < 0.05) in embryos derived from LEO-treated oocytes. Our results demonstrate that LEO exhibits a potent protective role in the acquisition of oocyte development capacity against oxidative stress during IVM, and provides a new solution for optimizing the in vitro culture system of bovine embryos.
Collapse
|
111
|
Li C, Zhang H, Wu H, Li R, Wen D, Tang Y, Gao Z, Xu R, Lu S, Wei Q, Zhao X, Pan M, Ma B. Intermittent fasting reverses the declining quality of aged oocytes. Free Radic Biol Med 2023; 195:74-88. [PMID: 36581058 DOI: 10.1016/j.freeradbiomed.2022.12.084] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/05/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022]
Abstract
Decreased oocyte quality and compromised embryo development are particularly prevalent in older females, but the aging-related cellular processes and effective ameliorative approaches have not been fully characterized. Intermittent fasting (IF) can help improve health and extend lifespan; nevertheless, how it regulates reproductive aging and its mechanisms remain unclear. We used naturally aged mice to investigate the role of IF in reproduction and found that just one month of every-other-day fasting was sufficient to improve oocyte quality. IF not only increased antral follicle numbers and ovulation but also enhanced oocyte meiotic competence and embryonic development by improving both nuclear and cytoplasmic maturation in maternally aged oocytes. The beneficial effects of IF manifested as alleviation of spindle structure abnormalities and chromosome segregation errors and maintenance of the correct cytoplasmic organelle reorganization. Moreover, single-cell transcriptome analysis showed that the positive impact of IF on aged oocytes was mediated by restoration of the nicotinamide adenine dinucleotide (NAD+)/Sirt1-mediated antioxidant defense system, which eliminated excessive accumulated ROS to suppress DNA damage and apoptosis. Collectively, these findings suggest that IF is a feasible approach to protect oocytes against advanced maternal age-related oxidation damage and to improve the reproductive outcomes of aged females.
Collapse
Affiliation(s)
- Chan Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Hui Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Hao Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Ruoyu Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Dongxu Wen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Yaju Tang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Zhen Gao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Rui Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Sihai Lu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Qiang Wei
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Xiaoe Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China.
| | - Menghao Pan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China.
| | - Baohua Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China.
| |
Collapse
|
112
|
Karen Nenonene E, Trottier-Lavoie M, Marchais M, Bastien A, Gilbert I, Macaulay AD, Khandjian EW, Maria Luciano A, Lodde V, Viger RS, Robert C. Roles of the cumulus-oocyte transzonal network and the Fragile X protein family in oocyte competence. Reproduction 2023; 165:209-219. [PMID: 36445258 DOI: 10.1530/rep-22-0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/28/2022] [Indexed: 11/29/2022]
Abstract
In brief RNA granules travel through the cumulus cell network of transzonal projections which is associated with oocyte developmental competence, and RNA packaging involves RNA-binding proteins of the Fragile X protein family. Abstract The determinants of oocyte developmental competence have puzzled scientists for decades. It is known that follicular conditions can nurture the production of a high-quality oocyte, but the underlying mechanisms remain unknown. Somatic cumulus cells most proximal to the oocyte are known to have cellular extensions that reach across the zona pellucida and contact with the oocyte plasma membrane. Herein, it was found that transzonal projections (TZPs) network quality is associated with developmental competence. Knowing that ribonucleoparticles are abundant within TZPs, the distribution of RNA-binding proteins was studied. The Fragile X-related proteins (FXR1P and FXR2P) and two partnering protein families, namely cytoplasmic FMRP-interacting protein and nuclear FMRP-interacting protein, exhibited distinctive patterns consistent with roles in regulating mRNA packaging, transport, and translation. The expression of green fluorescent protein (GFP)-FMRP fusion protein in cumulus cells showed active granule formation and their transport and transfer through filipodia connecting with neighboring cells. Near the projections' ends was found the cytoskeletal anchoring protein Filamin A and active protein synthesis sites. This study highlights key proteins involved in delivering mRNA to the oocyte. Thus, cumulus cells appear to indeed support the development of high-quality oocytes via the transzonal network.
Collapse
Affiliation(s)
- Elolo Karen Nenonene
- Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation.,Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI).,Réseau Québécois en Reproduction (RQR), Université Laval, Québec, Québec, Canada
| | - Mallorie Trottier-Lavoie
- Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation.,Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI).,Réseau Québécois en Reproduction (RQR), Université Laval, Québec, Québec, Canada
| | - Mathilde Marchais
- Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation.,Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI).,Réseau Québécois en Reproduction (RQR), Université Laval, Québec, Québec, Canada
| | - Alexandre Bastien
- Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation.,Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI).,Réseau Québécois en Reproduction (RQR), Université Laval, Québec, Québec, Canada
| | - Isabelle Gilbert
- Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation.,Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI).,Réseau Québécois en Reproduction (RQR), Université Laval, Québec, Québec, Canada
| | - Angus D Macaulay
- Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation.,Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI)
| | - Edouard W Khandjian
- Centre de recherche CERVO, Département de psychiatrie et de neurosciences, Faculté de médecine, Université Laval, Québec, Québec, Canada
| | - Alberto Maria Luciano
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Science, University of Milan, Milan, Italy
| | - Valentina Lodde
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Science, University of Milan, Milan, Italy
| | - Robert S Viger
- Département d'obstétrique, gynécologie et reproduction, Faculté de médecine, Université Laval, Québec, Québec, Canada.,Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI).,Réseau Québécois en Reproduction (RQR), Université Laval, Québec, Québec, Canada
| | - Claude Robert
- Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation.,Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI).,Réseau Québécois en Reproduction (RQR), Université Laval, Québec, Québec, Canada
| |
Collapse
|
113
|
Zhou J, Lin L, Cai H, Liu L, Wang H, Zhang J, Xia G, Wang J, Wang F, Wang C. SP1 impacts the primordial to primary follicle transition by regulating cholesterol metabolism in granulosa cells. FASEB J 2023; 37:e22767. [PMID: 36624701 DOI: 10.1096/fj.202201274rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023]
Abstract
The primordial to primary follicle transition (PPT) in the ovary is critical to maintain sustainable reproductive resources in female mammals. However, it is unclear how granulosa cells (GCs) of the primary follicle participate in regulating PPT. This study focused on exploring the role of transcription factor Sp1 (SP1) in regulating PPT based on the fact that SP1 is pivotal for pregranulosa cell proliferation before primordial follicle formation. The results showed that mice fertility was prolonged when Sp1 was specifically depleted from GCs (GC- Sp1 -/- ). Besides, the PPT in GC- Sp1 -/- mice was reduced, resulting in more primordial follicles being preserved. Single-cell RNA-seq also indicated that the level of cholesterol metabolism was downregulated in GC- Sp1 -/- mice. Additionally, the PPT was promoted by either overexpression of ferredoxin-1 (FDX1), one of the key genes in mediating cholesterol metabolism or supplementing cholesterol for cultured fetal ovaries. Collectively, SP1 in GCs participates in the metabolism of cholesterol partially by regulating the transcription of Fdx1 during the PPT.
Collapse
Affiliation(s)
- Jiaqi Zhou
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lin Lin
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Han Cai
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Longping Liu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Huarong Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jingwen Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Guoliang Xia
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.,Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, School of Life Sciences, Ningxia University, Yinchuan, China
| | - Jianbin Wang
- School of Life Sciences and Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China
| | - Fengchao Wang
- Transgenic Animal Center, National Institute of Biological Sciences, Beijing, China
| | - Chao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
114
|
Martínez-Moro Á, González-Brusi L, Lamas-Toranzo I, González-Dosal P, Rodríguez-Juárez F, Bermejo-Álvarez P. The human cumulus cell transcriptome provides poor predictive value for embryo transfer outcome. Reprod Biomed Online 2023; 46:783-791. [PMID: 36922313 DOI: 10.1016/j.rbmo.2023.01.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/21/2023]
Abstract
RESEARCH QUESTION Is the transcriptome of cumulus cells a good predictor of the embryo's developmental competence? DESIGN Cumulus cells were collected from donor oocytes and their transcriptome was analysed by RNA sequencing analysis at >30 × 106 reads in samples grouped according to the developmental potential of their enclosed oocyte: not able to develop to the blastocyst stage (Bl-), able to develop to the blastocyst stage but failing to establish a pregnancy (P-), or able to develop to the blastocyst stage and to establish a clinical pregnancy (P+). RESULTS The cumulus cell trancriptome was largely independent of the developmental potential as, using a false dscovery rate-adjusted P-value of <0.05, only 10, 11 and 5 genes were differentially expressed for the comparisons P+ versus P-, P+ versus Bl-, and P- versus Bl-, respectively, out of a total of 17,469 genes expressed. Between the differentially expressed genes, those showing little overlap between samples from different groups were CHAC1, up-regulated in the P- and P+ groups compared with the Bl- group, and CENPE, CD93, PECAM1 and HSPA1B, which showed the opposite expression pattern. Focusing on the pregnancy potential, only EPN3 was consistently downregulated in the P+ compared with the P- and Bl- groups. CONCLUSIONS The cumulus cell transcriptome is largely unrelated to the establishment of clinical pregnancy following embryo transfer, although the expression level of a subset of genes in cumulus cells may indicate the ability to develop to the blastocyst stage.
Collapse
Affiliation(s)
- Álvaro Martínez-Moro
- Animal Reproduction Department, INIA, CSIC, Madrid, Spain; IVF Spain Madrid, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
115
|
Xie J, Xu X, Liu S. Intercellular communication in the cumulus-oocyte complex during folliculogenesis: A review. Front Cell Dev Biol 2023; 11:1087612. [PMID: 36743407 PMCID: PMC9893509 DOI: 10.3389/fcell.2023.1087612] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
During folliculogenesis, the oocyte and surrounding cumulus cells form an ensemble called the cumulus-oocyte complex (COC). Due to their interdependence, research on the COC has been a hot issue in the past few decades. A growing body of literature has revealed that intercellular communication is critical in determining oocyte quality and ovulation. This review provides an update on the current knowledge of COC intercellular communication, morphology, and functions. Transzonal projections (TZPs) and gap junctions are the most described structures of the COC. They provide basic metabolic and nutrient support, and abundant molecules for signaling pathways and regulations. Oocyte-secreted factors (OSFs) such as growth differentiation factor 9 and bone morphogenetic protein 15 have been linked with follicular homeostasis, suggesting that the communications are bidirectional. Using advanced techniques, new evidence has highlighted the existence of other structures that participate in intercellular communication. Extracellular vesicles can carry transcripts and signaling molecules. Microvilli on the oocyte can induce the formation of TZPs and secrete OSFs. Cell membrane fusion between the oocyte and cumulus cells can lead to sharing of cytoplasm, in a way making the COC a true whole. These findings give us new insights into related reproductive diseases like polycystic ovary syndrome and primary ovarian insufficiency and how to improve the outcomes of assisted reproduction.
Collapse
Affiliation(s)
- Jun Xie
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiao Xu
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Suying Liu
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, China,*Correspondence: Suying Liu,
| |
Collapse
|
116
|
Li J, Zhang Z, Wei Y, Zhu P, Yin T, Wan Q. Metabonomic analysis of follicular fluid in patients with diminished ovarian reserve. Front Endocrinol (Lausanne) 2023; 14:1132621. [PMID: 36923223 PMCID: PMC10009106 DOI: 10.3389/fendo.2023.1132621] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/06/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Ovarian reserve is an important factor determining female reproductive potential. The number and quality of oocytes in patients with diminished ovarian reserve (DOR) are reduced, and even if in vitro fertilization-embryo transfer (IVF-ET) is used to assist their pregnancy, the clinical pregnancy rate and live birth rate are still low. Infertility caused by reduced ovarian reserve is still one of the most difficult clinical problems in the field of reproduction. Follicular fluid is the microenvironment for oocyte survival, and the metabolic characteristics of follicular fluid can be obtained by metabolomics technology. By analyzing the metabolic status of follicular fluid, we hope to find the metabolic factors that affect the quality of oocytes and find new diagnostic markers to provide clues for early detection and intervention of patients with DOR. METHODS In this research, 26 infertile women with DOR and 28 volunteers with normal ovarian reserve receiving IVF/ET were recruited, and their follicular fluid samples were collected for a nontargeted metabonomic study. The orthogonal partial least squares discriminant analysis model was used to understand the separation trend of the two groups, KEGG was used to analyze the possible metabolic pathways involved in differential metabolites, and the random forest algorithm was used to establish the diagnostic model. RESULTS 12 upregulated and 32 downregulated differential metabolites were detected by metabolic analysis, mainly including amino acids, indoles, nucleosides, organic acids, steroids, phospholipids, fatty acyls, and organic oxygen compounds. Through KEGG analysis, these metabolites were mainly involved in aminoacyl-tRNA biosynthesis, tryptophan metabolism, pantothenate and CoA biosynthesis, and purine metabolism. The AUC value of the diagnostic model based on the top 10 metabolites was 0.9936. CONCLUSION The follicular fluid of patients with DOR shows unique metabolic characteristics. These data can provide us with rich biochemical information and a research basis for exploring the pathogenesis of DOR and predicting ovarian reserve function.
Collapse
Affiliation(s)
- Jianan Li
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhourui Zhang
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, China
| | - Yiqiu Wei
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Pujia Zhu
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, China
| | - Tailang Yin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- *Correspondence: Tailang Yin, ; Qiongqiong Wan,
| | - Qiongqiong Wan
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, China
- *Correspondence: Tailang Yin, ; Qiongqiong Wan,
| |
Collapse
|
117
|
Gong X, Zhang Y, Ai J, Li K. Application of Single-Cell RNA Sequencing in Ovarian Development. Biomolecules 2022; 13:47. [PMID: 36671432 PMCID: PMC9855652 DOI: 10.3390/biom13010047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022] Open
Abstract
The ovary is a female reproductive organ that plays a key role in fertility and the maintenance of endocrine homeostasis, which is of great importance to women's health. It is characterized by a high heterogeneity, with different cellular subpopulations primarily containing oocytes, granulosa cells, stromal cells, endothelial cells, vascular smooth muscle cells, and diverse immune cell types. Each has unique and important functions. From the fetal period to old age, the ovary experiences continuous structural and functional changes, with the gene expression of each cell type undergoing dramatic changes. In addition, ovarian development strongly relies on the communication between germ and somatic cells. Compared to traditional bulk RNA sequencing techniques, the single-cell RNA sequencing (scRNA-seq) approach has substantial advantages in analyzing individual cells within an ever-changing and complicated tissue, classifying them into cell types, characterizing single cells, delineating the cellular developmental trajectory, and studying cell-to-cell interactions. In this review, we present single-cell transcriptome mapping of the ovary, summarize the characteristics of the important constituent cells of the ovary and the critical cellular developmental processes, and describe key signaling pathways for cell-to-cell communication in the ovary, as revealed by scRNA-seq. This review will undoubtedly improve our understanding of the characteristics of ovarian cells and development, thus enabling the identification of novel therapeutic targets for ovarian-related diseases.
Collapse
Affiliation(s)
| | | | - Jihui Ai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kezhen Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
118
|
Lu S, Tian H, Li L, Li B, Yang M, Zhou L, Jiang H, Li Q, Wang W, Nice EC, Xie N, Huang C, Liu L. Nanoengineering a Zeolitic Imidazolate Framework-8 Capable of Manipulating Energy Metabolism against Cancer Chemo-Phototherapy Resistance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204926. [PMID: 36260824 DOI: 10.1002/smll.202204926] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Chemo-phototherapy has emerged as a promising approach to complement traditional cancer treatment and enhance therapeutic effects. However, it still faces the challenges of drug efflux transporter-mediated chemoresistance and heat shock proteins (HSPs)-mediated phototherapy tolerance, which both depend on an excessive supply of adenosine triphosphate. Therefore, manipulating energy metabolism to impair the expression or function of P-glycoprotein (P-gp) and HSPs may be a prospective strategy to reverse cancer therapeutic resistance. Herein, a chondroitin sulfate (CS)-functionalized zeolitic imidazolate framework-8 (ZIF-8) chemo-phototherapy nanoplatform (CS/ZIF-8@A780/DOX NPs) is rationally designed that is capable of manipulating energy metabolism against cancer therapeutic resistance by integrating the photosensitizer IR780 iodide (IR780)-conjugated atovaquone (ATO) (A780) and the chemotherapeutic agent doxorubicin (DOX). Mechanistically, ATO and zinc ions that are released in the acidic tumor microenvironment can lead to systematic energy exhaustion through disturbing mitochondrial electron transport and the glycolysis process, thus suppressing the activity of P-gp and HSP70, respectively. In addition, CS is used on the surface of ZIF-8@A780/DOX NPs to improve the targeting capability to tumor tissues. These data provide an efficient strategy for manipulating energy metabolism for cancer treatment, especially for overcoming cancer chemo-phototherapy resistance.
Collapse
Affiliation(s)
- Shuaijun Lu
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China
| | - Hailong Tian
- State Key Laboratory of Biotherapy and Cancer Center, and Collaborative Innovation Center for Biotherapy, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Lei Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Bowen Li
- State Key Laboratory of Biotherapy and Cancer Center, and Collaborative Innovation Center for Biotherapy, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Mei Yang
- State Key Laboratory of Biotherapy and Cancer Center, and Collaborative Innovation Center for Biotherapy, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, and Collaborative Innovation Center for Biotherapy, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Hao Jiang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China
| | - Qiong Li
- State Key Laboratory of Biotherapy and Cancer Center, and Collaborative Innovation Center for Biotherapy, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Weihua Wang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Na Xie
- State Key Laboratory of Biotherapy and Cancer Center, and Collaborative Innovation Center for Biotherapy, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Canhua Huang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China
- State Key Laboratory of Biotherapy and Cancer Center, and Collaborative Innovation Center for Biotherapy, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Lin Liu
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China
| |
Collapse
|
119
|
Tan TCY, Dunning KR. Non-invasive assessment of oocyte developmental competence. Reprod Fertil Dev 2022; 35:39-50. [PMID: 36592982 DOI: 10.1071/rd22217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Oocyte quality is a key factor influencing IVF success. The oocyte and surrounding cumulus cells, known collectively as the cumulus oocyte complex (COC), communicate bi-directionally and regulate each other's metabolic function to support oocyte growth and maturation. Many studies have attempted to associate metabolic markers with oocyte quality, including metabolites in follicular fluid or 'spent medium' following maturation, gene expression of cumulus cells and measuring oxygen consumption in medium surrounding COCs. However, these methods fail to provide spatial metabolic information on the separate oocyte and cumulus cell compartments. Optical imaging of the autofluorescent cofactors - reduced nicotinamide adenine dinucleotide (phosphate) [NAD(P)H] and flavin adenine dinucleotide (FAD) - has been put forward as an approach to generate spatially resolved measurements of metabolism within individual cells of the COC. The optical redox ratio (FAD/[NAD(P)H+FAD]), calculated from these cofactors, can act as an indicator of overall metabolic activity in the oocyte and cumulus cell compartments. Confocal microscopy, fluorescence lifetime imaging microscopy (FLIM) and hyperspectral microscopy may be used for this purpose. This review provides an overview of current optical imaging techniques that capture the inner biochemistry within cells of the COC and discusses the potential for such imaging to assess oocyte developmental competence.
Collapse
Affiliation(s)
- Tiffany C Y Tan
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Kylie R Dunning
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
120
|
Smits A, Marei WFA, Moorkens K, Bols PEJ, De Neubourg D, Leroy JLMR. Obese outbred mice only partially benefit from diet normalization or calorie restriction as preconception care interventions to improve metabolic health and oocyte quality. Hum Reprod 2022; 37:2867-2884. [PMID: 36342870 DOI: 10.1093/humrep/deac226] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 09/22/2022] [Indexed: 11/09/2022] Open
Abstract
STUDY QUESTION Can diet normalization or a calorie-restricted diet for 2 or 4 weeks be used as a preconception care intervention (PCCI) in Western-type diet-induced obese Swiss mice to restore metabolic health and oocyte quality? SUMMARY ANSWER Metabolic health and oocyte developmental competence was already significantly improved in the calorie-restricted group after 2 weeks, while obese mice that underwent diet normalization showed improved metabolic health after 2 weeks and improved oocyte quality after 4 weeks. WHAT IS KNOWN ALREADY Maternal obesity is linked with reduced metabolic health and oocyte quality; therefore, infertile obese women are advised to lose weight before conception to increase pregnancy chances. However, as there are no univocal guidelines and the specific impact on oocyte quality is not known, strategically designed studies are needed to provide fundamental insights in the importance of the type and duration of the dietary weight loss strategy for preconception metabolic health and oocyte quality. STUDY DESIGN, SIZE, DURATION Outbred female Swiss mice were fed a control (CTRL) or high-fat/high-sugar (HF/HS) diet. After 7 weeks, some of the HF mice were put on two different PCCIs, resulting in four treatment groups: (i) only control diet for up to 11 weeks (CTRL_CTRL), (ii) only HF diet for up to 11 weeks (HF_HF), (iii) switch at 7 weeks from an HF to an ad libitum control diet (HF_CTRL) and (iv) switch at 7 weeks from an HF to a 30% calorie-restricted control diet (HF_CR) for 2 or 4 weeks. Metabolic health and oocyte quality were assessed at 2 and 4 weeks after the start of the intervention (n = 8 mice/treatment/time point). PARTICIPANTS/MATERIALS, SETTING, METHODS Changes in body weight were recorded. To study the impact on metabolic health, serum insulin, glucose, triglycerides, total cholesterol and alanine aminotransferase concentrations were measured, and glucose tolerance and insulin sensitivity were analyzed at PCCI Weeks 2 and 4. The quality of in vivo matured oocytes was evaluated by assessing intracellular lipid droplet content, mitochondrial activity and localization of active mitochondria, mitochondrial ultrastructure, cumulus cell targeted gene expression and oocyte in vitro developmental competence. MAIN RESULTS AND THE ROLE OF CHANCE Significant negative effects of an HF/HS diet on metabolic health and oocyte quality were confirmed (P < 0.05). HF_CTRL mice already showed restored body weight, serum lipid profile and glucose tolerance, similar to the CTRL_CTRL group after only 2 weeks of PCCI (P < 0.05 compared with HF_HF) while insulin sensitivity was not improved. Oocyte lipid droplet volume was reduced at PCCI Week 2 (P < 0.05 compared with HF_HF), while mitochondrial localization and activity were still aberrant. At PCCI Week 4, oocytes from HF_CTRL mice displayed significantly fewer mitochondrial ultrastructural abnormalities and improved mitochondrial activity (P < 0.05), while lipid content was again elevated. The in vitro developmental capacity of the oocytes was improved but did not reach the levels of the CTRL_CTRL mice. HF_CR mice completely restored cholesterol concentrations and insulin sensitivity already after 2 weeks. Other metabolic health parameters were only restored after 4 weeks of intervention with clear signs of fasting hypoglycemia. Although all mitochondrial parameters in HF_CR oocytes stayed aberrant, oocyte developmental competence in vitro was completely restored already after 2 weeks of intervention. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION In this study, we applied a relevant HF/HS Western-type diet to induce obesity in an outbred mouse model. Nevertheless, physiological differences should be considered when translating these results to the human setting. However, the in-depth study and follow-up of the metabolic health changes together with the strategic implementation of specific PCCI intervals (2 and 4 weeks) related to the duration of the mouse folliculogenesis (3 weeks), should aid in the extrapolation of our findings to the human setting. WIDER IMPLICATIONS OF THE FINDINGS Our study results with a specific focus on oocyte quality provide important fundamental insights to be considered when developing preconception care guidelines for obese metabolically compromised women wishing to become pregnant. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the Flemish Research Fund (FWO-SB grant 1S25020N and FWO project G038619N). The authors declare there are no conflicts of interest.
Collapse
Affiliation(s)
- A Smits
- Gamete Research Centre, Laboratory for Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - W F A Marei
- Gamete Research Centre, Laboratory for Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium.,Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - K Moorkens
- Gamete Research Centre, Laboratory for Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - P E J Bols
- Gamete Research Centre, Laboratory for Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - D De Neubourg
- Centre for Reproductive Medicine, Antwerp University Hospital, University of Antwerp, Edegem, Belgium
| | - J L M R Leroy
- Gamete Research Centre, Laboratory for Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
121
|
Tetrabromobisphenol Exposure Impairs Bovine Oocyte Maturation by Inducing Mitochondrial Dysfunction. Molecules 2022; 27:molecules27228111. [PMID: 36432212 PMCID: PMC9696588 DOI: 10.3390/molecules27228111] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Tetrabromobisphenol (TBBPA) is the most widely used brominated flame retardant in the world and displays toxicity to humans and animals. However, few studies have focused on its impact on oocyte maturation. Here, TBBPA was added to the culture medium of bovine cumulus-oocyte complexes (COCs) to examine its effect on oocytes. We found that TBBPA exposure displayed an adverse influence on oocyte maturation and subsequent embryonic development. The results of this study showed that TBBPA exposure induced oocyte meiotic failure by disturbing the polar-body extrusion of oocytes and the expansion of cumulus cells. We further found that TBBPA exposure led to defective spindle assembly and chromosome alignment. Meanwhile, TBBPA induced oxidative stress and early apoptosis by mediating the expression of superoxide dismutase 2 (SOD2). TBBPA exposure also caused mitochondrial dysfunction, displaying a decrease in mitochondrial membrane potential, mitochondrial content, mtDNA copy number, and ATP levels, which are regulated by the expression of pyruvate dehydrogenase kinase 3 (PDK3). In addition, the developmental competence of oocytes and the quality of blastocysts were also reduced after TBBPA treatment. These results demonstrated that TBBPA exposure impaired oocyte maturation and developmental competence by disrupting both nuclear and cytoplasmic maturation of the oocyte, which might have been caused by oxidative stress induced by mitochondrial dysfunction.
Collapse
|
122
|
Using Cumulus Cell Biopsy as a Non-Invasive Tool to Access the Quality of Bovine Oocytes: How Informative Are They? Animals (Basel) 2022; 12:ani12223113. [PMID: 36428341 PMCID: PMC9686866 DOI: 10.3390/ani12223113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/14/2022] [Accepted: 10/25/2022] [Indexed: 11/13/2022] Open
Abstract
The present study aimed to determine whether cumulus cells (CC) biopsy, acquired before or after in vitro maturation (IVM), presents similar gene expression pattern and if would compromises oocyte quality. First, immature cumulus oocyte complexes (COCs) were distributed: (1) maturated in groups (control); (2) individually maturated, but not biopsied; (3) subjected to CC biopsy before maturation and individually matured; (4) individually matured and submitted to CC biopsy after maturation; (5) individually matured and CC biopsied before and after maturation. Secondly, candidate genes, described as potential markers of COCs quality, were quantified by RT-qPCR in CCs before and after IVM. After in vitro fertilization (IVF), zygotes were tracked and sorted regarding their developmental potential: fully developed to embryo, cleaved and arrested, and not-cleaved. The COC’s biopsy negatively affects embryo development (p < 0.05), blastocyst cell number (p < 0.05), and apoptotic cell ratio (p < 0.05), both before and after IVM. The PTGS2, LUM, ALCAM, FSHR, PGR, SERPINE2, HAS2, and PDRX3 genes were differentially expressed (p < 0.05) on matured CCs. Only PGR gene (p = 0.04) was under-expressed on matured CCs on Not-Cleaved group. The SERPINE2 gene was overexpressed (p = 0.01) in the Cleaved group on immature CCs. In summary, none of the selected gene studies can accurately predict COC’s fate after fertilization.
Collapse
|
123
|
Zhang L, Wu LM, Xu WH, Tian YQ, Liu XL, Xia CY, Zhang L, Li SS, Jin Z, Wu XL, Shu J. Status of maternal serum B vitamins and pregnancy outcomes: New insights from in vitro fertilization and embryo transfer (IVF-ET) treatment. Front Nutr 2022; 9:962212. [PMID: 36438768 PMCID: PMC9691978 DOI: 10.3389/fnut.2022.962212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/10/2022] [Indexed: 11/12/2022] Open
Abstract
The influence of B vitamins on human fertility and infertility treatments remains elusive. Therefore, this study investigated the association of most B vitamins with IVF-ET outcomes. A total of 216 subjects aged <35 year in their first oocyte retrieval cycle were recruited. Blood samples from the participants were collected before the oocyte pick-up procedure, and serum levels of riboflavin, niacin, pantothenic acid, vitamin B6 (including PA and PLP), folate, and methylmalonic acid (MMA) were detected using high-performance liquid chromatography–tandem mass spectrometry (HPLC-MS/MS). Endpoints were classified into three groups according to tertiles (lower, middle, and upper) of each vitamin index, and the association of the serum vitamin status with intermediate and clinical outcomes was analyzed using a generalized estimating equation model. Higher riboflavin levels were associated with elevated probabilities of high-quality embryos, as well as clinical pregnancy after embryo transfer. A greater likelihood of transferable embryos was found in the middle tertile of serum folate. Similarly, a negative correlation of serum MMA, a marker of vitamin B12 deficiency, with high-quality embryos was identified. No significance was observed for other vitamins in terms of all endpoints. Therefore, sufficient levels of pre-conception riboflavin, folate, and vitamin B12 are recommended for successful infertility treatment and pregnancy planning; further evidence is needed to confirm our conclusion.
Collapse
Affiliation(s)
- Ling Zhang
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Li-mei Wu
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Wei-hai Xu
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yu-qing Tian
- Department of Postgraduate Education, Jinzhou Medical University, Jinzhou, China
| | - Xu-ling Liu
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Provice, Hangzhou, China
- Calibra Lab, DIAN Diagnostics, Hangzhou, China
| | - Chen-yun Xia
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Provice, Hangzhou, China
- Calibra Lab, DIAN Diagnostics, Hangzhou, China
| | - Lin Zhang
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Shi-shi Li
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Zhen Jin
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Xiang-li Wu
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
- *Correspondence: Xiang-li Wu
| | - Jing Shu
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
- Jing Shu
| |
Collapse
|
124
|
Wijesinghe P, Corsetti S, Chow DJX, Sakata S, Dunning KR, Dholakia K. Experimentally unsupervised deconvolution for light-sheet microscopy with propagation-invariant beams. LIGHT, SCIENCE & APPLICATIONS 2022; 11:319. [PMID: 36319636 PMCID: PMC9626625 DOI: 10.1038/s41377-022-00975-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 05/25/2023]
Abstract
Deconvolution is a challenging inverse problem, particularly in techniques that employ complex engineered point-spread functions, such as microscopy with propagation-invariant beams. Here, we present a deep-learning method for deconvolution that, in lieu of end-to-end training with ground truths, is trained using known physics of the imaging system. Specifically, we train a generative adversarial network with images generated with the known point-spread function of the system, and combine this with unpaired experimental data that preserve perceptual content. Our method rapidly and robustly deconvolves and super-resolves microscopy images, demonstrating a two-fold improvement in image contrast to conventional deconvolution methods. In contrast to common end-to-end networks that often require 1000-10,000s paired images, our method is experimentally unsupervised and can be trained solely on a few hundred regions of interest. We demonstrate its performance on light-sheet microscopy with propagation-invariant Airy beams in oocytes, preimplantation embryos and excised brain tissue, as well as illustrate its utility for Bessel-beam LSM. This method aims to democratise learned methods for deconvolution, as it does not require data acquisition outwith the conventional imaging protocol.
Collapse
Affiliation(s)
- Philip Wijesinghe
- SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9SS, UK.
| | - Stella Corsetti
- SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9SS, UK
| | - Darren J X Chow
- Robinson Research Institute, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Adelaide, SA, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, SA, Australia
| | - Shuzo Sakata
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Kylie R Dunning
- Robinson Research Institute, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Adelaide, SA, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, SA, Australia
| | - Kishan Dholakia
- SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9SS, UK.
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia.
- Department of Physics, College of Science, Yonsei University, Seoul, 03722, South Korea.
| |
Collapse
|
125
|
Clarke HJ. Transzonal projections: Essential structures mediating intercellular communication in the mammalian ovarian follicle. Mol Reprod Dev 2022; 89:509-525. [PMID: 36112806 DOI: 10.1002/mrd.23645] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/22/2022] [Accepted: 08/31/2022] [Indexed: 12/25/2022]
Abstract
The development of germ cells relies on contact and communication with neighboring somatic cells that provide metabolic support and regulatory signals. In females, contact is achieved through thin cytoplasmic processes that project from follicle cells surrounding the oocyte, extend through an extracellular matrix (ECM) that lies between them, and reach its surface. In mammals, the ECM is termed the zona pellucida and the follicular cell processes are termed transzonal projections (TZPs). TZPs become detectable when the zona pellucida is laid down during early folliculogenesis and subsequently increase in number as oocyte growth progresses. They then rapidly disappear at the time of ovulation, permanently breaking germ-soma contact. Here we review the life cycle and functions of the TZPs. We begin with an overview of the morphology and cytoskeletal structure of TZPs, in the context of actin- and tubulin-based cytoplasmic processes in other cell types. Next, we review the roles played by TZPs in mediating progression through successive stages of oocyte development. We then discuss two mechanisms that may generate TZPs-stretching at pre-existing points of granulosa cell-oocyte contact and elaboration of new processes that push through the zona pellucida-as well as gene products implicated in their formation or function. Finally, we describe the signaling pathways that cause TZPs to be retracted in response to signals that also trigger meiotic maturation and ovulation of the oocyte. The principles and mechanisms that govern TZP behavior may be relevant to understanding communication between physically separated cells in other physiological contexts.
Collapse
Affiliation(s)
- Hugh J Clarke
- Program in Child Health and Human Development, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Department of Obstetrics and Gynecology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
126
|
Dellaqua TT, Vígaro RA, Janini LCZ, Dal Canto M, Renzini MM, Lodde V, Luciano AM, Buratini J. Neuregulin 1 (NRG1) modulates oocyte nuclear maturation during IVM and improves post-IVF embryo development. Theriogenology 2022; 195:209-216. [DOI: 10.1016/j.theriogenology.2022.10.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
127
|
Follicle-Stimulating Hormone Alleviates Ovarian Aging by Modulating Mitophagy- and Glycophagy-Based Energy Metabolism in Hens. Cells 2022; 11:cells11203270. [PMID: 36291137 PMCID: PMC9600712 DOI: 10.3390/cells11203270] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 01/10/2023] Open
Abstract
As a predominant hormone in the reproductive axis, follicle-stimulating hormone (FSH) is known as the primary surviving factor for follicular growth. In this study, the alleviating effect of FSH on aging chicken granulosa cells (GCs) was investigated. Results showed that FSH activated mitophagy and relieved mitochondrial edema in D-gal-induced senescent GCs, which was evidenced by an increased number of mitophagosomes as well as increased mitochondria-light chain 3 (LC3) colocalization. Mitophagy activation was accompanied by the activation of the AMP-activated protein kinase (AMPK) signaling pathway. Furthermore, upregulated glycophagy was demonstrated by an increased interaction of starch-binding domain protein 1 (STBD1) with GABA type A receptor-associated protein-like 1 (GABARAPL1) in D-gal-induced senescent GCs. FSH treatment further promoted glycophagy, accompanied by PI3K/AKT activation. PI3K inhibitor LY294002 and AKT inhibitor GSK690693 attenuated the effect of FSH on glycophagy and glycolysis. The inhibition of FSH-mediated autophagy attenuated the protective effect of FSH on naturally aging GC proliferation and glycolysis. The simultaneous blockage of PI3K/AKT and AMPK signaling also abolished the positive effect of FSH on naturally senescent ovarian energy regulation. These data reveal that FSH prevents chicken ovarian aging by modulating glycophagy- and mitophagy-based energy metabolism through the PI3K/AKT and AMPK pathways.
Collapse
|
128
|
Liu J, Shi D, Ma Q, Zhao P. Yangjing Zhongyu decoction facilitates mitochondrial activity, estrogenesis, and energy metabolism in H 2O 2-induced human granulosa cell line KGN. JOURNAL OF ETHNOPHARMACOLOGY 2022; 295:115398. [PMID: 35605921 DOI: 10.1016/j.jep.2022.115398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/08/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANT Yangjing Zhongyu decoction (YJZYD) is a recipe from a Chinese classic medical work and has been empirically used in female infertility for hundreds of years, but the mechanisms of YJZYD on facilitating ovarian granulosa cells remain unfold. AIM OF THE RESEARCH The purpose of the study is to determine the rewarding effects of YJZYD on H2O2-induced KGN cells, involving mitochondrial activity, estradiol biosynthesis, and energy metabolism. MATERIALS AND METHODS The ingredients of YJZYD were investigated by UPLC-ESI-MS/MS analysis. The effects of YJZYD and H2O2 on cell viability were determined by CCK-8. Intracellular ROS were assessed by DCFH-DA. Intracellular Ca2+ was detected using Fura-4 AM. Mitochondrial membrane potential (MMP) was measured by JC-1. The production of energy was assessed by ATP. Apoptosis rate was analyzed by Annexin V-FITC/PI. Western blotting was used to evaluate the expression of proteins related to energy metabolism, apoptosis, mitochondrial mitophagy, and estrogen biosynthesis. E2 levels were measured by ELISA. RESULTS 121 compounds were identified in YJZYD by UPLC-ESI-MS/MS analysis. YJZYD could enhance mitochondrial activity by suppressing intracellular ROS and Ca2+, and increasing MMP and ATP content. YJZYD stimulated the expression of anti-apoptosis protein Bcl-2 and lowered the early apoptosis rate and the expression of Bax. Besides, YJZYD rescued E2 secretion and improved the expression of FSHR, CYP19A1, and the ratio of p-CREB/CREB. In addition, YJZYD weakened H2O2-induced mitophagy by compromising the expression of PINK1, Parkin, Beclin1 and P62. Moreover, YJZYD strengthened energy metabolism by increasing ATP generation and the expression of SIRT1, PGC1α, NRF1, and COX IV. The combination of YJZYD and autophagy inhibitor had a stronger protective effect on energy metabolism. CONCLUSION This study evaluated the protective effects of YJZYD on H2O2-induced KGN cells. YJZYD could enhance mitochondrial activity, E2 biosynthesis, and energy metabolism. These results strongly indicated that YJZYD might play a role in preserving ovarian granulosa cells and female fecundity.
Collapse
Affiliation(s)
- Jia Liu
- School of Life Sciences, Beijing University of Chinese Medicine, No.11 East Road, North 3rd Ring Road, Beijing, 100029, China
| | - Danning Shi
- School of Life Sciences, Beijing University of Chinese Medicine, No.11 East Road, North 3rd Ring Road, Beijing, 100029, China
| | - Qihong Ma
- School of Life Sciences, Beijing University of Chinese Medicine, No.11 East Road, North 3rd Ring Road, Beijing, 100029, China
| | - Piwen Zhao
- School of Life Sciences, Beijing University of Chinese Medicine, No.11 East Road, North 3rd Ring Road, Beijing, 100029, China.
| |
Collapse
|
129
|
A 3D analysis revealed complexe mitochondria morphologies in porcine cumulus cells. Sci Rep 2022; 12:15403. [PMID: 36100690 PMCID: PMC9470746 DOI: 10.1038/s41598-022-19723-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 09/02/2022] [Indexed: 11/09/2022] Open
Abstract
In the ovarian follicle, a bilateral cell-to-cell communication exists between the female germ cell and the cumulus cells which surround the oocyte. This communication allows the transit of small size molecules known to impact oocyte developmental competence. Pyruvate derivatives produced by mitochondria, are one of these transferred molecules. Interestingly, mitochondria may adopt a variety of morphologies to regulate their functions. In this study, we described mitochondrial morphologies in porcine cumulus cells. Active mitochondria were stained with TMRM (Tetramethylrhodamine, Methyl Ester, Perchlorate) and observed with 2D confocal microscopy showing mitochondria of different morphologies such as short, intermediate, long, and very long. The number of mitochondria of each phenotype was quantified in cells and the results showed that most cells contained elongated mitochondria. Scanning electron microscopy (SEM) analysis confirmed at nanoscale resolution the different mitochondrial morphologies including round, short, intermediate, and long. Interestingly, 3D visualisation by focused ion-beam scanning electron microscopy (FIB-SEM) revealed different complex mitochondrial morphologies including connected clusters of different sizes, branched mitochondria, as well as individual mitochondria. Since mitochondrial dynamics is a key regulator of function, the description of the mitochondrial network organisation will allow to further study mitochondrial dynamics in cumulus cells in response to various conditions such as in vitro maturation.
Collapse
|
130
|
Yagoub SH, Lim M, Tan TCY, Chow DJX, Dholakia K, Gibson BC, Thompson JG, Dunning KR. Vitrification within a nanoliter volume: oocyte and embryo cryopreservation within a 3D photopolymerized device. J Assist Reprod Genet 2022; 39:1997-2014. [PMID: 35951146 PMCID: PMC9474789 DOI: 10.1007/s10815-022-02589-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose Vitrification permits long-term banking of oocytes and embryos. It is a technically challenging procedure requiring direct handling and movement of cells between potentially cytotoxic cryoprotectant solutions. Variation in adherence to timing, and ability to trace cells during the procedure, affects survival post-warming. We hypothesized that minimizing direct handling will simplify the procedure and improve traceability. To address this, we present a novel photopolymerized device that houses the sample during vitrification. Methods The fabricated device consisted of two components: the Pod and Garage. Single mouse oocytes or embryos were housed in a Pod, with multiple Pods docked into a Garage. The suitability of the device for cryogenic application was assessed by repeated vitrification and warming cycles. Oocytes or early blastocyst-stage embryos were vitrified either using standard practice or within Pods and a Garage and compared to non-vitrified control groups. Post-warming, we assessed survival rate, oocyte developmental potential (fertilization and subsequent development) and metabolism (autofluorescence). Results Vitrification within the device occurred within ~ 3 nL of cryoprotectant: this volume being ~ 1000-fold lower than standard vitrification. Compared to standard practice, vitrification and warming within our device showed no differences in viability, developmental competency, or metabolism for oocytes and embryos. The device housed the sample during processing, which improved traceability and minimized handling. Interestingly, vitrification-warming itself, altered oocyte and embryo metabolism. Conclusion The Pod and Garage system minimized the volume of cryoprotectant at vitrification—by ~ 1000-fold—improved traceability and reduced direct handling of the sample. This is a major step in simplifying the procedure.
Supplementary information The online version contains supplementary material available at 10.1007/s10815-022-02589-8.
Collapse
Affiliation(s)
- Suliman H Yagoub
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, South Australia, 5000, Australia.,School of Biomedicine, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, 5005, Australia.,Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Megan Lim
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, South Australia, 5000, Australia.,School of Biomedicine, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, 5005, Australia.,Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Tiffany C Y Tan
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, South Australia, 5000, Australia.,School of Biomedicine, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, 5005, Australia.,Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Darren J X Chow
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, South Australia, 5000, Australia.,School of Biomedicine, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, 5005, Australia.,Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Kishan Dholakia
- School of Physics and Astronomy, University of St Andrews, North Haugh, Scotland, KY16 9SS.,School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia.,Department of Physics, College of Science, Yonsei University, Seoul, 03722, South Korea
| | - Brant C Gibson
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, South Australia, 5000, Australia.,School of Science, RMIT, Melbourne, VIC, 3001, Australia
| | - Jeremy G Thompson
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, South Australia, 5000, Australia.,School of Biomedicine, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, 5005, Australia.,Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, South Australia, 5000, Australia.,Fertilis Pty Ltd, Adelaide, South Australia, 5005, Australia
| | - Kylie R Dunning
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, South Australia, 5000, Australia. .,School of Biomedicine, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, 5005, Australia. .,Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, South Australia, 5000, Australia.
| |
Collapse
|
131
|
Yang J, Li Y, Li S, Zhang Y, Feng R, Huang R, Chen M, Qian Y. Metabolic signatures in human follicular fluid identify lysophosphatidylcholine as a predictor of follicular development. Commun Biol 2022; 5:763. [PMID: 35906399 PMCID: PMC9334733 DOI: 10.1038/s42003-022-03710-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 07/12/2022] [Indexed: 12/07/2022] Open
Abstract
In order to investigate the metabolic characteristics of human follicular fluid (FF) and to reveal potential metabolic predictors of follicular development (FD) with clinical implications, we analyzed a total of 452 samples based on a two-stage study design. In the first stage, FF samples from both large follicles (LFs) and matched-small follicles (SFs) of 26 participants were analyzed with wide-spectrum targeted metabolomics. The metabolic signatures were described by multi-omics integration technology including metabolomic data and transcriptomic data. In the second stage, the potential biomarkers of FD were verified using enzyme-linked immunoassay with FF and blood serum from an independent 200 participants. We describe the FF metabolic signatures from ovarian follicles of different developmental stages. Lysophosphatidylcholine (LPC) can be used as a biomarker of FD and ovarian sensitivity, advancing the knowledge of metabolic regulation during FD and offering potential detection and therapeutic targets for follicle and oocyte health improvements in humans. A two-stage metabolomic analysis for human follicular fluid characteristics and predictors of follicular development yields metabolic signatures and proposes lysophosphatidylcholine (LPC) as a biomarker for follicular development.
Collapse
Affiliation(s)
- Jihong Yang
- Reproductive Medical Center of Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Yangbai Li
- Reproductive Medical Center of Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Suying Li
- Reproductive Medical Center of Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Yan Zhang
- Reproductive Medical Center of Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Ruizhi Feng
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China.,The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Rui Huang
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Minjian Chen
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China. .,State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Yun Qian
- Reproductive Medical Center of Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China.
| |
Collapse
|
132
|
Tan TCY, Brown HM, Thompson JG, Mustafa S, Dunning KR. Optical imaging detects metabolic signatures associated with oocyte quality. Biol Reprod 2022; 107:1014-1025. [PMID: 35863764 PMCID: PMC9562116 DOI: 10.1093/biolre/ioac145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 06/02/2022] [Accepted: 07/11/2022] [Indexed: 11/14/2022] Open
Abstract
Oocyte developmental potential is intimately linked to metabolism. Existing approaches to measure metabolism in the cumulus oocyte complex (COC) do not provide information on the separate cumulus and oocyte compartments. Development of an assay that achieves this may lead to an accurate diagnostic for oocyte quality. Optical imaging of the autofluorescent cofactors NAD(P)H and FAD provides a spatially resolved indicator of metabolism via the optical redox ratio ($\mathrm{FAD}/\left[\mathrm{NAD}\left(\mathrm{P}\right)\mathrm{H}+\mathrm{FAD}\right]$). This may provide an assessment of oocyte quality. Here, we determined whether the optical redox ratio is a robust methodology for measuring metabolism in the cumulus and oocyte compartments compared with oxygen consumption in the whole COC. We also determined whether optical imaging could detect metabolic differences associated with poor oocyte quality (etomoxir-treated). We used confocal microscopy to measure NAD(P)H and FAD, and extracellular flux to measure oxygen consumption. We found that the optical redox ratio was an accurate reflection of metabolism in the oocyte compartment when compared with oxygen consumption (whole COC). Etomoxir-treated COCs showed significantly lower levels of NAD(P)H and FAD compared to control. While confocal imaging demonstrated the premise, we validated this approach using hyperspectral imaging, which is clinically compatible due to its low energy dose. This confirmed lower NAD(P)H and FAD in etomoxir-treated COCs. When comparing imaged vs non-imaged COCs, subsequent preimplantation development and post-transfer viability were comparable. Collectively, these results demonstrate that label-free optical imaging of metabolic cofactors is a safe and sensitive assay for measuring metabolism and has potential to assess oocyte developmental competence.
Collapse
Affiliation(s)
- Tiffany C Y Tan
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia.,Australian Research Council Centre of Excellence for Nanoscale Biophotonics, The University of Adelaide, Adelaide, South Australia, Australia.,Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, South Australia, Australia
| | - Hannah M Brown
- Victorian Heart Institute, Monash University, Clayton, Victoria, Australia
| | - Jeremy G Thompson
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia.,Australian Research Council Centre of Excellence for Nanoscale Biophotonics, The University of Adelaide, Adelaide, South Australia, Australia.,Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, South Australia, Australia.,Fertilis Pty Ltd, Adelaide, South Australia, 5005, Australia
| | - Sanam Mustafa
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia.,Australian Research Council Centre of Excellence for Nanoscale Biophotonics, The University of Adelaide, Adelaide, South Australia, Australia.,Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, South Australia, Australia
| | - Kylie R Dunning
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia.,Australian Research Council Centre of Excellence for Nanoscale Biophotonics, The University of Adelaide, Adelaide, South Australia, Australia.,Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
133
|
Zhou D, Zhuan Q, Luo Y, Liu H, Meng L, Du X, Wu G, Hou Y, Li J, Fu X. Mito-Q promotes porcine oocytes maturation by maintaining mitochondrial thermogenesis via UCP2 downregulation. Theriogenology 2022; 187:205-214. [PMID: 35644089 DOI: 10.1016/j.theriogenology.2022.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/02/2022] [Accepted: 05/11/2022] [Indexed: 12/30/2022]
Abstract
Mitochondrial thermogenesis is an adaptive response of cells to their surrounding stress. Oxidative stress is one of the common stresses during in vitro maturation (IVM) of oocytes, which leads to mitochondrial dysfunction. This study aimed to probe the effects of the mitochondria-targeted antioxidant Mito-Q on oocyte development and unravel the role of Mito-Q in mitochondrial ATP production and thermogenesis regulation. Our results showed that Mito-Q had a positive effect on porcine oocytes maturation and subsequent embryo development. During oocytes IVM, Mito-Q could reduce ATP levels and ROS, increase lipid droplets accumulation, induce autophagy, and maintain mitochondrial temperature stability. Moreover, in metaphase II (MII) oocytes, Mito-Q would induce mitochondrial uncoupling manifested by decreased ATP, attenuated mitochondrial membrane potential (MMP), and increased mitochondrial thermogenesis. Notably, the expression of mitochondrial uncoupling protein (UCP2) was significantly reduced in oocytes treated with Mito-Q. Further study indicated that specific depletion of UCP2 in oocytes also resulted in increased thermogenesis, decreased ATP and declined MMP, suggesting that UCP2 downregulation may participate in Mito-Q-induced mitochondrial uncoupling. In summary, our data demonstrate that Mito-Q promotes oocyte maturation in vitro and maintains the stability of mitochondrial thermogenesis by inhibiting UCP2 expression.
Collapse
Affiliation(s)
- Dan Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science, Beijing, 100193, China
| | - Qingrui Zhuan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science, Beijing, 100193, China
| | - Yuwen Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science, Beijing, 100193, China
| | - Hongyu Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science, Beijing, 100193, China
| | - Lin Meng
- State Key Laboratories of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xingzhu Du
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science, Beijing, 100193, China
| | - Guoquan Wu
- Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, 650224, China
| | - Yunpeng Hou
- State Key Laboratories of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jun Li
- Department of Reproductive Medicine, Reproductive Medical Center, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050031, China.
| | - Xiangwei Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science, Beijing, 100193, China; State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, Xinjiang, 832000, China.
| |
Collapse
|
134
|
Dunleavy JEM, Dinh DT, Filby CE, Green E, Hofstee P, Pini T, Rivers N, Skerrett-Byrne DA, Wijayarathna R, Winstanley YE, Zhou W, Richani D. Reproductive biology research down under: highlights from the Australian and New Zealand Annual Meeting of the Society for Reproductive Biology, 2021. Reprod Fertil Dev 2022; 34:855-866. [PMID: 35836362 DOI: 10.1071/rd22115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/17/2022] [Indexed: 11/23/2022] Open
Abstract
Against the backdrop of a global pandemic, the Society for Reproductive Biology (SRB) 2021 meeting reunited the Australian and New Zealand reproductive research community for the first time since 2019 and was the first virtual SRB meeting. Despite the recent global research disruptions, the conference revealed significant advancements in reproductive research, the importance of which span human health, agriculture, and conservation. A core theme was novel technologies, including the use of medical microrobots for therapeutic and sperm delivery, diagnostic hyperspectral imaging, and hydrogel condoms with potential beyond contraception. The importance of challenging the contraceptive status quo was further highlighted with innovations in gene therapies, non-hormonal female contraceptives, epigenetic semen analysis, and in applying evolutionary theory to suppress pest population reproduction. How best to support pregnancies, particularly in the context of global trends of increasing maternal age, was also discussed, with several promising therapies for improved outcomes in assisted reproductive technology, pre-eclampsia, and pre-term birth prevention. The unique insights gained via non-model species was another key focus and presented research emphasised the importance of studying diverse systems to understand fundamental aspects of reproductive biology and evolution. Finally, the meeting highlighted how to effectively translate reproductive research into policy and industry practice.
Collapse
Affiliation(s)
- Jessica E M Dunleavy
- School of BioSciences, Faculty of Science, The University of Melbourne, Parkville, Vic. 3010, Australia
| | - Doan Thao Dinh
- Robinson Research Institute, School of Biomedicine, Faculty of Health Sciences, The University of Adelaide, Adelaide, SA 5006, Australia
| | - Caitlin E Filby
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Vic. 3168, Australia; and Department of Obstetrics and Gynaecology, School of Clinical Sciences, Monash University, Clayton, Vic. 3168, Australia
| | - Ella Green
- Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, SA 5006, Australia
| | - Pierre Hofstee
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Taylor Pini
- School of Veterinary Science, The University of Queensland, Gatton, Qld 4343, Australia
| | - Nicola Rivers
- Department of Obstetrics and Gynaecology, School of Clinical Sciences, Monash University, Clayton, Vic. 3168, Australia
| | - David A Skerrett-Byrne
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia; and Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton, NSW 2305, Australia
| | - Rukmali Wijayarathna
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Vic. 3168, Australia; and Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Clayton, Vic. 3800, Australia
| | - Yasmyn E Winstanley
- Robinson Research Institute, School of Biomedicine, Faculty of Health Sciences, The University of Adelaide, Adelaide, SA 5006, Australia
| | - Wei Zhou
- Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, Vic. 3010, Australia; and Gynaecology Research Centre, Royal Women's Hospital, Parkville, Vic. 3052, Australia
| | - Dulama Richani
- Fertility & Research Centre, School of Women's and Children's Health, University of New South Wales, Sydney, NSW 2031, Australia
| |
Collapse
|
135
|
Read CC, Edwards JL, Schrick FN, Rhinehart JD, Payton RR, Campagna SR, Castro HF, Klabnik JL, Moorey SE. Preovulatory serum estradiol concentration is positively associated with oocyte ATP and follicular fluid metabolite abundance in lactating beef cattle. J Anim Sci 2022; 100:6620784. [PMID: 35772749 PMCID: PMC9246671 DOI: 10.1093/jas/skac136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/08/2022] [Indexed: 12/13/2022] Open
Abstract
Cattle induced to ovulate a small, physiologically immature preovulatory follicle had reduced oocyte developmental competence that resulted in decreased embryo cleavage and day 7 embryo quality compared with animals induced to ovulate a more advanced follicle. RNA-sequencing was performed on oocytes and their corresponding cumulus cells approximately 23 h after gonadotropin-releasing hormone (GnRH) administration to induce the preovulatory gonadotropin surge suggested reduced capacity for glucose metabolism and oxidative phosphorylation in the cumulus cells and oocytes from follicles ≤11.7 mm, respectively. We hypothesized that induced ovulation of a small, physiologically immature preovulatory follicle results in a suboptimal follicular microenvironment and reduced oocyte metabolic capacity. We performed a study with the objective to determine the impact of preovulatory follicle diameter and serum estradiol concentration at GnRH administration on oocyte metabolic competence and follicular fluid metabolome profiles. We synchronized the development of a preovulatory follicle and collected the follicle contents via transvaginal aspiration approximately 19 h after GnRH administration in lactating beef cows (n = 319). We determined ATP levels and mitochondrial DNA (mtDNA) copy number in 110 oocytes and performed ultra-high-performance liquid chromatography–high resolution mass spectrometry metabolomic studies on 45 follicular fluid samples. Intraoocyte ATP and the amount of ATP produced per mtDNA copy number were associated with serum estradiol concentration at GnRH and time from GnRH administration to follicle aspiration (P < 0.05). mtDNA copy number was not related to follicle diameter at GnRH, serum estradiol concentration at GnRH, or any potential covariates (P > 0.10). We detected 90 metabolites in the aspirated follicular fluid. We identified 22 metabolites associated with serum estradiol concentration at GnRH and 63 metabolites associated with follicular fluid progesterone concentration at the time of follicle aspiration (FDR < 0.10). Pathway enrichment analysis of significant metabolites suggested altered proteinogenesis, citric acid cycle, and pyrimidine metabolism in follicles of reduced estrogenic capacity pre-gonadotropin surge or reduced progesterone production by the time of follicle aspiration.
Collapse
Affiliation(s)
- Casey C Read
- Department of Animal Science, University of Tennessee, Knoxville, TN 37996, USA
| | - J Lannett Edwards
- Department of Animal Science, University of Tennessee, Knoxville, TN 37996, USA
| | - F Neal Schrick
- Department of Animal Science, University of Tennessee, Knoxville, TN 37996, USA
| | - Justin D Rhinehart
- Department of Animal Science, University of Tennessee, Knoxville, TN 37996, USA
| | - Rebecca R Payton
- Department of Animal Science, University of Tennessee, Knoxville, TN 37996, USA
| | - Shawn R Campagna
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA
| | - Hector F Castro
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA
| | - Jessica L Klabnik
- Department of Animal Science, University of Tennessee, Knoxville, TN 37996, USA
| | - Sarah E Moorey
- Department of Animal Science, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
136
|
Zhang Q, Ren J, Wang F, Pan M, Cui L, Li M, Qu F. Mitochondrial and glucose metabolic dysfunctions in granulosa cells induce impaired oocytes of polycystic ovary syndrome through Sirtuin 3. Free Radic Biol Med 2022; 187:1-16. [PMID: 35594990 DOI: 10.1016/j.freeradbiomed.2022.05.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/29/2022] [Accepted: 05/14/2022] [Indexed: 12/23/2022]
Abstract
Mitochondrial function and glucose metabolism play important roles in bidirectional signaling between granulosa cells (GCs) and oocytes. However, the factors associated with mitochondrial function and glucose metabolism of GCs in polycystic ovary syndrome (PCOS) are poorly understood, and their potential downstream effects on oocyte quality are still unknown. The aim of this study was to investigate whether there are alterations in mitochondrial-related functions and glucose metabolism in ovarian GCs of women with PCOS and the role of Sirtuin 3 (SIRT3) in this process. Here, we demonstrated that women with PCOS undergoing in vitro fertilization and embryo transfer had significantly lower rates of metaphase II oocytes, two-pronuclear fertilization, cleavage, and day 3 good-quality embryos. Germinal vesicle- and metaphase I-stage oocytes from women with PCOS exhibited increased mitochondrial reactive oxygen species (ROS), decreased mitochondrial membrane potential, and downregulation of glucose-6-phosphate dehydrogenase. GCs from women with PCOS presented significant alterations in mitochondrial morphology, amount, and localization, decreased membrane potential, reduced adenosine triphosphate (ATP) synthesis, increased mitochondrial ROS and oxidative stress, and insufficient oxidative phosphorylation (OXPHOS) together with decreased glycolysis. SIRT3 expression was significantly decreased in GCs of PCOS patients, and knockdown of SIRT3 in KGN cells could mimic the alterations in mitochondrial functions and glucose metabolism in PCOS GCs. SIRT3 knockdown changed the acetylation status of NDUFS1, which might induce altered mitochondrial OXPHOS, the generation of mitochondrial ROS, and eventually defects in the cellular insulin signaling pathway. These findings suggest that SIRT3 deficiency in GCs of PCOS patients may contribute to mitochondrial dysfunction, elevated oxidative stress, and defects in glucose metabolism, which potentially induce impaired oocytes in PCOS.
Collapse
Affiliation(s)
- Qing Zhang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Jun Ren
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Fangfang Wang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Manman Pan
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Long Cui
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Mingqian Li
- Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, 310012, China
| | - Fan Qu
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China.
| |
Collapse
|
137
|
Mao J, Zhang J, Cai L, Cui Y, Liu J, Yundong M. Elevated prohibitin 1 expression mitigates glucose metabolism defects in granulosa cells of infertile patients with endometriosis. Mol Hum Reprod 2022; 28:6593492. [PMID: 35639746 DOI: 10.1093/molehr/gaac018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Endometriosis is a common disease in women of childbearing age and is closely associated with female infertility. However, the pathogenesis of endometriosis-related infertility is still not fully understood. Prohibitin 1 (PHB1), a highly conserved protein related to mitochondrial function, is differentially expressed in the endometrium of patients with endometriosis. However, the role of PHB1 in glucose metabolism in granulosa cells remains unclear. In this study, we investigated whether PHB1 expression and glucose metabolism patterns differ in the granulosa cells of patients with endometriosis and those of patients serving as controls. We then evaluated these changes after PHB1 was upregulated or downregulated in the human granulosa cell line (KGN) using a lentivirus construct. In the granulosa cells of patients with endometriosis, significantly elevated PHB1 expression, increased glucose consumption and lactic acid production, as well as aberrant expression of glycolysis-related enzymes were found compared to those without endometriosis (P < 0.05). After PHB1 expression was upregulated in KGN cells, and the expression of enzymes related to glucose metabolism, glucose consumption and lactic acid production was strikingly increased compared to controls (P < 0.05). The opposite results were found when PHB1 expression was downregulated in KGN cells. Additionally, the cell proliferation and apoptosis rates, ATP synthesis, reactive oxygen species (ROS) levels, and mitochondrial membrane potential (MMP) were significantly altered after down-regulation of PHB1 expression in KGN cells (P < 0.05). This study suggested that PHB1 plays a pivotal role in mitigating the loss of energy caused by impaired mitochondrial function in granulosa cells of patients with endometriosis, which may explain, at least in part, why the quality of oocytes in these patients is compromised.
Collapse
Affiliation(s)
- Jingqin Mao
- The State Key Laboratory of Reproductive Medicine, The Clinical Center for Reproductive Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Province, 210029, China, Jiangsu.,Women's Hospital School of Medicine Zhejiang University, Hangzhou, Province, China, Zhejiang
| | - Jingyi Zhang
- The State Key Laboratory of Reproductive Medicine, The Clinical Center for Reproductive Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Province, 210029, China, Jiangsu
| | - Lingbo Cai
- The State Key Laboratory of Reproductive Medicine, The Clinical Center for Reproductive Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Province, 210029, China, Jiangsu
| | - Yugui Cui
- The State Key Laboratory of Reproductive Medicine, The Clinical Center for Reproductive Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Province, 210029, China, Jiangsu
| | - Jiayin Liu
- The State Key Laboratory of Reproductive Medicine, The Clinical Center for Reproductive Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Province, 210029, China, Jiangsu
| | - Mao Yundong
- The State Key Laboratory of Reproductive Medicine, The Clinical Center for Reproductive Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Province, 210029, China, Jiangsu
| |
Collapse
|
138
|
Fang X, Xia W, Li S, Qi Y, Liu M, Yu Y, Li H, Li M, Tao C, Wang Z, Li J. SIRT2 Is Critical for Sheep Oocyte Maturation through Regulating Function of Surrounding Granulosa Cells. Int J Mol Sci 2022; 23:ijms23095013. [PMID: 35563403 PMCID: PMC9104768 DOI: 10.3390/ijms23095013] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/24/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Oocyte in vitro maturation is crucial for in vitro embryo production technology, which provides oocytes resources for in vitro fertilization and somatic cell nuclear transfer. Previous studies proved that SIRT2, a member of the sirtuin family, plays a role in oocyte meiosis, but its role in sheep oocyte maturation and its regulating mechanism remains unknown. Firstly, we confirmed the role of Sirt2 in sheep oocytes maturation by supplementation of SIRT2 inhibitor and activator. To further explore the specific mechanism, we performed knockdown of Sirt2 in granulosa cells and then cocultured them with oocytes. Moreover, we determined the effects of Sirt2 on granulosa cell oxidative apoptosis, cell migration, and diffusion, and examined its effects on granulosa cell mitochondrial function, mitophagy, and steroid hormone levels. The results showed that supplementation of SIRT2 inhibitor decreased the oocytes maturation rate (69.28% ± 1.28 vs. 45.74% ± 4.74, p < 0.05), while resveratrol, a SIRT2 activator, increased its maturation rate (67.44% ± 1.68 vs. 78.52 ± 1.28, p < 0.05). Knockdown of Sirt2 in sheep granulosa cells also reduced the oocytes maturation rate (47.98% ± 1.43 vs. 33.60% ± 1.77, p < 0.05), and led to decreased cell migration and expansion ability, oxidative apoptosis, abnormal mitochondrial gene expression, decreased mitochondrial membrane potential and ATP level, and increased mitophagy level. Overexpression of Sirt2 improved mitochondrial membrane potential and ATP level and improved mitochondrial function. Furthermore, we found that Sirt2 knockdown in granulosa cells promotes the secretion of P4 through regulating p-ERK1/2. In conclusion the present study showed that SIRT2 is critical for sheep oocyte maturation through regulating the function of ovarian granulosa cells, especially affecting its mitochondrial function.
Collapse
Affiliation(s)
- Xiaohuan Fang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (X.F.); (W.X.); (S.L.); (Y.Q.); (M.L.); (Y.Y.); (H.L.); (M.L.); (C.T.); (Z.W.)
| | - Wei Xia
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (X.F.); (W.X.); (S.L.); (Y.Q.); (M.L.); (Y.Y.); (H.L.); (M.L.); (C.T.); (Z.W.)
- Research Center of Cattle and Sheep Embryo Engineering Technique of Hebei Province, Baoding 071000, China
| | - Sa Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (X.F.); (W.X.); (S.L.); (Y.Q.); (M.L.); (Y.Y.); (H.L.); (M.L.); (C.T.); (Z.W.)
| | - Yatian Qi
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (X.F.); (W.X.); (S.L.); (Y.Q.); (M.L.); (Y.Y.); (H.L.); (M.L.); (C.T.); (Z.W.)
| | - Mingzhi Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (X.F.); (W.X.); (S.L.); (Y.Q.); (M.L.); (Y.Y.); (H.L.); (M.L.); (C.T.); (Z.W.)
| | - Yang Yu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (X.F.); (W.X.); (S.L.); (Y.Q.); (M.L.); (Y.Y.); (H.L.); (M.L.); (C.T.); (Z.W.)
| | - Hanxing Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (X.F.); (W.X.); (S.L.); (Y.Q.); (M.L.); (Y.Y.); (H.L.); (M.L.); (C.T.); (Z.W.)
| | - Mengqi Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (X.F.); (W.X.); (S.L.); (Y.Q.); (M.L.); (Y.Y.); (H.L.); (M.L.); (C.T.); (Z.W.)
| | - Chenyu Tao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (X.F.); (W.X.); (S.L.); (Y.Q.); (M.L.); (Y.Y.); (H.L.); (M.L.); (C.T.); (Z.W.)
| | - Zhigang Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (X.F.); (W.X.); (S.L.); (Y.Q.); (M.L.); (Y.Y.); (H.L.); (M.L.); (C.T.); (Z.W.)
- Research Center of Cattle and Sheep Embryo Engineering Technique of Hebei Province, Baoding 071000, China
| | - Junjie Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (X.F.); (W.X.); (S.L.); (Y.Q.); (M.L.); (Y.Y.); (H.L.); (M.L.); (C.T.); (Z.W.)
- Research Center of Cattle and Sheep Embryo Engineering Technique of Hebei Province, Baoding 071000, China
- Correspondence:
| |
Collapse
|
139
|
Zhu S, Wang Q. Metabolic control of oocyte development. Biol Reprod 2022; 107:54-61. [PMID: 35470861 DOI: 10.1093/biolre/ioac082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/19/2022] [Accepted: 04/18/2022] [Indexed: 11/12/2022] Open
Abstract
Well balanced and timed metabolism is essential for oocyte development. The effects of extrinsic nutrients on oocyte maturation have been widely reported. In contrast, intrinsic control of oogenesis by intracellular metabolites and metabolic enzymes has received little attention. The comprehensive characterization of metabolic patterns could lead to more complete understanding of regulatory mechanisms underlying oocyte development. A cell's metabolic state is integrated with epigenetic regulation. Epigenetic modifications in germ cells are therefore sensitive to parental environmental exposures. Nevertheless, direct genetic evidence for metabolites involvement in epigenetic establishment during oocyte development is still lacking. Moreover, metabolic disorder-induced epigenetic perturbations during oogenesis might mediate the inter/transgenerational effects of environmental insults. The molecular mechanisms responsible for this deserve further investigation. Here, we summarize the findings on metabolic regulation in oocyte maturation, and how it contributes to oocyte epigenetic modification. Finally, we propose a mouse model that metabolic disorder in oocyte serves as a potential factor mediating the maternal environment effects on offspring health.
Collapse
Affiliation(s)
- Shuai Zhu
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Qiang Wang
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing 211166, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
140
|
Izquierdo D, Roura M, Pérez-Trujillo M, Soto-Heras S, Paramio MT. Fatty Acids and Metabolomic Composition of Follicular Fluid Collected from Environments Associated with Good and Poor Oocyte Competence in Goats. Int J Mol Sci 2022; 23:ijms23084141. [PMID: 35456957 PMCID: PMC9028732 DOI: 10.3390/ijms23084141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 02/01/2023] Open
Abstract
In goats, embryo oocyte competence is affected by follicle size regardless the age of the females. In previous studies we have found differences in blastocyst development between oocytes coming of small (<3 mm) and large follicles (>3 mm) in prepubertal (1−2 months-old) goats. Oocyte competence and Follicular Fluid (FF) composition changes throughout follicle growth. The aim of this study was to analyze Fatty Acids (FAs) composition and metabolomic profiles of FF recovered from small and large follicles of prepubertal goats and follicles of adult goats. FAs were analyzed by chromatography and metabolites by 1H-Nuclear Magnetic Resonance (1H-NMR) Spectrometry. The results showed important differences between adult and prepubertal follicles: (a) the presence of α,β-glucose in adult and no detection in prepubertal; (b) lactate, -N-(CH3)3 groups and inositol were higher in prepubertal (c) the percentage of Linolenic Acid, Total Saturated Fatty Acids and n-3 PUFAs were higher in adults; and (d) the percentage of Linoleic Acid, total MUFAs, PUFAs, n-6 PUFAs and n-6 PUFAs: n-3 PUFAs ratio were higher in prepubertal goats. Not significant differences were found in follicle size of prepubertal goats, despite the differences in oocyte competence for in vitro embryo production.
Collapse
Affiliation(s)
- Dolors Izquierdo
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (D.I.); (M.R.)
| | - Montserrat Roura
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (D.I.); (M.R.)
| | - Míriam Pérez-Trujillo
- Servei de Ressonància Magnètica Nuclear, Facultat de Ciències i Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
| | - Sandra Soto-Heras
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61820, USA;
| | - María-Teresa Paramio
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (D.I.); (M.R.)
- Correspondence:
| |
Collapse
|
141
|
Chen P, Yao M, Fang T, Ye C, Du Y, Jin Y, Wu R. Identification of NFASC and CHL1 as Two Novel Hub Genes in Endometriosis Using Integrated Bioinformatic Analysis and Experimental Verification. Pharmgenomics Pers Med 2022; 15:377-392. [PMID: 35496348 PMCID: PMC9041605 DOI: 10.2147/pgpm.s354957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/11/2022] [Indexed: 11/23/2022] Open
Abstract
Background Endometriosis (EMS) is a common and highly recurrent gynecological disease characterized by chronic pain and infertility. There are no definitive therapies for endometriosis since the pathogenesis remains undetermined. This study aimed to identify EMS-related functional modules and hub genes by integrated bioinformatics analysis. Methods Three endometriosis expression profiling series (GSE25628, GSE23339, and GSE7305) were obtained from Gene Expression Omnibus (GEO). The EMS-related module was constructed by weighted gene co-expression network analysis (WGCNA), followed by Gene Ontology (GO) enrichment analyses. Cytohubba and the MCODE plug-ins of Cytoscape were used to screen out the hub genes, which were verified via receiver operating characteristic (ROC) curves. Immunohistochemistry was performed to verify the protein expression of the hub genes in ectopic endometrial tissues. Moreover, CIBERSORT was used to analyze the relationship between the abundance of immune cells infiltration and the expression of hub genes. Results Among the 18 modules obtained, the darkmagenta module was identified as the EMS-related module, genes of which were significantly enriched to terms referring to cell migration and neurogenesis. NFASC and CHL1 were screened out and prioritized as hub genes through Cytoscape and confirmed to be differentially upregulated in ectopic endometrial samples. Finally, the expression of hub genes was related to the abundance of immune cells infiltration. The higher expression of NFASC or CHL1 correlated with increased M2 macrophages and decreased natural killer (NK) cells in ectopic lesions. Conclusion This study provided new insights into the molecular factors underlying the pathogenesis of endometriosis and provided a theoretical basis for the potential that the two hub genes, NFASC and CHL1, might be novel biomarkers and therapeutic targets in the future.
Collapse
Affiliation(s)
- Pei Chen
- Department of Obstetrics and Gynecology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Mengyun Yao
- Department of Obstetrics and Gynecology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Tao Fang
- Department of Obstetrics and Gynecology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Chaoshuang Ye
- Department of Obstetrics and Gynecology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Yongjiang Du
- Department of Obstetrics and Gynecology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Yang Jin
- Department of Obstetrics and Gynecology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Ruijin Wu
- Department of Obstetrics and Gynecology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Correspondence: Ruijin Wu, Department of Obstetrics and Gynecology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People’s Republic of China, Tel +86 571-8706223, Email
| |
Collapse
|
142
|
Sequential IVM by CNP preincubation and cooperating of PGE2 with AREG enhances developmental competence of SCNT reconstructs in goat. Sci Rep 2022; 12:4243. [PMID: 35273320 PMCID: PMC8913792 DOI: 10.1038/s41598-022-08238-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 03/04/2022] [Indexed: 12/03/2022] Open
Abstract
Developmental competence of in vitro matured cumulus oocyte complexes (COCs) in conventional IVM (C.IVM) is lower than in vivo maturated COCs and is related to unsynchronized nuclear and cytoplasmic maturation. To overcome this dearth, COCs can be exposed to granulosa secreted factors in a two-step system. Therefore, in the first experiment, 1000 nM of C-type natriuretic peptide for 8 h was determined (CAPA), as the best time and concentration to retain oocytes in germinal vesicle stage. This condition, also reduces lipid droplets and increases the expression of ATGL and PLIN2 involved in lipolysis and lipogenesis, respectively. In the second experiment, maturation was stimulated with prostaglandin E2 and amphiregulin for 18 h (CAPA-IVM), and their optimal concentrations based on blastocyst formation rates through in vitro fertilization (IVF) were determined as 1 and 600 nM, respectively. In the third experiment, the in vitro and in vivo developmental competency of SCNT embryos in CAPA-IVM group were determined. Despite similar blastocyst formation rates in IVF and SCNT between CAPA-IVM and C.IVM, the quality of blastocysts were quality was higher in CAPA-IVM, which reflected itself, as higher ICM/TE ratio and also expression of NANOG in SCNT blastocysts. Pregnancy rate, live births rate and SCNT efficiency were not significant between CAPA-IVM and C.IVM groups. Therefore, CAPA-IVM can improve the developmental competency of SCNT derived embryos.
Collapse
|
143
|
Buratini J, Soares ACS, Barros RG, Dellaqua TT, Lodde V, Franciosi F, Dal Canto M, Renzini MM, Luciano AM. Physiological parameters related to oocyte nuclear differentiation for the improvement of IVM/IVF outcomes in women and cattle. Reprod Fertil Dev 2022; 34:27-35. [PMID: 35231269 DOI: 10.1071/rd21278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In vitro maturation (IVM) has been applied in numerous different contexts and strategies in humans and animals, but in both cases it represents a challenge still far from being overcome. Despite the large dataset produced over the last two decades on the mechanisms that govern antral follicular development and oocyte metabolism and differentiation, IVM outcomes are still unsatisfactory. This review specifically focuses on data concerning the potential consequences of using supraphysiological levels of FSH during IVM, as well as on the regulation of oocyte chromatin dynamics and its utility as a potential marker of oocyte developmental competence. Taken together, the data revisited herein indicate that a significant improvement in IVM efficacy may be provided by the integration of pre-OPU patient-specific protocols preparing the oocyte population for IVM and more physiological culture systems mimicking more precisely the follicular environment that would be experienced by the recovered oocytes until completion of metaphase II.
Collapse
Affiliation(s)
- Jose Buratini
- Biogenesi Reproductive Medicine Centre - Eugin Group, Istituti Clinici Zucchi, Monza, Italy; and Department of Structural and Functional Biology, Sao Paulo State University, Botucatu, Brazil
| | | | - Rodrigo Garcia Barros
- Reproductive and Developmental Biology Laboratory, Department of Health, Animal Science and Food Safety, University of Milan, Milan, Italy
| | - Thaisy Tino Dellaqua
- Department of Structural and Functional Biology, Sao Paulo State University, Botucatu, Brazil
| | - Valentina Lodde
- Reproductive and Developmental Biology Laboratory, Department of Health, Animal Science and Food Safety, University of Milan, Milan, Italy
| | - Federica Franciosi
- Reproductive and Developmental Biology Laboratory, Department of Health, Animal Science and Food Safety, University of Milan, Milan, Italy
| | | | - Mario Mignini Renzini
- Biogenesi Reproductive Medicine Centre - Eugin Group, Istituti Clinici Zucchi, Monza, Italy
| | - Alberto Maria Luciano
- Reproductive and Developmental Biology Laboratory, Department of Health, Animal Science and Food Safety, University of Milan, Milan, Italy
| |
Collapse
|
144
|
Sun J, Liu Q, Zhang X, Dun S, Liu L. Mitochondrial hijacking: A potential mechanism for SARS-CoV-2 to impair female fertility. Med Hypotheses 2022; 160:110778. [PMID: 35103033 PMCID: PMC8791262 DOI: 10.1016/j.mehy.2022.110778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/03/2022] [Accepted: 01/10/2022] [Indexed: 11/23/2022]
Abstract
As well as causing respiratory lesions, the multi-organ complications caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are also well known. Combined with the epidemiological characteristics of SARS-CoV-2 with high transmission rate and low lethality, the impact of complications caused by its infection on infected individuals seems to be of greater concern. There has been evidence that viral infection is complicated by female reproductive impairment, but the mechanism by which SARS-CoV-2 impairs female fertility is unclear. In addition, RNA-GPS technology has revealed that the SARS-CoV-2 genome resides in mitochondria of the host cells and affects mitochondrial function. Considering the close relationship between mitochondria and female fertility, this paper takes mitochondrial hijacking as an entry point to elucidate the possible mechanisms by which SARS-CoV-2 affects female fertility through the mitochondrial hijacking pathway, which will be important for timely preventive measures and identification of therapeutic targets for infected women with reproductive needs, especially those with asymptomatic infection.
Collapse
Affiliation(s)
- Jun Sun
- Medical School of Zhengzhou University, China
| | - Qiong Liu
- Medical School of Zhengzhou University, China
| | | | - Shu Dun
- Medical School of Zhengzhou University, China
| | - Li Liu
- School of Basic Medical Sciences, Zhengzhou University, China
| |
Collapse
|
145
|
Zhang H, Li C, Wen D, Li R, Lu S, Xu R, Tang Y, Sun Y, Zhao X, Pan M, Ma B. Melatonin improves the quality of maternally aged oocytes by maintaining intercellular communication and antioxidant metabolite supply. Redox Biol 2022; 49:102215. [PMID: 34929573 PMCID: PMC8688718 DOI: 10.1016/j.redox.2021.102215] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 12/14/2022] Open
Abstract
In mammalian ovaries, oocytes are physically coupled to somatic granulosa cells, and this coupling is crucial for the growth and development of competent oocytes as it mediates the transfer of metabolic support molecules. However, aging-mediated dysregulation in communication between the oocytes and granulosa cells affects the oocyte quality. In the present study, we examined the defected germline-soma communication and reduced mRNA levels encoding key structural components of transzonal projections (TZPs) in maternally aged oocytes. Oral administration of melatonin to aged mice substantially increased TZPs and maintained the cumulus cells-oocyte communication, which played a central role in the production of adequate oocyte ATP levels and reducing the accumulation of reactive oxygen species (ROS), apoptosis, DNA damage, endoplasmic reticulum (ER) stress and spindle/chromosomal defects. This beneficial effect of melatonin was inhibited by carbenoxolone (CBX), a gap junctional uncoupler, which disrupts bidirectional communications between oocyte and somatic cells. Simultaneously, melatonin significantly increased the mRNA and protein levels corresponding to genes associated with TZPs and prevented TZP retraction in in vitro-cultured cumulus-oocyte complex (COCs). Furthermore, we infused melatonin and CBX into the COCs in vitro culture system and monitored the levels of nicotinamide adenine dinucleotide phosphate (NADPH) and glutathione (GSH) in cumulus cells and oocytes. Notably, COCs treated with melatonin demonstrated improved NADPH and GSH levels. Of note, CBX was capable of reducing NADPH and GSH levels, aggravated the ROS accumulation and ER stress. Collectively, our data demonstrate the role of melatonin in preventing age-associated germline-soma communication defects, aiding the relay of antioxidant metabolic molecules for the maintenance of oocyte quality from cumulus cells, which have important potential for improving deficient phenotypes of maternally aged oocytes and the treatment of woman infertility.
Collapse
Affiliation(s)
- Hui Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Chan Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Dongxu Wen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Ruoyu Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Sihai Lu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Rui Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Yaju Tang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Yidan Sun
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Xiaoe Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China.
| | - Menghao Pan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China.
| | - Baohua Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China.
| |
Collapse
|
146
|
Anderson S, Xu P, Frey AJ, Goodspeed JR, Doan MT, Orris JJ, Clements N, Glassner MJ, Snyder NW. Cumulus cell acetyl-CoA metabolism from acetate is associated with maternal age but only partially with oocyte maturity. Syst Biol Reprod Med 2022; 68:36-43. [PMID: 34962441 PMCID: PMC8821170 DOI: 10.1080/19396368.2021.2003479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cumulus cell (CC) clumps that associate with oocytes provide the oocytes with growth and signaling factors. Thus, the metabolism of the CCs may influence oocyte function, and CC metabolism may be predictive of oocyte competence for in vitro fertilization. CCs are thought to be highly glycolytic, but data on the use of other potential carbon substrates are lacking in humans. This prospective and blinded cohort study was designed to examine the substrate utilization of CCs by age and oocyte competence. Individual sets of CC clumps from participants were removed after oocyte retrieval procedure then, incubated with stable isotope labeled substrates, and analyzed using liquid chromatography-high resolution mass spectrometry (LC-HRMS) for isotopologue enrichment of major metabolic intermediates, including acetyl-CoA. The acyl-chain of acetyl-CoA contains 2 carbons that can be derived from 13C-labeled substrates resulting in an M + 2 isotopologue that contains 2 13C atoms. Comparing the fate of three major carbon sources, mean enrichment of M + 2 acetyl-CoA (mean, standard deviation) was for glucose (3.6, 7.7), for glutamine (9.4, 6.2), and for acetate (20.7, 13.9). Due to this unexpected high and variable labeling from acetate, we then examined acetyl-CoA mean % enrichment from acetate in 278 CCs from 21 women ≤34 (49.06, 12.73) decreased with age compared to 124 CCs from 10 women >34 (43.48, 16.20) (p = 0.0004, t-test). The CCs associated with the immature prophase I oocytes had significantly lower enrichment in M + 2 acetyl CoA compared to the CCs associated with the metaphase I and metaphase II oocytes (difference: -6.02, CI: -1.74,-13.79, p = 0.013). Acetate metabolism in individual CC clumps was positively correlated with oocyte maturity and decreased with maternal age. These findings indicate that CC metabolism of non-glucose substrates should be investigated relative to oocyte function and age-related fertility.Abbreviations: CCs: cumulus cells; COC: cumulus-oocyte complex; LC-MS: liquid chromatography-mass spectrometry; acetyl-CoA: acetyl-Coenzyme A; CoA: Coenzyme A.
Collapse
Affiliation(s)
- Sharon Anderson
- Main Line Fertility, 825 Old Lancaster Road, Suite 170, Bryn Mawr, PA 19010,Ob/Gyn Department, Drexel University College of Medicine, Department of Obstetrics and Gynecology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Peining Xu
- AJ Drexel Autism Institute, Drexel University, 3020 Market St Suite 560, Philadelphia, PA 19104
| | - Alexander J. Frey
- AJ Drexel Autism Institute, Drexel University, 3020 Market St Suite 560, Philadelphia, PA 19104
| | - Jason R. Goodspeed
- AJ Drexel Autism Institute, Drexel University, 3020 Market St Suite 560, Philadelphia, PA 19104
| | - Mary T. Doan
- AJ Drexel Autism Institute, Drexel University, 3020 Market St Suite 560, Philadelphia, PA 19104
| | - John J. Orris
- Main Line Fertility, 825 Old Lancaster Road, Suite 170, Bryn Mawr, PA 19010,Ob/Gyn Department, Drexel University College of Medicine, Department of Obstetrics and Gynecology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Nicolle Clements
- Department of Decision System Sciences, St. Joes University, 348 Mandeville Hall, Philadelphia, PA, USA
| | - Michael J. Glassner
- Main Line Fertility, 825 Old Lancaster Road, Suite 170, Bryn Mawr, PA 19010,Ob/Gyn Department, Drexel University College of Medicine, Department of Obstetrics and Gynecology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Nathaniel W. Snyder
- AJ Drexel Autism Institute, Drexel University, 3020 Market St Suite 560, Philadelphia, PA 19104,Center for Metabolic Disease Research, Department of Microbiology and Immunology, Temple University Lewis Katz School of Medicine. Philadelphia, PA, USA
| |
Collapse
|
147
|
Bartolacci A, Intra G, Coticchio G, dell’Aquila M, Patria G, Borini A. Does morphological assessment predict oocyte developmental competence? A systematic review and proposed score. J Assist Reprod Genet 2022; 39:3-17. [PMID: 34993709 PMCID: PMC8866588 DOI: 10.1007/s10815-021-02370-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/26/2021] [Indexed: 01/03/2023] Open
Abstract
PURPOSE Does existing scientific literature suggest an impact of oocyte dysmorphisms on biological or clinical outcomes of assisted reproduction treatments? METHODS Studies of interest were selected from an initial cohort of 6651 potentially relevant records retrieved. PubMed was systematically searched for peer-reviewed original papers and reviews identified by keywords and medical subject heading (MeSH) terms. The most relevant publications were critically evaluated to identify criteria for oocyte morphological evaluation and IVF outcomes. For each morphological abnormality, we generated an oocyte literature score (OLS) through the following procedure: (a) papers showing a negative, absence of, or positive correlation between a given abnormality and IVF outcome were scored 1, 0, and - 1, respectively; (b) the sum of these scores was expressed as a fraction of all analyzed papers; (c) the obtained fraction was multiplied by 10 and converted into decimal number. RESULT We identified eleven different dysmorphisms, of which six were extracytoplasmic (COC, zona pellucida, perivitelline space, polar body 1, shape, giant size) and five intracytoplasmic (vacuoles, refractile bodies, SER clusters, granularity, color). Among the extracytoplasmic dysmorphisms, abnormal morphology of the COC generated an OLS of 8.33, indicating a large prevalence (5/6) of studies associated with a negative outcome. Three intracytoplasmic dysmorphisms (vacuoles, SER clusters, and granularity) produced OLS of 7.14, 7.78, and 6.25, respectively, suggestive of a majority of studies reporting a negative outcome. CONCLUSION COC morphology, vacuoles, SER clusters, and granularity produced OLS suggestive of a prevalence of studies reporting a negative outcome.
Collapse
Affiliation(s)
| | - Giulia Intra
- 9.Baby, Family and Fertility Center, Via Dante 15, Bologna, Italy
| | | | | | - Gilda Patria
- 9.Baby, Family and Fertility Center, Via Dante 15, Bologna, Italy
| | - Andrea Borini
- 9.Baby, Family and Fertility Center, Via Dante 15, Bologna, Italy
| |
Collapse
|
148
|
Effect of cumulin and super-GDF9 in standard and biphasic mouse IVM. J Assist Reprod Genet 2022; 39:127-140. [PMID: 34984599 PMCID: PMC8866628 DOI: 10.1007/s10815-021-02382-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/17/2021] [Indexed: 01/03/2023] Open
Abstract
PURPOSE In vitro maturation (IVM) is a technology that generates mature oocytes following culture of immature cumulus-oocyte complexes (COC) in vitro. IVM is characterized by minimal patient stimulation, making it attractive for certain patient groups. Recently, a biphasic IVM system, capacitation (CAPA)-IVM, has shown improved clinical outcomes relative to standard IVM; however, it remains less efficient than IVF. This study assessed whether supplementation of CAPA-IVM culture media with the novel TGFβ superfamily proteins cumulin and super-GDF9 improves subsequent mouse embryo development. METHODS Immature mouse COCs were cultured by standard IVM or biphasic IVM ± cumulin or super-GDF9. RESULTS Both cumulin and super-GDF9 in standard IVM significantly improved day-6 blastocyst rate (53.9% control, 73.6% cumulin, 70.4% super-GDF9; p = 0.006; n = 382-406 oocytes). Cumulin or super-GDF9 in CAPA-IVM did not alter embryo yield or blastocyst cell allocation in an unstimulated model. Moreover, cumulin did not alter these outcomes in a mild PMSG stimulation model. Cumulin in CAPA-IVM significantly increased cumulus cell expression of cumulus expansion genes (Ptgs2, Ptx3, Adamts1, Gfat2) and decreased Lhr expression relative to control. However, cumulin-induced mRNA expression of cumulus cell (Ptgs2, Ptx3) and oocyte genes (Gdf9, Bmp15, Oct4, Stella) in CAPA-IVM remained significantly lower than that of in vivo matured cells. CONCLUSION Cumulin did not provide an additional beneficial effect in biphasic IVM in terms of blastocyst yield and cell allocation; however in standard IVM, cumulin and super-GDF9 significantly improve oocyte developmental competence.
Collapse
|
149
|
Wu J, Liu Y, Song Y, Wang L, Ai J, Li K. Aging conundrum: A perspective for ovarian aging. Front Endocrinol (Lausanne) 2022; 13:952471. [PMID: 36060963 PMCID: PMC9437485 DOI: 10.3389/fendo.2022.952471] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Progressive loss of physiological integrity and accumulation of degenerative changes leading to functional impairment and increased susceptibility to diseases are the main features of aging. The ovary, the key organ that maintains female reproductive and endocrine function, enters aging earlier and faster than other organs and has attracted extensive attention from society. Ovarian aging is mainly characterized by the progressive decline in the number and quality of oocytes, the regulatory mechanisms of which have yet to be systematically elucidated. This review discusses the hallmarks of aging to further highlight the main characteristics of ovarian aging and attempt to explore its clinical symptoms and underlying mechanisms. Finally, the intervention strategies related to aging are elaborated, especially the potential role of stem cells and cryopreservation of embryos, oocytes, or ovarian tissue in the delay of ovarian aging.
Collapse
Affiliation(s)
| | | | | | - Lingjuan Wang
- *Correspondence: Kezhen Li, ; Jihui Ai, ; Lingjuan Wang,
| | - Jihui Ai
- *Correspondence: Kezhen Li, ; Jihui Ai, ; Lingjuan Wang,
| | - Kezhen Li
- *Correspondence: Kezhen Li, ; Jihui Ai, ; Lingjuan Wang,
| |
Collapse
|
150
|
Qin DY, Jiang HH, Yao QY, Yao W, Yuan XQ, Wang Y, Deng TR, Du YY, Ren XL, Guo N, Li YF. Rescue in vitro maturation may increase the pregnancy outcomes among women undergoing intracytoplasmic sperm injection. Front Endocrinol (Lausanne) 2022; 13:1047571. [PMID: 36578963 PMCID: PMC9790966 DOI: 10.3389/fendo.2022.1047571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION To investigate whether rescue in vitro maturation (R-IVM) improves the reproductive outcomes among women undergoing intracytoplasmic sperm injection (ICSI) after one oocyte retrieved cycle. METHODS Between January 2019 and December 2020, 2602 women who underwent ICSI in the Reproductive Medicine Center of Tongji Hospital, Wuhan, China, were included in our retrospective cohort study. There were 2112 women undergoing only ICSI and 490 women with R-IVM followed by ICSI. The intermediate reproductive outcomes and pregnancy outcomes were assessed, including the number of normally fertilized embryos, number of cleaved embryos, number of good-quality embryos, number of day-3 available embryos, number of embryos cultured past day-3, number of blastocysts, number of available blastocysts, biochemical pregnancy, miscarriage, clinical pregnancy and live birth. The perinatal outcomes were also assessed, including preterm birth and birth weight. The abovementioned outcomes were also calculated for in vivo matured and R-IVM oocytes separately in women undergoing ICSI with R-IVM group. RESULTS Compared with the women who underwent only ICSI, those who underwent ICSI with R-IVM had higher numbers of MII oocytes, normally fertilized embryos, cleaved embryos, day-3 available embryos, embryos cultured past day-3, and higher oocyte maturation rate, available embryo rate than women undergoing only ICSI. Additionally, we found that women undergoing ICSI with R-IVM had an increased chance of clinical pregnancy (adjusted OR=1.50, 95% CI: 1.17-1.93) and cumulative live birth (adjusted OR=1.35, 95% CI: 1.07-1.71). After propensity score matching (PSM), the cumulative live birth rate was 60.1% for women undergoing ICSI with R-IVM versus 54.9% for women undergoing only ICSI (OR=1.24, 95% CI: 0.94-1.63). The reproductive outcomes were also significantly different when calculated for in vivo matured and R-IVM oocytes separately in women undergoing ICSI with R-IVM group. All live births from R-IVM embryos were healthy and without malformations or complications. CONCLUSION R-IVM may improve the reproductive outcomes of women undergoing ICSI. It may also provide a reference for the safety of R-IVM. This study maybe support a routine application of R-IVM among patients who intend to undergo ICSI.
Collapse
Affiliation(s)
- Dan-Yu Qin
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua-Hua Jiang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Qing-Yun Yao
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen Yao
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Qiong Yuan
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Wang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao-Ran Deng
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Wuhan, China
| | - Yao-Yao Du
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin-Ling Ren
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Wuhan, China
| | - Na Guo
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Na Guo, ; Yu-Feng Li,
| | - Yu-Feng Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Na Guo, ; Yu-Feng Li,
| |
Collapse
|