101
|
Carmi G, Tagore S, Gorohovski A, Sivan A, Raviv-Shay D, Frenkel-Morgenstern M. Design principles of gene evolution for niche adaptation through changes in protein-protein interaction networks. Sci Rep 2020; 10:15628. [PMID: 32973219 PMCID: PMC7519090 DOI: 10.1038/s41598-020-71976-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
In contrast to fossorial and above-ground organisms, subterranean species have adapted to the extreme stresses of living underground. We analyzed the predicted protein–protein interactions (PPIs) of all gene products, including those of stress-response genes, among nine subterranean, ten fossorial, and 13 aboveground species. We considered 10,314 unique orthologous protein families and constructed 5,879,879 PPIs in all organisms using ChiPPI. We found strong association between PPI network modulation and adaptation to specific habitats, noting that mutations in genes and changes in protein sequences were not linked directly with niche adaptation in the organisms sampled. Thus, orthologous hypoxia, heat-shock, and circadian clock proteins were found to cluster according to habitat, based on PPIs rather than on sequence similarities. Curiously, "ordered" domains were preserved in aboveground species, while "disordered" domains were conserved in subterranean organisms, and confirmed for proteins in DistProt database. Furthermore, proteins with disordered regions were found to adopt significantly less optimal codon usage in subterranean species than in fossorial and above-ground species. These findings reveal design principles of protein networks by means of alterations in protein domains, thus providing insight into deep mechanisms of evolutionary adaptation, generally, and particularly of species to underground living and other confined habitats.
Collapse
Affiliation(s)
- Gon Carmi
- The Azrieli Faculty of Medicine, Bar-Ilan University, 8 Henrietta Szold St, 13195, Safed, Israel
| | - Somnath Tagore
- The Azrieli Faculty of Medicine, Bar-Ilan University, 8 Henrietta Szold St, 13195, Safed, Israel.,Department of Systems Biology, Columbia University Medical Center, Herbert Irving Cancer Research Center, New York, USA
| | - Alessandro Gorohovski
- The Azrieli Faculty of Medicine, Bar-Ilan University, 8 Henrietta Szold St, 13195, Safed, Israel
| | - Aviad Sivan
- The Azrieli Faculty of Medicine, Bar-Ilan University, 8 Henrietta Szold St, 13195, Safed, Israel
| | - Dorith Raviv-Shay
- The Azrieli Faculty of Medicine, Bar-Ilan University, 8 Henrietta Szold St, 13195, Safed, Israel
| | | |
Collapse
|
102
|
Relevance of Electrostatic Charges in Compactness, Aggregation, and Phase Separation of Intrinsically Disordered Proteins. Int J Mol Sci 2020; 21:ijms21176208. [PMID: 32867340 PMCID: PMC7503639 DOI: 10.3390/ijms21176208] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/22/2020] [Accepted: 08/23/2020] [Indexed: 12/20/2022] Open
Abstract
The abundance of intrinsic disorder in the protein realm and its role in a variety of physiological and pathological cellular events have strengthened the interest of the scientific community in understanding the structural and dynamical properties of intrinsically disordered proteins (IDPs) and regions (IDRs). Attempts at rationalizing the general principles underlying both conformational properties and transitions of IDPs/IDRs must consider the abundance of charged residues (Asp, Glu, Lys, and Arg) that typifies these proteins, rendering them assimilable to polyampholytes or polyelectrolytes. Their conformation strongly depends on both the charge density and distribution along the sequence (i.e., charge decoration) as highlighted by recent experimental and theoretical studies that have introduced novel descriptors. Published experimental data are revisited herein in the frame of this formalism, in a new and possibly unitary perspective. The physicochemical properties most directly affected by charge density and distribution are compaction and solubility, which can be described in a relatively simplified way by tools of polymer physics. Dissecting factors controlling such properties could contribute to better understanding complex biological phenomena, such as fibrillation and phase separation. Furthermore, this knowledge is expected to have enormous practical implications for the design, synthesis, and exploitation of bio-derived materials and the control of natural biological processes.
Collapse
|
103
|
DispHred: A Server to Predict pH-Dependent Order-Disorder Transitions in Intrinsically Disordered Proteins. Int J Mol Sci 2020; 21:ijms21165814. [PMID: 32823616 PMCID: PMC7461198 DOI: 10.3390/ijms21165814] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/24/2022] Open
Abstract
The natively unfolded nature of intrinsically disordered proteins (IDPs) relies on several physicochemical principles, of which the balance between a low sequence hydrophobicity and a high net charge appears to be critical. Under this premise, it is well-known that disordered proteins populate a defined region of the charge–hydropathy (C–H) space and that a linear boundary condition is sufficient to distinguish between folded and disordered proteins, an approach widely applied for the prediction of protein disorder. Nevertheless, it is evident that the C–H relation of a protein is not unalterable but can be modulated by factors extrinsic to its sequence. Here, we applied a C–H-based analysis to develop a computational approach that evaluates sequence disorder as a function of pH, assuming that both protein net charge and hydrophobicity are dependent on pH solution. On that basis, we developed DispHred, the first pH-dependent predictor of protein disorder. Despite its simplicity, DispHred displays very high accuracy in identifying pH-induced order/disorder protein transitions. DispHred might be useful for diverse applications, from the analysis of conditionally disordered segments to the synthetic design of disorder tags for biotechnological applications. Importantly, since many disorder predictors use hydrophobicity as an input, the here developed framework can be implemented in other state-of-the-art algorithms.
Collapse
|
104
|
Harrison PM. Variable absorption of mutational trends by prion-forming domains during Saccharomycetes evolution. PeerJ 2020; 8:e9669. [PMID: 32844065 PMCID: PMC7415223 DOI: 10.7717/peerj.9669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/16/2020] [Indexed: 12/13/2022] Open
Abstract
Prions are self-propagating alternative states of protein domains. They are linked to both diseases and functional protein roles in eukaryotes. Prion-forming domains in Saccharomyces cerevisiae are typically domains with high intrinsic protein disorder (i.e., that remain unfolded in the cell during at least some part of their functioning), that are converted to self-replicating amyloid forms. S. cerevisiae is a member of the fungal class Saccharomycetes, during the evolution of which a large population of prion-like domains has appeared. It is still unclear what principles might govern the molecular evolution of prion-forming domains, and intrinsically disordered domains generally. Here, it is discovered that in a set of such prion-forming domains some evolve in the fungal class Saccharomycetes in such a way as to absorb general mutation biases across millions of years, whereas others do not, indicating a spectrum of selection pressures on composition and sequence. Thus, if the bias-absorbing prion formers are conserving a prion-forming capability, then this capability is not interfered with by the absorption of bias changes over the duration of evolutionary epochs. Evidence is discovered for selective constraint against the occurrence of lysine residues (which likely disrupt prion formation) in S. cerevisiae prion-forming domains as they evolve across Saccharomycetes. These results provide a case study of the absorption of mutational trends by compositionally biased domains, and suggest methodology for assessing selection pressures on the composition of intrinsically disordered regions.
Collapse
Affiliation(s)
- Paul M Harrison
- Department of Biology, McGill University, Monteal, Quebec, Canada
| |
Collapse
|
105
|
Liu H, Jeffery CJ. Moonlighting Proteins in the Fuzzy Logic of Cellular Metabolism. Molecules 2020; 25:molecules25153440. [PMID: 32751110 PMCID: PMC7435893 DOI: 10.3390/molecules25153440] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/09/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022] Open
Abstract
The numerous interconnected biochemical pathways that make up the metabolism of a living cell comprise a fuzzy logic system because of its high level of complexity and our inability to fully understand, predict, and model the many activities, how they interact, and their regulation. Each cell contains thousands of proteins with changing levels of expression, levels of activity, and patterns of interactions. Adding more layers of complexity is the number of proteins that have multiple functions. Moonlighting proteins include a wide variety of proteins where two or more functions are performed by one polypeptide chain. In this article, we discuss examples of proteins with variable functions that contribute to the fuzziness of cellular metabolism.
Collapse
Affiliation(s)
- Haipeng Liu
- Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, 900 South Ashland Avenue, Chicago, IL 60607, USA;
| | - Constance J. Jeffery
- Department of Biological Sciences, University of Illinois at Chicago, 900 South Ashland Avenue, Chicago, IL 60607, USA
- Correspondence: ; Tel.: +1-312-996-3168
| |
Collapse
|
106
|
Monzon AM, Necci M, Quaglia F, Walsh I, Zanotti G, Piovesan D, Tosatto SCE. Experimentally Determined Long Intrinsically Disordered Protein Regions Are Now Abundant in the Protein Data Bank. Int J Mol Sci 2020; 21:ijms21124496. [PMID: 32599863 PMCID: PMC7349999 DOI: 10.3390/ijms21124496] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 01/12/2023] Open
Abstract
Intrinsically disordered protein regions are commonly defined from missing electron density in X-ray structures. Experimental evidence for long disorder regions (LDRs) of at least 30 residues was so far limited to manually curated proteins. Here, we describe a comprehensive and large-scale analysis of experimental LDRs for 3133 unique proteins, demonstrating an increasing coverage of intrinsic disorder in the Protein Data Bank (PDB) in the last decade. The results suggest that long missing residue regions are a good quality source to annotate intrinsically disordered regions and perform functional analysis in large data sets. The consensus approach used to define LDRs allows to evaluate context dependent disorder and provide a common definition at the protein level.
Collapse
Affiliation(s)
- Alexander Miguel Monzon
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; (A.M.M.); (M.N.); (F.Q.); (G.Z.)
| | - Marco Necci
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; (A.M.M.); (M.N.); (F.Q.); (G.Z.)
| | - Federica Quaglia
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; (A.M.M.); (M.N.); (F.Q.); (G.Z.)
| | - Ian Walsh
- Bioprocessing Technology Institute, A*STAR, Singapore 138668, Singapore;
| | - Giuseppe Zanotti
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; (A.M.M.); (M.N.); (F.Q.); (G.Z.)
| | - Damiano Piovesan
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; (A.M.M.); (M.N.); (F.Q.); (G.Z.)
- Correspondence: (D.P.); (S.C.E.T.)
| | - Silvio C. E. Tosatto
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; (A.M.M.); (M.N.); (F.Q.); (G.Z.)
- Correspondence: (D.P.); (S.C.E.T.)
| |
Collapse
|
107
|
Rademaker D, van Dijk J, Titulaer W, Lange J, Vriend G, Xue L. The Future of Protein Secondary Structure Prediction Was Invented by Oleg Ptitsyn. Biomolecules 2020; 10:biom10060910. [PMID: 32560074 PMCID: PMC7355469 DOI: 10.3390/biom10060910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/02/2020] [Indexed: 01/15/2023] Open
Abstract
When Oleg Ptitsyn and his group published the first secondary structure prediction for a protein sequence, they started a research field that is still active today. Oleg Ptitsyn combined fundamental rules of physics with human understanding of protein structures. Most followers in this field, however, use machine learning methods and aim at the highest (average) percentage correctly predicted residues in a set of proteins that were not used to train the prediction method. We show that one single method is unlikely to predict the secondary structure of all protein sequences, with the exception, perhaps, of future deep learning methods based on very large neural networks, and we suggest that some concepts pioneered by Oleg Ptitsyn and his group in the 70s of the previous century likely are today’s best way forward in the protein secondary structure prediction field.
Collapse
Affiliation(s)
- Daniel Rademaker
- Centre for Molecular and Biomolecular Informatics (CMBI), Radboudumc, 6525 GA Nijmegen, The Netherlands; (D.R.); (J.v.D.); (W.T.); (G.V.)
| | - Jarek van Dijk
- Centre for Molecular and Biomolecular Informatics (CMBI), Radboudumc, 6525 GA Nijmegen, The Netherlands; (D.R.); (J.v.D.); (W.T.); (G.V.)
| | - Willem Titulaer
- Centre for Molecular and Biomolecular Informatics (CMBI), Radboudumc, 6525 GA Nijmegen, The Netherlands; (D.R.); (J.v.D.); (W.T.); (G.V.)
| | | | - Gert Vriend
- Centre for Molecular and Biomolecular Informatics (CMBI), Radboudumc, 6525 GA Nijmegen, The Netherlands; (D.R.); (J.v.D.); (W.T.); (G.V.)
- Baco Institute of Protein Science (BIPS), Mindoro 5201, Philippines
| | - Li Xue
- Centre for Molecular and Biomolecular Informatics (CMBI), Radboudumc, 6525 GA Nijmegen, The Netherlands; (D.R.); (J.v.D.); (W.T.); (G.V.)
- Correspondence:
| |
Collapse
|
108
|
Genomic Analysis of Intrinsically Disordered Proteins in the Genus Camelus. Int J Mol Sci 2020; 21:ijms21114010. [PMID: 32503351 PMCID: PMC7312968 DOI: 10.3390/ijms21114010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 12/11/2022] Open
Abstract
Intrinsically disordered proteins/regions (IDPs/IDRs) fail to fold completely into 3D structures, but have major roles in determining protein function. While natively disordered proteins/regions have been found to fulfill a wide variety of primary cellular roles, the functions of many disordered proteins in numerous species remain to be uncovered. Here, we perform the first large-scale study of IDPs/IDRs in the genus Camelus, one of the most important mammalians in Asia and North Africa, in order to explore the biological roles of these proteins. The study includes the prediction of disordered proteins/regions in Camelus species and in humans using multiple state-of-the-art prediction tools. Additionally, we provide a comparative analysis of Camelus and Homo sapiens IDPs/IDRs for the sake of highlighting the distinctive use of disorder in each genus. Our findings indicate that the human proteome is more disordered than the Camelus proteome. Gene Ontology analysis also revealed that Camelus IDPs are enriched in glutathione catabolism and lactose biosynthesis.
Collapse
|
109
|
Langenberg T, Gallardo R, van der Kant R, Louros N, Michiels E, Duran-Romaña R, Houben B, Cassio R, Wilkinson H, Garcia T, Ulens C, Van Durme J, Rousseau F, Schymkowitz J. Thermodynamic and Evolutionary Coupling between the Native and Amyloid State of Globular Proteins. Cell Rep 2020; 31:107512. [PMID: 32294448 PMCID: PMC7175379 DOI: 10.1016/j.celrep.2020.03.076] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/12/2020] [Accepted: 03/23/2020] [Indexed: 11/19/2022] Open
Abstract
The amyloid-like aggregation propensity present in most globular proteins is generally considered to be a secondary side effect resulting from the requirements of protein stability. Here, we demonstrate, however, that mutations in the globular and amyloid state are thermodynamically correlated rather than simply associated. In addition, we show that the standard genetic code couples this structural correlation into a tight evolutionary relationship. We illustrate the extent of this evolutionary entanglement of amyloid propensity and globular protein stability. Suppressing a 600-Ma-conserved amyloidogenic segment in the p53 core domain fold is structurally feasible but requires 7-bp substitutions to concomitantly introduce two aggregation-suppressing and three stabilizing amino acid mutations. We speculate that, rather than being a corollary of protein evolution, it is equally plausible that positive selection for amyloid structure could have been a driver for the emergence of globular protein structure.
Collapse
Affiliation(s)
- Tobias Langenberg
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000 Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Rodrigo Gallardo
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000 Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Rob van der Kant
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000 Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Nikolaos Louros
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000 Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Emiel Michiels
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000 Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Ramon Duran-Romaña
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000 Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Bert Houben
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000 Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Rafaela Cassio
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000 Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Hannah Wilkinson
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000 Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Teresa Garcia
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000 Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Chris Ulens
- Laboratory of Structural Neurobiology, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Joost Van Durme
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000 Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000 Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Joost Schymkowitz
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000 Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
110
|
Paladin L, Schaeffer M, Gaudet P, Zahn-Zabal M, Michel PA, Piovesan D, Tosatto SCE, Bairoch A. The Feature-Viewer: a visualization tool for positional annotations on a sequence. Bioinformatics 2020; 36:3244-3245. [DOI: 10.1093/bioinformatics/btaa055] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/02/2020] [Accepted: 01/20/2020] [Indexed: 01/15/2023] Open
Abstract
Abstract
Summary
The Feature-Viewer is a lightweight library for the visualization of biological data mapped to a protein or nucleotide sequence. It is designed for ease of use while allowing for a full customization. The library is already used by several biological data resources and allows intuitive visual mapping of a full spectra of sequence features for different usages.
Availability and implementation
The Feature-Viewer is open source, compatible with state-of-the-art development technologies and responsive, also for mobile viewing. Documentation and usage examples are available online.
Collapse
Affiliation(s)
- Lisanna Paladin
- Department of Biomedical Sciences, University of Padua, Padova 35121, Italy
| | - Mathieu Schaeffer
- CALIPHO Group, Swiss Institute of Bioinformatics, University of Geneva, Geneva 1206, Switzerland
| | - Pascale Gaudet
- CALIPHO Group, Swiss Institute of Bioinformatics, University of Geneva, Geneva 1206, Switzerland
| | - Monique Zahn-Zabal
- CALIPHO Group, Swiss Institute of Bioinformatics, University of Geneva, Geneva 1206, Switzerland
| | - Pierre-André Michel
- CALIPHO Group, Swiss Institute of Bioinformatics, University of Geneva, Geneva 1206, Switzerland
| | - Damiano Piovesan
- Department of Biomedical Sciences, University of Padua, Padova 35121, Italy
| | - Silvio C E Tosatto
- Department of Biomedical Sciences, University of Padua, Padova 35121, Italy
- CNR Institute of Neuroscience, Padova 35121, Italy
| | - Amos Bairoch
- CALIPHO Group, Swiss Institute of Bioinformatics, University of Geneva, Geneva 1206, Switzerland
| |
Collapse
|
111
|
Rigden DJ, Fernández XM. The 27th annual Nucleic Acids Research database issue and molecular biology database collection. Nucleic Acids Res 2020; 48:D1-D8. [PMID: 31906604 PMCID: PMC6943072 DOI: 10.1093/nar/gkz1161] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The 2020 Nucleic Acids Research Database Issue contains 148 papers spanning molecular biology. They include 59 papers reporting on new databases and 79 covering recent changes to resources previously published in the issue. A further ten papers are updates on databases most recently published elsewhere. This issue contains three breakthrough articles: AntiBodies Chemically Defined (ABCD) curates antibody sequences and their cognate antigens; SCOP returns with a new schema and breaks away from a purely hierarchical structure; while the new Alliance of Genome Resources brings together a number of Model Organism databases to pool knowledge and tools. Major returning nucleic acid databases include miRDB and miRTarBase. Databases for protein sequence analysis include CDD, DisProt and ELM, alongside no fewer than four newcomers covering proteins involved in liquid-liquid phase separation. In metabolism and signaling, Pathway Commons, Reactome and Metabolights all contribute papers. PATRIC and MicroScope update in microbial genomes while human and model organism genomics resources include Ensembl, Ensembl genomes and UCSC Genome Browser. Immune-related proteins are covered by updates from IPD-IMGT/HLA and AFND, as well as newcomers VDJbase and OGRDB. Drug design is catered for by updates from the IUPHAR/BPS Guide to Pharmacology and the Therapeutic Target Database. The entire Database Issue is freely available online on the Nucleic Acids Research website (https://academic.oup.com/nar). The NAR online Molecular Biology Database Collection has been revised, updating 305 entries, adding 65 new resources and eliminating 125 discontinued URLs; so bringing the current total to 1637 databases. It is available at http://www.oxfordjournals.org/nar/database/c/.
Collapse
Affiliation(s)
- Daniel J Rigden
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | | |
Collapse
|