101
|
Li Y, Cui XL, Chen QS, Yu J, Zhang H, Gao J, Sun DX, Zhang GQ. Cationic liposomes induce cytotoxicity in HepG2 via regulation of lipid metabolism based on whole-transcriptome sequencing analysis. BMC Pharmacol Toxicol 2018; 19:43. [PMID: 29996945 PMCID: PMC6042442 DOI: 10.1186/s40360-018-0230-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/25/2018] [Indexed: 12/27/2022] Open
Abstract
Backgroud Cationic liposomes (CLs) can be used as non-viral vectors in gene transfer and drug delivery. However, the underlying molecular mechanism of its cytotoxicity has not been well elucidated yet. Methods We herein report a systems biology approach based on whole-transcriptome sequencing coupled with computational method to identify the predominant genes and pathways involved in the cytotoxicity of CLs in HepG2 cell line. Results Firstly, we validated the concentration-dependent cytotoxicity of CLs with an IC50 of 120 μg/ml in HepG2 exposed for 24 h. Subsequently, we used whole-transcriptome sequencing to identify 220 (77 up- and 143 down-regulated) differentially expressed genes (DEGs). Gene ontology (GO) and pathway analysis showed that these DEGs were mainly related to cholesterol, steroid, lipid biosynthetic and metabolic processes. Additionally, “key regulatory” genes were identified using gene act, pathway act and co-expression network analysis, and expression levels of 11 interested altered genes were confirmed by quantitative real time PCR. Interestingly, no cell cycle arrest was observed through flow cytometry. Conclusions These data are expected to provide deep insights into the molecular mechanism of CLs cytotoxicity.
Collapse
Affiliation(s)
- Ying Li
- Department of Pharmacy, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| | - Xiu-Liang Cui
- National Center for Liver Cancer, Shanghai, 201805, China.,The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China
| | - Qing-Shan Chen
- Department of Pharmacy, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| | - Jing Yu
- Department of Pharmacy, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| | - Hai Zhang
- Department of Pharmacy, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China
| | - Jie Gao
- Department of Pharmaceutical Sciences, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Du-Xin Sun
- Department of Pharmaceutical Science, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Guo-Qing Zhang
- Department of Pharmacy, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China.
| |
Collapse
|
102
|
Reifarth M, Schubert US, Hoeppener S. Considerations for the Uptake Characteristic of Inorganic Nanoparticles into Mammalian Cells-Insights Gained by TEM Investigations. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201700254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Martin Reifarth
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Stephanie Hoeppener
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| |
Collapse
|
103
|
Huang YJ, Hung KC, Hung HS, Hsu SH. Modulation of Macrophage Phenotype by Biodegradable Polyurethane Nanoparticles: Possible Relation between Macrophage Polarization and Immune Response of Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2018; 10:19436-19448. [PMID: 29775050 DOI: 10.1021/acsami.8b04718] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Nanomaterials with surface functionalized by different chemical groups can either provoke or attenuate the immune responses of the nanomaterials, which is critical to their biomedical efficacies. In this study, we demonstrate that synthetic waterborne polyurethane nanoparticles (PU NPs) can inhibit the macrophage polarization toward the M1 phenotype but not M2 phenotype. The surface-functionalized PU NPs decrease the secretion levels of proinflammatory cytokines (TNF-α and IL-1β) for M1 macrophages. Specifically, PU NPs with carboxyl groups on the surface exhibit a greater extent of inhibition on M1 polarization than those with amine groups. These water-suspended PU NPs reduce the nuclear factor-κB (NF-κB) activation and suppress the subsequent NLR family pyrin domain containing 3 (NLRP3) inflammasome signals. Furthermore, the dried PU films assembled from PU NPs have a similar effect on macrophage polarization and present a smaller shifting foreign body reaction (FBR) in vivo than the conventional poly(l-lactic acid). Taken together, the biodegradable waterborne PU NPs demonstrate surface-dependent immunosuppressive properties and macrophage polarization effects. The findings suggest potential therapeutic applications of PU NPs in anti-inflammation and macrophage-related disorders and propose a mechanism for the low FBR observed for biodegradable PU materials.
Collapse
Affiliation(s)
- Yen-Jang Huang
- Institute of Polymer Science and Engineering , National Taiwan University , Taipei , Taiwan 106 , R.O.C
| | - Kun-Che Hung
- Institute of Polymer Science and Engineering , National Taiwan University , Taipei , Taiwan 106 , R.O.C
| | - Huey-Shan Hung
- Translational Medicine Research , China Medical University Hospital , Taichung , Taiwan 404 , R.O.C
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering , National Taiwan University , Taipei , Taiwan 106 , R.O.C
- Institute of Cellular and System Medicine , National Health Research Institutes , Miaoli County , Taiwan 350 , R.O.C
| |
Collapse
|
104
|
Wang Y, Tang M. Review of in vitro toxicological research of quantum dot and potentially involved mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 625:940-962. [PMID: 29996464 DOI: 10.1016/j.scitotenv.2017.12.334] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/28/2017] [Accepted: 12/29/2017] [Indexed: 06/08/2023]
Abstract
Quantum dots (QDs) are one of emerging engineering nanomaterials (NMs) with advantageous properties which can act as candidates for clinical imaging and diagnosis. Nevertheless, toxicological studies have proved that QDs for better or worse pose threats to diverse systems which are attributed to the release of metal ion and specific characteristics of nanoparticles (NPs), hampering the wide use of QDs to biomedical area. It has been postulated that mechanisms of toxicity evoked by QDs have implications in oxidative stress, reactive oxygen species (ROS), inflammation and release of metal ion. Meanwhile, DNA damage and disturbance of subcellular structures would occur during QDs treatment. This review is intended to conclude the cytotoxicity of QDs in multiple systems, as well as the potential mechanisms on the basis of recent literatures. Finally, toxicity-related factors are clarified, among which chirality seems to be a newly proposed influence factor that determines the destiny of cells in response to QDs. However, details of interaction between QDs and cells have not been well elucidated. Given that molecular mechanisms of QDs-induced toxicity are still not clearly elucidated, further research should be required for this meaningful topic.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, Jiangsu, 210009, China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, Jiangsu, 210009, China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
105
|
Wang Y, Tang M. Dysfunction of various organelles provokes multiple cell death after quantum dot exposure. Int J Nanomedicine 2018; 13:2729-2742. [PMID: 29765216 PMCID: PMC5944465 DOI: 10.2147/ijn.s157135] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Quantum dots (QDs) are different from the materials with the micrometer scale. Owing to the superiority in fluorescence and optical stability, QDs act as possible diagnostic and therapeutic tools for application in biomedical field. However, potential threats of QDs to human health hamper their wide utilization in life sciences. It has been reported that oxidative stress and inflammation are involved in toxicity caused by QDs. Recently, accumulating research unveiled that disturbance of subcellular structures plays a magnificent role in cytotoxicity of QDs. Diverse organelles would collapse during QD treatment, including DNA damage, endoplasmic reticulum stress, mitochondrial dysfunction and lysosomal rupture. Different forms of cellular end points on the basis of recent research have been concluded. Apart from apoptosis and autophagy, a new form of cell death termed pyroptosis, which is finely orchestrated by inflammasome complex and gasdermin family with secretion of interleukin-1 beta and interleukin-18, was also summarized. Finally, several potential cellular signaling pathways were also listed. Activation of Toll-like receptor-4/myeloid differentiation primary response 88, nuclear factor kappa-light-chain-enhancer of activated B cells and NACHT, LRR and PYD domains-containing protein 3 inflammasome pathways by QD exposure is associated with regulation of cellular processes. With the development of QDs, toxicity evaluation is far behind its development, where specific mechanisms of toxic effects are not clearly defined. Further studies concerned with this promising area are urgently required.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Meng Tang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
106
|
Blanco J, Tomás-Hernández S, García T, Mulero M, Gómez M, Domingo JL, Sánchez DJ. Oral exposure to silver nanoparticles increases oxidative stress markers in the liver of male rats and deregulates the insulin signalling pathway and p53 and cleaved caspase 3 protein expression. Food Chem Toxicol 2018; 115:398-404. [DOI: 10.1016/j.fct.2018.03.039] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 12/19/2022]
|
107
|
Raju GSR, Pavitra E, Merchant N, Lee H, Prasad GLV, Nagaraju GP, Huh YS, Han YK. Targeting autophagy in gastrointestinal malignancy by using nanomaterials as drug delivery systems. Cancer Lett 2018; 419:222-232. [DOI: 10.1016/j.canlet.2018.01.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/12/2018] [Accepted: 01/12/2018] [Indexed: 02/06/2023]
|
108
|
Kang JS, Park JW. Insight on cytotoxic effects of silver nanoparticles: Alternative androgenic transactivation by adsorption with DHT. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 618:712-717. [PMID: 29129328 DOI: 10.1016/j.scitotenv.2017.08.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/22/2017] [Accepted: 08/06/2017] [Indexed: 06/07/2023]
Abstract
Silver nanoparticles (AgNPs) are accumulated in the male reproductive organs for a long time and cause several adverse effects in there. Up to now, there is little of information for the cytotoxic effects in male reproductive cells. In this study, the stable AgNPs with a minimal silver ion (Ag+) dissolution below concentration inducing cytotoxicity in the cell medium were exposed to the human prostate carcinoma cell line 22Rv1. Moreover particle uptake and androgen receptor (AR) transactivation were evaluated. In cell medium, AgNPs exhibited stability in an aqueous environment and minimal Ag+ release. Transmission electron microscopy (TEM) and energy dispersive spectrometer (EDS) analysis demonstrated uptake of AgNPs into cells via endocytosis, and a quantitative Ag assay showed that uptake of AgNPs was size-dependent with the majority of Ag retained in the particle form. To evaluate if the presence of AgNPs can change androgenic potentials of dihydrotestosterone (DHT, strong human androgen), we conducted an AR transactivation assay using the transgenic prostate cell line 22Rv1-MMTV-Hyg and found that AgNPs lowered androgenic transactivation of DHT, which is due to decreased bioavailability of DHT.
Collapse
Affiliation(s)
- Jae Soon Kang
- Gyeongnam Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology, Jinju, Gyeongnam, Republic of Korea
| | - June-Woo Park
- Gyeongnam Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology, Jinju, Gyeongnam, Republic of Korea; Human and Environmental Toxicology Program, Korea University of Science and Technology (UST), Daejeon, Republic of Korea.
| |
Collapse
|
109
|
Carrola J, Pinto RJB, Nasirpour M, Freire CSR, Gil AM, Santos C, Oliveira H, Duarte IF. NMR Metabolomics Reveals Metabolism-Mediated Protective Effects in Liver (HepG2) Cells Exposed to Subtoxic Levels of Silver Nanoparticles. J Proteome Res 2018; 17:1636-1646. [DOI: 10.1021/acs.jproteome.7b00905] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Joana Carrola
- CICECO − Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ricardo J. B. Pinto
- CICECO − Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maryam Nasirpour
- CICECO − Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carmen S. R. Freire
- CICECO − Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana M. Gil
- CICECO − Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Conceição Santos
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Helena Oliveira
- CICECO − Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- CESAM & Laboratory of Biotechnology and Cytomics, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Iola F. Duarte
- CICECO − Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
110
|
Reifarth M, Hoeppener S, Schubert US. Uptake and Intracellular Fate of Engineered Nanoparticles in Mammalian Cells: Capabilities and Limitations of Transmission Electron Microscopy-Polymer-Based Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30. [PMID: 29325211 DOI: 10.1002/adma.201703704] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/14/2017] [Indexed: 06/07/2023]
Abstract
In order to elucidate mechanisms of nanoparticle (NP)-cell interactions, a detailed knowledge about membrane-particle interactions, intracellular distributions, and nucleus penetration capabilities, etc. becomes indispensable. The utilization of NPs as additives in many consumer products, as well as the increasing interest of tailor-made nanoobjects as novel therapeutic and diagnostic platforms, makes it essential to gain deeper insights about their biological effects. Transmission electron microscopy (TEM) represents an outstanding method to study the uptake and intracellular fate of NPs, since this technique provides a resolution far better than the particle size. Additionally, its capability to highlight ultrastructural details of the cellular interior as well as membrane features is unmatched by other approaches. Here, a summary is provided on studies utilizing TEM to investigate the uptake and mode-of-action of tailor-made polymer nanoparticles in mammalian cells. For this purpose, the capabilities as well as limitations of TEM investigations are discussed to provide a detailed overview on uptake studies of common nanoparticle systems supported by TEM investigations. Furthermore, methodologies that can, in particular, address low-contrast materials in electron microscopy, i.e., polymeric and polymer-modified nanoparticles, are highlighted.
Collapse
Affiliation(s)
- Martin Reifarth
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany
- Jena Center of Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Stephanie Hoeppener
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany
- Jena Center of Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany
- Jena Center of Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| |
Collapse
|
111
|
Chen S, Chen S, Zeng Y, Lin L, Wu C, Ke Y, Liu G. Size-dependent superparamagnetic iron oxide nanoparticles dictate interleukin-1β release from mouse bone marrow-derived macrophages. J Appl Toxicol 2018; 38:978-986. [DOI: 10.1002/jat.3606] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/17/2018] [Accepted: 01/17/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Shuzhen Chen
- Key Laboratory of Functional and Clinical Translational Medicine, Department of Microbiology and Immunology; Xiamen Medical College; Xiamen 361023 China
| | - Suyun Chen
- Key Laboratory of Functional and Clinical Translational Medicine, Department of Microbiology and Immunology; Xiamen Medical College; Xiamen 361023 China
| | - Yun Zeng
- Key Laboratory of Functional and Clinical Translational Medicine, Department of Microbiology and Immunology; Xiamen Medical College; Xiamen 361023 China
| | - Lin Lin
- Key Laboratory of Functional and Clinical Translational Medicine, Department of Microbiology and Immunology; Xiamen Medical College; Xiamen 361023 China
| | - Chuang Wu
- Key Laboratory of Functional and Clinical Translational Medicine, Department of Microbiology and Immunology; Xiamen Medical College; Xiamen 361023 China
| | - Yanyan Ke
- Key Laboratory of Functional and Clinical Translational Medicine, Department of Microbiology and Immunology; Xiamen Medical College; Xiamen 361023 China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health; Xiamen University; Xiamen 361102 China
| |
Collapse
|
112
|
Souza LRR, da Silva VS, Franchi LP, de Souza TAJ. Toxic and Beneficial Potential of Silver Nanoparticles: The Two Sides of the Same Coin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1048:251-262. [DOI: 10.1007/978-3-319-72041-8_15] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
113
|
Dong L, Zhou X, Hu L, Yin Y, Liu J. Simultaneous size characterization and mass quantification of the in vivo core-biocorona structure and dissolved species of silver nanoparticles. J Environ Sci (China) 2018; 63:227-235. [PMID: 29406105 DOI: 10.1016/j.jes.2017.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 10/25/2017] [Indexed: 06/07/2023]
Abstract
Size characterization of silver nanoparticles with biomolecule corona (AgNP@BCs) and mass quantification of various silver species in organisms are essential for understanding the in vivo transformation of AgNPs. Herein, we report a versatile method that allows simultaneous determination of the size of AgNP@BCs and mass concentration of various silver species in rat liver. Both particulate and ionic silver were extracted in their original forms from the organs by alkaline digestion, and analyzed by size exclusion chromatography combined with inductively coupled plasma mass spectrometry (SEC-ICP-MS). While the silver mass concentrations were quantified by ICP-MS with a detection limit of 0.1μg/g, the effective diameter of AgNP@BCs was determined based on the retention time in SEC separation with size discrimination of 0.6-3.3nm. More importantly, we found that the BC thickness of AgNP@BCs is core size independent, and a linear correlation was found between the effective diameter and core diameter of AgNP@BCs in extracted tissues, which was used to calibrate the core diameter with standard deviations in the range of 0.2-1.1nm. The utility of this strategy was demonstrated through application to rat livers in vivo. Our method is powerful for investigating the transformation mechanism of AgNPs in vivo.
Collapse
Affiliation(s)
- Lijie Dong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxia Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
114
|
Akter M, Sikder MT, Rahman MM, Ullah AA, Hossain KFB, Banik S, Hosokawa T, Saito T, Kurasaki M. A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives. J Adv Res 2018; 9:1-16. [PMID: 30046482 PMCID: PMC6057238 DOI: 10.1016/j.jare.2017.10.008] [Citation(s) in RCA: 624] [Impact Index Per Article: 89.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/24/2017] [Accepted: 10/25/2017] [Indexed: 12/14/2022] Open
Abstract
With the development of nanotechnology, silver nanoparticles (Ag-NPs) have become one of the most in-demand nanoparticles owing to their exponential number of uses in various sectors. The increased use of Ag-NPs-enhanced products may result in an increased level of toxicity affecting both the environment and living organisms. Several studies have used different model cell lines to exhibit the cytotoxicity of Ag-NPs, and their underlying molecular mechanisms. This review aimed to elucidate different properties of Ag-NPs that are responsible for the induction of cellular toxicity along with the critical mechanism of action and subsequent defense mechanisms observed in vitro. Our results show that the properties of Ag-NPs largely vary based on the diversified synthesis processes. The physiochemical properties of Ag-NPs (e.g., size, shape, concentration, agglomeration, or aggregation interaction with a biological system) can cause impairment of mitochondrial function prior to their penetration and accumulation in the mitochondrial membrane. Thus, Ag-NPs exhibit properties that play a central role in their use as biocides along with their applicability in environmental cleaning. We herein report a current review of the synthesis, applicability, and toxicity of Ag-NPs in relation to their detailed characteristics.
Collapse
Key Words
- Ag+, silver ions
- Ag-NPs, silver nanoparticles
- Cytotoxicity
- DNA, deoxyribonucleic acid
- GSH, glutathione
- LDH, lactate dehydrogenase
- Mechanism
- NPs, nanoparticles
- PVP, polyvinylpyrrolidone
- Physiochemical properties
- ROS, reactive oxygen species
- Silver nanoparticles
- TMRE, tetramethylrhodamine ethyl ester
- TT, toxicity threshold
- ppm, parts per million
Collapse
Affiliation(s)
- Mahmuda Akter
- Graduate School of Environmental Science, Hokkaido University, 060-0810 Sapporo, Japan
| | - Md. Tajuddin Sikder
- Group of Environmental Adaptation Science, Faculty of Environmental Earth Science, Hokkaido University, Kita 10, Nishi 5, Kita-ku, 060-0810 Sapporo, Japan
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0817, Japan
- Department of Public Health and Informatics, Jahangirnagar University, Bangladesh
| | - Md. Mostafizur Rahman
- Graduate School of Environmental Science, Hokkaido University, 060-0810 Sapporo, Japan
| | - A.K.M. Atique Ullah
- Chemistry Division, Atomic Energy Centre, Bangladesh Atomic Energy Commission, Dhaka 1000, Bangladesh
| | | | - Subrata Banik
- Graduate School of Environmental Science, Hokkaido University, 060-0810 Sapporo, Japan
| | - Toshiyuki Hosokawa
- Research Division of Higher Education, Institute for the Advancement of Higher Education, Hokkaido University, Sapporo 060-0817, Japan
| | - Takeshi Saito
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0817, Japan
| | - Masaaki Kurasaki
- Graduate School of Environmental Science, Hokkaido University, 060-0810 Sapporo, Japan
- Group of Environmental Adaptation Science, Faculty of Environmental Earth Science, Hokkaido University, Kita 10, Nishi 5, Kita-ku, 060-0810 Sapporo, Japan
| |
Collapse
|
115
|
Bray K, Cheung L, Hossain KR, Aharonovich I, Valenzuela SM, Shimoni O. Versatile multicolor nanodiamond probes for intracellular imaging and targeted labeling. J Mater Chem B 2018; 6:3078-3084. [DOI: 10.1039/c8tb00508g] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We report on the first demonstration of FNDs containing either silicon or nitrogen vacancy color centers for multi-color bio-imaging.
Collapse
Affiliation(s)
- Kerem Bray
- Institute of Biomedical Materials and Devices (IBMD)
- Faculty of Science
- University of Technology Sydney
- Ultimo
- Australia
| | - Leonard Cheung
- Institute of Biomedical Materials and Devices (IBMD)
- Faculty of Science
- University of Technology Sydney
- Ultimo
- Australia
| | | | - Igor Aharonovich
- Institute of Biomedical Materials and Devices (IBMD)
- Faculty of Science
- University of Technology Sydney
- Ultimo
- Australia
| | - Stella M. Valenzuela
- School of Life Sciences
- Faculty of Science
- University of Technology Sydney
- Ultimo
- Australia
| | - Olga Shimoni
- Institute of Biomedical Materials and Devices (IBMD)
- Faculty of Science
- University of Technology Sydney
- Ultimo
- Australia
| |
Collapse
|
116
|
Wang B, Zhang J, Chen C, Xu G, Qin X, Hong Y, Bose DD, Qiu F, Zou Z. The size of zinc oxide nanoparticles controls its toxicity through impairing autophagic flux in A549 lung epithelial cells. Toxicol Lett 2017; 285:51-59. [PMID: 29289694 DOI: 10.1016/j.toxlet.2017.12.025] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 12/21/2017] [Accepted: 12/27/2017] [Indexed: 12/14/2022]
Abstract
Zinc oxide nanoparticles (ZnONPs) widely used in various products, have been concerned with its impact on human health, in particular, on the risk of pulmonary toxicity. Our previous study indicated that ZnONPs could harness autophagy and impair the autophagic flux, which was positively linked to ZnONPs-induced toxicity. The objective of this study was to investigate whether ZnONPs-induced impairment of autophagic flux and cell death in lung epithelial cells is related to the size of ZnONPs. We demonstrate that ZnONPs with the average size of 50 nm could induce toxic effects in A549 lung epithelial cells, including accumulation of autophagosomes (the elevation of LC3B-II/LC3B-I ratio), impaired autophagic flux (the increase of p62 expression), the release of intracellular zinc ions (the increase of FluoZin-3 signal and ZnT1 mRNA expression), mitochondrial damage (the decrease of TMRE signal), lysosomal dysfunction (the aberrant expression of LAMP-2), oxidative stress (the increase of DCFH-DA signal and HO-1 expression) and cell death. Interestingly, ZnONPs with the average size of 200 nm failed to induce autophagy-mediated toxicity. Taken together, our results indicate that the size of ZnONPs is closely correlated with its toxicity, which is probably mediated by induction of impaired autophagic flux. This finding provides an insight into better understating of ZnONPs-associated toxicity, and mitigating the risk to humans and allowing the safer application.
Collapse
Affiliation(s)
- Bin Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Jun Zhang
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing 400016, China; Post-doctoral Research Stations of Nursing Science, School of Nursing, Chongqing Medical University, Chongqing 400016, China
| | - Ge Xu
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Xia Qin
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yueling Hong
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Diptiman D Bose
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Western New England University, Springfield, MA 01119, USA
| | - Feng Qiu
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zhen Zou
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
117
|
Wu T, Tang M. The inflammatory response to silver and titanium dioxide nanoparticles in the central nervous system. Nanomedicine (Lond) 2017; 13:233-249. [PMID: 29199887 DOI: 10.2217/nnm-2017-0270] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Despite the increasing number of neurotoxicological studies on metal-containing nanoparticles (NPs), the NP-induced neuroinflammation has not yet been well understood. This review provides a comprehensive understanding of inflammatory responses to two typical metal-containing NPs, namely silver NPs (Ag-NPs) and titanium dioxide NPs (TiO2-NPs). Ag-NPs and TiO2-NPs could translocate into the CNS through damaged blood-brain barrier, nerve afferent signaling and eye-to-brain ways, and even cell uptake. NPs could stimulate the activation of glial cells to release proinflammatory cytokines and generate reactive oxygen species and nitric oxide production, resulting in the neuroinflammation. The potential mechanisms of Ag-NPs and TiO2-NPs causing inflammation are complex, including several immune response relevant signaling pathways. Some parameters governing their ability to cause neuroinflammation are presented as well.
Collapse
Affiliation(s)
- Tianshu Wu
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science & Technology, Southeast University, Nanjing 210009, China.,Jiangsu Key Laboratory for Biomaterials & Devices, Southeast University, Nanjing 210009, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science & Technology, Southeast University, Nanjing 210009, China.,Jiangsu Key Laboratory for Biomaterials & Devices, Southeast University, Nanjing 210009, China
| |
Collapse
|
118
|
Meldrum K, Guo C, Marczylo EL, Gant TW, Smith R, Leonard MO. Mechanistic insight into the impact of nanomaterials on asthma and allergic airway disease. Part Fibre Toxicol 2017; 14:45. [PMID: 29157272 PMCID: PMC5697410 DOI: 10.1186/s12989-017-0228-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 11/10/2017] [Indexed: 01/02/2023] Open
Abstract
Asthma is a chronic respiratory disease known for its high susceptibility to environmental exposure. Inadvertent inhalation of engineered or incidental nanomaterials is a concern for human health, particularly for those with underlying disease susceptibility. In this review we provide a comprehensive analysis of those studies focussed on safety assessment of different nanomaterials and their unique characteristics on asthma and allergic airway disease. These include in vivo and in vitro approaches as well as human and population studies. The weight of evidence presented supports a modifying role for nanomaterial exposure on established asthma as well as the development of the condition. Due to the variability in modelling approaches, nanomaterial characterisation and endpoints used for assessment in these studies, there is insufficient information for how one may assign relative hazard potential to individual nanoscale properties. New developments including the adoption of standardised models and focussed in vitro and in silico approaches have the potential to more reliably identify properties of concern through comparative analysis across robust and select testing systems. Importantly, key to refinement and choice of the most appropriate testing systems is a more complete understanding of how these materials may influence disease at the cellular and molecular level. Detailed mechanistic insight also brings with it opportunities to build important population and exposure susceptibilities into models. Ultimately, such approaches have the potential to more clearly extrapolate relevant toxicological information, which can be used to improve nanomaterial safety assessment for human disease susceptibility.
Collapse
Affiliation(s)
- Kirsty Meldrum
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Chang Guo
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Emma L Marczylo
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Timothy W Gant
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Rachel Smith
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Martin O Leonard
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK.
| |
Collapse
|
119
|
Silver nanoparticles of different sizes induce a mixed type of programmed cell death in human pancreatic ductal adenocarcinoma. Oncotarget 2017; 9:4675-4697. [PMID: 29435134 PMCID: PMC5797005 DOI: 10.18632/oncotarget.22563] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/13/2017] [Indexed: 12/25/2022] Open
Abstract
Pancreatic ductal adenocarcinoma, with the high resistance to chemotherapeutic agents, remains the fourth leading cause of cancer-death in the world. Due to the wide range of biological activity and unique properties, silver nanoparticles (AgNPs) are indicated as agents with potential to overcome barriers involved in chemotherapy failure. Therefore, in our study we decided to assess the ability of AgNPs to kill pancreatic cancer cells, and then to identify the molecular mechanism underlying this effect. Moreover, we evaluated the cytotoxicity of AgNPs against non-tumor cell of the same tissue (hTERT-HPNE cells) for comparison. Our results indicated that AgNPs with size of 2.6 and 18 nm decreased viability, proliferation and caused death of pancreatic cancer cells in a size- and concentration-dependent manner. Ultrastructural analysis identified that cellular uptake of AgNPs resulted in apoptosis, autophagy, necroptosis and mitotic catastrophe. These alterations were associated with increased pro-apoptotic protein Bax and decreased level of anti-apoptotic protein Bcl-2. Moreover, AgNPs significantly elevated the level of tumor suppressor p53 protein as well as necroptosis- and autophagy-related proteins: RIP-1, RIP-3, MLKL and LC3-II, respectively. In addition, we found that PANC-1 cells were more vulnerable to AgNPs-induced cytotoxicity compared to pancreatic non-tumor cells. In conclusion, AgNPs by inducing mixed type of programmed cell death in PANC-1 cells, could provide a new therapeutic strategy to overcome chemoresistance in one of the deadliest human cancer.
Collapse
|
120
|
Hu Q, Zhao F, Guo F, Wang C, Fu Z. Polymeric Nanoparticles Induce NLRP3 Inflammasome Activation and Promote Breast Cancer Metastasis. Macromol Biosci 2017; 17. [PMID: 29131546 DOI: 10.1002/mabi.201700273] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/20/2017] [Indexed: 12/15/2022]
Abstract
Polymeric nanoparticles gain enormous interests in cancer therapy. Polyethylenimine (PEI) 25 kD is well known for its high transfection efficiency and cytotoxicity. PEI-CyD (PC) was previously synthesized by conjugating low molecular PEI (M w 600) with β-cyclodextrin (β-CyD), which is shown to induce lower cytotoxicity than PEI 25 kD. In the current study, the in vivo immune response of branched PEI 25 kD and PC is investigated. Compared to PC/pDNA, exposure of PEI 25kD/pDNA induces higher level of immune-stimulation evidenced by the increased spleen weight, phagocytic capacity of peritoneal macrophage, and proinflammatory cytokines in serum and liver. Importantly, administration of PEI 25 kD can greatly promote breast cancer metastasis in liver and lung tissues, which correlates with its ability to induce high oxidative stress and NLRP3-inflammasome activation. These results suggest that polymeric nanocarriers have the potential to induce immune-stimulation and cancer metastasis, which may affect their efficiency for cancer therapy.
Collapse
Affiliation(s)
- Qinglian Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310032, Hangzhou, China
| | - Fenghui Zhao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310032, Hangzhou, China
| | - Fengliang Guo
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310032, Hangzhou, China
| | - Chengcheng Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310032, Hangzhou, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310032, Hangzhou, China
| |
Collapse
|
121
|
Crosstalk of Nanosystems Induced Extracellular Vesicles as Promising Tools in Biomedical Applications. J Membr Biol 2017; 250:605-616. [PMID: 29127486 DOI: 10.1007/s00232-017-0003-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 11/06/2017] [Indexed: 02/06/2023]
Abstract
Hybrid vesicles are considered as a bridge between natural nanosystems (NNSs) and artificial nanosystems (ANSs). NNSs are extracellular vesicles (EVs), membranous, bio-formed endogenously, which act as endogenous cargoes, and reflecting cellular dynamics. EVs have cellular tropism, permeate tight junctions, and are non-immunogenic. EVs are used as tools in the development of diagnostic and therapeutic agents. ANSs can induce biogenesis of hybrid vesicles as promising smart diagnostic agents, and innovative drug cargoes. EVs can encapsulate small molecules, macromolecules, and ANSs. The manipulation of EVs during biogenesis was suggested for engineering hybrid EVs. This review article highlights the role of ANSs in the biogenesis of NNSs, and introduces hybrid nanosystems research.
Collapse
|
122
|
Gulumian M, Andraos C. In Search of a Converging Cellular Mechanism in Nanotoxicology and Nanomedicine in the Treatment of Cancer. Toxicol Pathol 2017; 46:4-13. [PMID: 29034767 DOI: 10.1177/0192623317735776] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Multiple applications of nanomaterials have raised concern with regard to their toxicity. With increasing research into nanomaterial safety, mechanisms involved in the toxic effects of nanomaterials have begun to emerge. The importance of nanomaterial-induced lysosomal membrane permeabilization through overloading or direct damage of the lysosomal compartment, resulting in the blockade of autophagosome-lysosome fusion and autophagy dysfunction, as well as inflammasome activation were cited as emerging mechanisms of nanomaterial toxicity. It has recently been proposed that these very mechanisms leading to nanomaterial toxicity may be utilized in nanotherapeutics. This review discusses these nanomaterial-induced mechanisms in detail and how it has been exploited in cancer research. This review also addresses certain considerations that need to be kept in mind when using nanomaterials in therapeutics.
Collapse
Affiliation(s)
- Mary Gulumian
- 1 National Institute for Occupational Health (NIOH), Johannesburg, South Africa.,2 Haematology and Molecular Medicine Department, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Charlene Andraos
- 1 National Institute for Occupational Health (NIOH), Johannesburg, South Africa
| |
Collapse
|
123
|
Silver nanoparticles induce lysosomal-autophagic defects and decreased expression of transcription factor EB in A549 human lung adenocarcinoma cells. Toxicol In Vitro 2017; 46:148-154. [PMID: 28987793 DOI: 10.1016/j.tiv.2017.10.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/28/2017] [Accepted: 10/04/2017] [Indexed: 01/07/2023]
Abstract
Although silver nanoparticles (AgNPs) are widely used in consumer and medical products, the mechanism by which AgNPs cause pulmonary damage is unclear. AgNPs are incorporated into cells and processed via the autophagy pathway. We examined the effects of AgNP exposure on autophagic flux and expression of transcription factor EB (TFEB) in A549 lung adenocarcinoma cells. In cells exposed to citrate-coated 60-nm AgNPs, confocal laser microscopic examination showed a decrease in the LysoTracker fluorescence signal and an increase in that of Cyto-ID, indicating lysosomal pH alkalization and autophagosome formation, respectively. The proteins p62 and microtubule-associated protein light chain 3B-II (LC3B-II) are both degraded by autophagy, and their levels increased depending on AgNP dose. Furthermore, AgNP-induced increase in LC3B-II was not enhanced by treatment with the autophagic inhibitor bafilomycin A1. TFEB mRNA levels, and protein levels in cytosolic and nuclear fractions, were suppressed by exposure to AgNPs, suggesting transcriptional inhibition of TFEB expression. Overexpression of TFEB did not suppress AgNP-induced LC3B-II accumulation and cellular damage, indicating that impairment of autophagic flux and cellular damage by AgNPs might not be primarily caused by reduced TFEB expression. The present study suggests that AgNP-induced lysosomal dysfunction plays a principal role in the autophagic flux defect.
Collapse
|
124
|
Cao Y, Long J, Liu L, He T, Jiang L, Zhao C, Li Z. A review of endoplasmic reticulum (ER) stress and nanoparticle (NP) exposure. Life Sci 2017; 186:33-42. [PMID: 28782531 DOI: 10.1016/j.lfs.2017.08.003] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 07/29/2017] [Accepted: 08/03/2017] [Indexed: 12/31/2022]
Abstract
Understanding the mechanism of nanoparticle (NP) induced toxicity is important for nanotoxicological and nanomedicinal studies. Endoplasmic reticulum (ER) is a crucial organelle involved in proper protein folding. High levels of misfolded proteins in the ER could lead to a condition termed as ER stress, which may ultimately influence the fate of cells and development of human diseases. In this review, we summarized studies about effects of NP exposure on ER stress. A variety of NPs, especially metal-based NPs, could induce morphological changes of ER and activate ER stress pathway both in vivo and in vitro. In addition, modulation of ER stress by chemicals has been shown to alter the toxicity of NPs. These studies in combination suggested that ER stress could be the mechanism responsible for NP induced toxicity. Meanwhile, nanomedicinal studies also used ER stress inducing NPs or NPs loaded with ER stress inducer to selectively induce ER stress mediated apoptosis in cancer cells for cancer therapy. In contrast, alleviation of ER stress by NPs has also been shown as a strategy to cure metabolic diseases. In conclusion, exposure to NPs may modulate ER stress, which could be a target for future nanotoxicological and nanomedicinal studies.
Collapse
Affiliation(s)
- Yi Cao
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China; Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China.
| | - Jimin Long
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Liangliang Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China
| | - Tong He
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Leying Jiang
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Chunxue Zhao
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Zhen Li
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China; Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China
| |
Collapse
|
125
|
Ma N, Liu P, He N, Gu N, Wu FG, Chen Z. Action of Gold Nanospikes-Based Nanoradiosensitizers: Cellular Internalization, Radiotherapy, and Autophagy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:31526-31542. [PMID: 28816044 DOI: 10.1021/acsami.7b09599] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A major challenge to achieve effective X-ray radiation therapy is to use a relatively low and safe radiation dose. Various radiosensitizers, which can significantly enhance the radiotherapeutic performance, have been developed. Gold-based nanomaterials, as a new type of nanoparticle-based radiosensitizers, have been extensively used in researches involving cancer radiotherapy. However, the cancer therapeutic effect using the gold nanoparticle-based radiotherapy is usually not significant because of the low cellular uptake efficiency and the autophagy-inducing ability of these gold nanomaterials. Herein, using gold nanospikes (GNSs) as an example, we prepared a series of thiol-poly(ethylene glycol)-modified GNSs terminated with methoxyl (GNSs), amine (NH2-GNSs), folic acid (FA) (FA-GNSs), and the cell-penetrating peptide TAT (TAT-GNSs), and evaluated their effects on X-ray radiotherapy. For the in vitro study, it was found that the ionizing radiation effects of these GNSs were well correlated with their cellular uptake amounts, with the same order of GNSs < NH2-GNSs < FA-GNSs < TAT-GNSs. The sensitization enhancement ratio (SER), which is commonly used to evaluate how effectively radiosensitizers decrease cell proliferation, reaches 2.30 for TAT-GNSs. The extremely high SER value for TAT-GNSs indicates the superior radiosensitization effect of this nanomaterial. The radiation enhancement mechanisms of these GNSs involved the increased reactive oxygen species (ROS), mitochondrial depolarization, and cell cycle redistribution. Western blotting assays confirmed that the surface-modified GNSs could induce the up-regulation of autophagy-related protein (LC3-II) and apoptosis-related protein (active caspase-3) in cancer cells. By monitoring the degradation of the autophagy substrate p62 protein, GNSs caused impairment of autolysosome degradation capacity and autophagosome accumulation. Our data demonstrated that autophagy played a protective role against caner radiotherapy, and the inhibition of protective autophagy with inhibitors would result in the increase of cell apoptosis. Besides the above in vitro experiments, the in vivo tumor growth study also indicated that X-ray + TAT-GNSs treatment had the best tumor growth inhibitory effect, which confirmed the highest radiation sensitizing effect of TAT-GNSs. This work furthered our understanding on the interaction mechanism between gold nanomaterials and cancer cells and should be able to promote the development of nanoradiosensitizers for clinical applications.
Collapse
Affiliation(s)
- Ningning Ma
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, P. R. China
| | - Peidang Liu
- Institute of Neurobiology, School of Medicine, Southeast University , Nanjing 210096, P. R. China
| | - Nongyue He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, P. R. China
| | - Ning Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, P. R. China
| | - Zhan Chen
- Department of Chemistry, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
126
|
Zhu L, Guo D, Sun L, Huang Z, Zhang X, Ma W, Wu J, Xiao L, Zhao Y, Gu N. Activation of autophagy by elevated reactive oxygen species rather than released silver ions promotes cytotoxicity of polyvinylpyrrolidone-coated silver nanoparticles in hematopoietic cells. NANOSCALE 2017; 9:5489-5498. [PMID: 28401217 DOI: 10.1039/c6nr08188f] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Silver nanoparticles (AgNPs) are the most commonly used engineered nanomaterials in commercialized products because of their antimicrobial activity. Previously, we have shown that polyvinylpyrrolidone (PVP)-coated AgNPs have an anti-leukemia effect against human myeloid leukemia cells; however, whether AgNPs are able to trigger autophagy in normal hematopoietic cells and the role of autophagy in AgNP-induced cytotoxicity remain unclear. In the current study, we observed that AgNPs were taken up by murine pro-B cells (Ba/F3), and then promoted accumulation of autophagosomes, which resulted from the induction of autophagy rather than the blockade of autophagic flux. AgNPs induced cytotoxicity in a dose-dependent manner accompanied by apoptosis and DNA damage through the production of reactive oxygen species (ROS) and the release of silver ions. The ROS-mediated mTOR signaling pathway was responsible for the induction of autophagy. More importantly, the inhibition of autophagy with the addition of 3-methyladenine (3-MA) or silencing of Atg5 significantly attenuated the cytotoxicity of AgNPs in Ba/F3. These findings suggest that autophagy is involved in the cytotoxicity of PVP-coated AgNPs in normal hematopoietic cells, and the inhibition of autophagy is a novel and potent strategy to protect normal hematopoietic cells upon treatment with AgNPs.
Collapse
Affiliation(s)
- Lingying Zhu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Wang J, Yu Y, Lu K, Yang M, Li Y, Zhou X, Sun Z. Silica nanoparticles induce autophagy dysfunction via lysosomal impairment and inhibition of autophagosome degradation in hepatocytes. Int J Nanomedicine 2017; 12:809-825. [PMID: 28182147 PMCID: PMC5279829 DOI: 10.2147/ijn.s123596] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Autophagy dysfunction is considered as a potential toxic mechanism of nanomaterials. Silica nanoparticles (SiNPs) can induce autophagy, but the specific mechanism involved remains unclear. Therefore, the aim of this study was to confirm the effects of SiNPs on autophagy dysfunction and explore the possible underlying mechanism. In this article, we reported that cell-internalized SiNPs exhibited dose- and time-dependent cytotoxicity in both L-02 and HepG2 cells. Multiple methods verified that SiNPs induced autophagy even at the noncytotoxic level and blocked the autophagic flux at the high-dose level. Notably, SiNPs impaired the lysosomal function through damaging lysosomal ultrastructures, increasing membrane permeability, and downregulating the expression of lysosomal proteases, cathepsin B, as evidenced by transmission electron microscopy, acridine orange staining, quantitative reverse transcription-polymerase chain reaction, and Western blot assays. Collectively, these data concluded that SiNPs inhibited autophagosome degradation via lysosomal impairment in hepatocytes, resulting in autophagy dysfunction. The current study not only discloses a potential mechanism of autophagy dysfunction induced by SiNPs but also provides novel evidence for the study of toxic effect and safety evaluation of SiNPs.
Collapse
Affiliation(s)
- Ji Wang
- Department of Toxicology and Sanitary Chemistry, School of Public Health; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| | - Yongbo Yu
- Department of Toxicology and Sanitary Chemistry, School of Public Health; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| | - Ke Lu
- Department of Toxicology and Sanitary Chemistry, School of Public Health
| | - Man Yang
- Department of Toxicology and Sanitary Chemistry, School of Public Health; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| | - Yang Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| | - Xianqing Zhou
- Department of Toxicology and Sanitary Chemistry, School of Public Health; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
128
|
Sthijns MMJPE, Thongkam W, Albrecht C, Hellack B, Bast A, Haenen GRMM, Schins RPF. Silver nanoparticles induce hormesis in A549 human epithelial cells. Toxicol In Vitro 2017; 40:223-233. [PMID: 28109747 DOI: 10.1016/j.tiv.2017.01.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/30/2016] [Accepted: 01/15/2017] [Indexed: 10/20/2022]
Abstract
Despite the gaps in our knowledge on the toxicity of silver nanoparticles (AgNPs), the application of these materials is fast expanding, from medicine, to food as well as the use in consumer products. It has been reported that prolonged exposure might make cells more resistant to AgNPs. This prompted us to investigate if AgNPs may give rise to a hormetic response. Two types of AgNPs were used, i.e. colloidal AgNPs and an AgNP powder. For both types of nanosilver it was found that a low dose pretreatment of A549 human epithelial cells with AgNPs induced protection against a toxic dose of AgNPs and acrolein. This protection was more pronounced after pretreatment with the colloidal AgNPs. Interestingly, the mechanism of the hormetic response appeared to differ from that of acrolein. Adaptation to acrolein is related to Nrf2 translocation, increased mRNA expression of γGCS, HO-1 and increased GSH levels and the increased GSH levels can explain the hormetic effect. The adaptive response to AgNPs was not related to an increase in mRNA expression of γGCS and GSH levels. Yet, HO-1 mRNA expression and Nrf2 immunoreactivity were enhanced, indicating that these processes might be involved. So, AgNPs induce adaptation, but in contrast to acrolein GSH plays no role.
Collapse
Affiliation(s)
- Mireille M J P E Sthijns
- Department of Pharmacology and Toxicology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Waluree Thongkam
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 DE Düsseldorf, Germany
| | - Catrin Albrecht
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 DE Düsseldorf, Germany
| | - Bryan Hellack
- Institute of Energy and Environmental Technology e.V. (IUTA), Bliersheimerstraße 58-60, 47229 Duisburg, Germany
| | - Aalt Bast
- Department of Pharmacology and Toxicology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Guido R M M Haenen
- Department of Pharmacology and Toxicology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Roel P F Schins
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 DE Düsseldorf, Germany
| |
Collapse
|
129
|
Chen RJ, Lee YH, Yeh YL, Wang YJ, Wang BJ. The Roles of Autophagy and the Inflammasome during Environmental Stress-Triggered Skin Inflammation. Int J Mol Sci 2016; 17:E2063. [PMID: 27941683 PMCID: PMC5187863 DOI: 10.3390/ijms17122063] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/29/2016] [Accepted: 12/05/2016] [Indexed: 02/07/2023] Open
Abstract
Inflammatory skin diseases are the most common problem in dermatology. The induction of skin inflammation by environmental stressors such as ultraviolet radiation (UVR), hexavalent chromium (Cr(VI)) and TiO₂/ZnO/Ag nanoparticles (NPs) has been demonstrated previously. Recent studies have indicated that the inflammasome is often wrongly activated by these environmental irritants, thus inducing massive inflammation and resulting in the development of inflammatory diseases. The regulation of the inflammasome with respect to skin inflammation is complex and is still not completely understood. Autophagy, an intracellular degradation system that is associated with the maintenance of cellular homeostasis, plays a key role in inflammasome inactivation. As a housekeeping pathway, cells utilize autophagy to maintain the homeostasis of the organ structure and function when exposed to environmental stressors. However, only a few studies have examined the effect of autophagy and/or the inflammasome on skin pathogenesis. Here we review recent findings regarding the involvement of autophagy and inflammasome activation during skin inflammation. We posit that autophagy induction is a novel mechanism inter-modulating environmental stressor-induced skin inflammation. We also attempt to highlight the role of the inflammasome and the possible underlying mechanisms and pathways reflecting the pathogenesis of skin inflammation induced by UVR, Cr(VI) and TiO₂/ZnO/Ag NPs. A more profound understanding about the crosstalk between autophagy and the inflammasome will contribute to the development of prevention and intervention strategies against human skin disease.
Collapse
Affiliation(s)
- Rong-Jane Chen
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan.
| | - Yu-Hsuan Lee
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan.
| | - Ya-Ling Yeh
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan.
| | - Ying-Jan Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan.
- Department of Biomedical Informatics, Asia University, Taichung 41354, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan.
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Bour-Jr Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan.
- Department of Occupational and Environmental Medicine, National Cheng Kung University Hospital, Tainan 70428, Taiwan.
- Department of Cosmetic Science and Institute of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan.
| |
Collapse
|
130
|
Zielinska E, Tukaj C, Radomski MW, Inkielewicz-Stepniak I. Molecular Mechanism of Silver Nanoparticles-Induced Human Osteoblast Cell Death: Protective Effect of Inducible Nitric Oxide Synthase Inhibitor. PLoS One 2016; 11:e0164137. [PMID: 27716791 PMCID: PMC5055295 DOI: 10.1371/journal.pone.0164137] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 09/20/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Silver nanoparticles (AgNPs) show strong antibacterial properties, making them excellent candidates to be used in orthopaedic repair and regeneration. However, there are concerns regarding the cytotoxicity of AgNPs and molecular mechanisms underlying AgNPs-induced bone cells toxicity have not been elucidated. Therefore, the aim of our study was to explore mechanisms of AgNPs-induced osteoblast cell death with particular emphasis on the role of nitric oxide (NO) generated by inducible nitric oxide synthase (iNOS). METHODS AND RESULT Silver nanoparticles used in this study were 18.3±2.6 nm in size, uncoated, spherical, regular shape and their zeta potential was -29.1±2.4 mV as measured by transmission electron microscopy (TEM) and zetasizer. The release of silver (Ag) from AgNPs was measured in cell culture medium by atomic absorption spectroscopy (AAS). The exposure of human osteoblast cells (hFOB 1.19) to AgNPs at concentration of 30 or 60 μg/mL for 24 or 48 hours, respectively resulted in cellular uptake of AgNPs and changes in cell ultrastructure. These changes were associated with apoptosis and necrosis as shown by flow cytometry and lactate dehydrogenase (LDH) assay as well as increased levels of pro-apoptotic Bax and decreased levels of anti-apoptotic Bcl-2 mRNA and protein. Importantly, we have found that AgNPs elevated the levels of nitric oxide (NO) with concomitant upregulation of inducible nitric oxide synthase (iNOS) mRNA and protein. A significant positive correlation was observed between the concentration of AgNPs and iNOS at protein and mRNA level (r = 0.837, r = 0.721, respectively; p<0.001). Finally, preincubation of osteoblast cells with N-iminoethyl-l-lysine (L-NIL), a selective iNOS inhibitor, as well as treating cells with iNOS small interfering RNAs (siRNA) significantly attenuated AgNPs-induced apoptosis and necrosis. Moreover, we have found that AgNPs-induced cells death is not related to Ag dissolution is cell culture medium. CONCLUSION These results unambiguously demonstrate that increased expression of iNOS and generation of NO as well as NO-derived reactive species is involved in AgNPs-induced osteoblast cell death. Our findings may help in development of new strategies to protect bone from AgNPs-induced cytotoxicity and increase the safety of orthopaedic tissue repair.
Collapse
Affiliation(s)
- Ewelina Zielinska
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Cecylia Tukaj
- Department of Electron Microscopy, Medical University of Gdansk, Gdansk, Poland
| | - Marek Witold Radomski
- College of Medicine, University of Saskatchewan, Saskatoon, Canada
- Kardio-Med Silesia, Zabrze, Poland
| | | |
Collapse
|
131
|
Xie H, Wu J. Silica nanoparticles induce alpha-synuclein induction and aggregation in PC12-cells. Chem Biol Interact 2016; 258:197-204. [DOI: 10.1016/j.cbi.2016.09.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 08/19/2016] [Accepted: 09/06/2016] [Indexed: 01/02/2023]
|
132
|
Igaz N, Kovács D, Rázga Z, Kónya Z, Boros IM, Kiricsi M. Modulating chromatin structure and DNA accessibility by deacetylase inhibition enhances the anti-cancer activity of silver nanoparticles. Colloids Surf B Biointerfaces 2016; 146:670-677. [PMID: 27434153 DOI: 10.1016/j.colsurfb.2016.07.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/02/2016] [Accepted: 07/03/2016] [Indexed: 12/31/2022]
Abstract
Histone deacetylase (HDAC) inhibitors are considered as novel therapeutic agents inducing cell cycle arrest and apoptotic cell death in various cancer cells. Inhibition of deacetylase activity results in a relaxed chromatin structure thereby rendering the genetic material more vulnerable to DNA targeting agents that could be exploited by combinational cancer therapy. The unique potential of silver nanoparticles (AgNPs) in tumor therapy relies on the generation of reactive radicals which trigger oxidative stress, DNA damage and apoptosis in cancer cells. The revolutionary application of AgNPs as chemotherapeutical drugs seems very promising, nevertheless the exact molecular mechanisms of AgNP action in combination with other anti-cancer agents have yet to be elucidated in details before clinical administrations. As a step towards this we investigated the combinational effect of HDAC inhibition and AgNP administration in HeLa cervical cancer cells. We identified synergistic inhibition of cancer cell growth and migration upon combinational treatments. Here we report that the HDAC inhibitor Trichostatin A enhances the DNA targeting capacity and apoptosis inducing efficacy of AgNPs most probably due to its effect on chromatin condensation. These results point to the potential benefits of combinational application of HDAC inhibitors and AgNPs in novel cancer medication protocols.
Collapse
Affiliation(s)
- Nóra Igaz
- Department of Biochemistry and Molecular Biology, University of Szeged, Középfasor 52, H-6726, Szeged, Hungary
| | - Dávid Kovács
- Department of Biochemistry and Molecular Biology, University of Szeged, Középfasor 52, H-6726, Szeged, Hungary
| | - Zsolt Rázga
- Department of Pathology, University of Szeged, Állomás utca 2, H-6720, Szeged, Hungary
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1, H-6720, Szeged, Hungary; MTA-SZTE Reaction Kinetics and Surface Chemistry Research Group, Rerrich Béla tér 1, H-6720, Szeged, Hungary
| | - Imre M Boros
- Department of Biochemistry and Molecular Biology, University of Szeged, Középfasor 52, H-6726, Szeged, Hungary; Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Mónika Kiricsi
- Department of Biochemistry and Molecular Biology, University of Szeged, Középfasor 52, H-6726, Szeged, Hungary.
| |
Collapse
|
133
|
Xie Y, Liu D, Cai C, Chen X, Zhou Y, Wu L, Sun Y, Dai H, Kong X, Liu P. Size-dependent cytotoxicity of Fe3O4 nanoparticles induced by biphasic regulation of oxidative stress in different human hepatoma cells. Int J Nanomedicine 2016; 11:3557-70. [PMID: 27536098 PMCID: PMC4973727 DOI: 10.2147/ijn.s105575] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The application of Fe3O4 nanoparticles (NPs) has made great progress in the diagnosis of disease and in the drug delivery system for cancer therapy, but the relative mechanisms of potential toxicity induced by Fe3O4 have not kept pace with its development in the application, which has hampered its further clinical application. In this article, we used two kinds of human hepatoma cell lines, SK-Hep-1 and Hep3B, to investigate the cytotoxic effects and the involved mechanisms of small Fe3O4 NPs with different diameters (6 nm, 9 nm, and 14 nm). Results showed that the size of NPs effectively influences the cytotoxicity of hepatoma cells: 6 nm Fe3O4 NPs exhibited negligible cytotoxicity and 9 nm Fe3O4 NPs affected cytotoxicity via cellular mitochondrial dysfunction and by inducing necrosis mediated through the mitochondria-dependent intracellular reactive oxygen species generation. Meanwhile, 14 nm Fe3O4 NPs induced cytotoxicity by impairing the integrity of plasma membrane and promoting massive lactate dehydrogenase leakage. These results explain the detailed mechanism of different diameters of small Fe3O4 NPs-induced cytotoxicity. We anticipate that this study will provide different insights into the cytotoxicity mechanism of Fe3O4 NPs, so as to make them safer to use in clinical application.
Collapse
Affiliation(s)
- Yuexia Xie
- Central Laboratory; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute
| | - Dejun Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | | | | | | | | | - Yongwei Sun
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Huili Dai
- Central Laboratory; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute
| | - Xianming Kong
- Central Laboratory; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute
| | - Peifeng Liu
- Central Laboratory; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute
| |
Collapse
|
134
|
Mao BH, Tsai JC, Chen CW, Yan SJ, Wang YJ. Mechanisms of silver nanoparticle-induced toxicity and important role of autophagy. Nanotoxicology 2016; 10:1021-40. [DOI: 10.1080/17435390.2016.1189614] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Bin-Hsu Mao
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan City, Taiwan,
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan City, Taiwan ROC,
| | - Jui-Chen Tsai
- Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan City, Taiwan ROC,
| | - Chun-Wan Chen
- Institute of Labor, Occupational Safety and Health Ministry of Labor, Sijhih District, New Taipei City, Taiwan ROC,
| | - Shian-Jang Yan
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan City, Taiwan ROC,
| | - Ying-Jan Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan City, Taiwan,
- Department of Biomedical Informatics, Asia University, Wufeng District, Taichung City, Taiwan ROC,
- Department of Medical Research, China Medical University Hospital, Taichung City, Taiwan ROC
| |
Collapse
|
135
|
Uskoković V, Wu VM. Calcium Phosphate as a Key Material for Socially Responsible Tissue Engineering. MATERIALS 2016; 9. [PMID: 27347359 PMCID: PMC4917371 DOI: 10.3390/ma9060434] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Socially responsible technologies are designed while taking into consideration the socioeconomic, geopolitical and environmental limitations of regions in which they will be implemented. In the medical context, this involves making therapeutic platforms more accessible and affordable to patients in poor regions of the world wherein a given disease is endemic. This often necessitates going against the reigning trend of making therapeutic nanoparticles ever more structurally complex and expensive. However, studies aimed at simplifying materials and formulations while maintaining the functionality and therapeutic response of their more complex counterparts seldom provoke a significant interest in the scientific community. In this review we demonstrate that such compositional simplifications are meaningful when it comes to the design of a solution for osteomyelitis, a disease that is in its natural, non-postoperative form particularly prevalent in the underdeveloped parts of the world wherein poverty, poor sanitary conditions, and chronically compromised defense lines of the immune system are the norm. We show that calcium phosphate nanoparticles, which are inexpensive to make, could be chemically designed to possess the same functionality as a hypothetic mixture additionally composed of: (a) a bone growth factor; (b) an antibiotic for prophylactic or anti-infective purposes; (c) a bisphosphonate as an antiresorptive compound; (d) a viral vector to enable the intracellular delivery of therapeutics; (e) a luminescent dye; (f) a radiographic component; (g) an imaging contrast agent; (h) a magnetic domain; and (i) polymers as viscous components enabling the injectability of the material and acting as carriers for the sustained release of a drug. In particular, calcium phosphates could: (a) produce tunable drug release profiles; (b) take the form of viscous and injectable, self-setting pastes; (c) be naturally osteo-inductive and inhibitory for osteoclastogenesis; (d) intracellularly deliver bioactive compounds; (e) accommodate an array of functional ions; (f) be processed into macroporous constructs for tissue engineering; and (g) be naturally antimicrobial. All in all, we see in calcium phosphates the presence of a protean nature whose therapeutic potentials have been barely tapped into.
Collapse
Affiliation(s)
- Vuk Uskoković
- Department of Bioengineering, University of Illinois, Chicago, IL 60607-7052, USA;
- Department of Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA 92618-1908, USA
- Correspondence: or ; Tel.: +1-415-412-0233
| | - Victoria M. Wu
- Department of Bioengineering, University of Illinois, Chicago, IL 60607-7052, USA;
| |
Collapse
|