101
|
Bazer FW, Kim J, Ka H, Johnson GA, Wu G, Song G. Select nutrients in the uterine lumen of sheep and pigs affect conceptus development. J Reprod Dev 2012; 58:180-8. [PMID: 22738901 DOI: 10.1262/jrd.2011-019] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interferon tau (IFNT) is the pregnancy recognition signal from ruminant conceptuses. IFNT also acts with P4 to induce expression of genes for transport of nutrients, such as glucose (Gluc) and arginine (Arg) into the uterine lumen to activate mechanistic mammalian target of rapamycin (MTOR) cell signaling that stimulates proliferation, migration, gene transcription and mRNA translation by conceptus trophectoderm (Tr). In ewes, Arg and Gluc increase significantly in the uterine lumen between Days 10 and 15 of pregnancy due to increased expression of transporters for Gluc (SLC2A1 and SLC5A1) and Arg (SLC7A2B) by uterine epithelia. Arg and Gluc stimulate proliferation, migration and mRNA translation by Tr. Arg increases expression of GTP cyclohydrolase 1 (GCH1) and IFNT mRNAs while Arg and Gluc increase ornithine decarboxylase, nitric oxide synthase 2, and GCH1 mRNAs and proteins by Tr cells. GCH1 is required for synthesis of tetrahydrobiopterin, an essential cofactor for all NOS isoforms. Arg is metabolized to nitric oxide and polyamines that increase proliferation and migration of Tr cells. In pigs, Gluc, Arg, leucine (Leu) and glutamine (Gln) increase in the uterine lumen between Days 12 and 15 of pregnancy due to enhanced expression of transporters for Gluc and amino acids. Transporters for Gluc in porcine uterine LE (SLC2A1) and conceptus trophectoderm (SLC2A2) are abundant. Transporters for glutamate and neutral (SLC1A1, SLC1A4) and cationic (SLC7A1, SLC7A2, SLC7A7, SLC7A9) amino acids are expressed in uterine LE and SLC7A3 mRNA is expressed in conceptus Tr. Arg and Leu increase MTOR cell signaling and proliferation of pig Tr, as do Gluc and fructose. Azaserine, an inhibitor of hexosamine biosynthesis, inhibits effects of Gluc and fructose. Thus, select nutrients in the uterine lumen affect gene transcription and mRNA translation to affect conceptus development.
Collapse
Affiliation(s)
- Fuller W Bazer
- Department of Animal Science and Center for Animal Biotechnology, Texas A&M University, Texas 77843-2471, USA.
| | | | | | | | | | | |
Collapse
|
102
|
Bazer FW, Kim J, Song G, Ka H, Tekwe CD, Wu G. Select nutrients, progesterone, and interferon tau affect conceptus metabolism and development. Ann N Y Acad Sci 2012; 1271:88-96. [PMID: 23050969 PMCID: PMC3485747 DOI: 10.1111/j.1749-6632.2012.06741.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Interferon tau (IFNT), a novel multifunctional type I interferon secreted by trophectoderm, is the pregnancy recognition signal in ruminants that also has antiviral, antiproliferative, and immunomodulatory bioactivities. IFNT, with progesterone, affects availability of the metabolic substrate in the uterine lumen by inducing expression of genes for transport of select nutrients into the uterine lumen that activate mammalian target of rapamycin (mTOR) cell signaling responsible for proliferation, migration, and protein synthesis by conceptus trophectoderm. As an immunomodulatory protein, IFNT induces an anti-inflammatory state affecting metabolic events that decrease adiposity and glutamine:fructose-6-phosphate amidotransferase 1 activity, while increasing insulin sensitivity, nitric oxide production by endothelial cells, and brown adipose tissue in rats. This short review focuses on effects of IFNT and progesterone affecting transport of select nutrients into the uterine lumen to stimulate mTOR cell signaling required for conceptus development, as well as effects of IFNT on the immune system and adiposity in rats with respect to its potential therapeutic value in reducing obesity.
Collapse
Affiliation(s)
- Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, USA.
| | | | | | | | | | | |
Collapse
|
103
|
Forde N, Carter F, di Francesco S, Mehta JP, Garcia-Herreros M, Gad A, Tesfaye D, Hoelker M, Schellander K, Lonergan P. Endometrial response of beef heifers on day 7 following insemination to supraphysiological concentrations of progesterone associated with superovulation. Physiol Genomics 2012; 44:1107-15. [PMID: 23012394 DOI: 10.1152/physiolgenomics.00092.2012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ovarian stimulation is a routine procedure in assisted reproduction to stimulate the growth of multiple follicles in naturally single-ovulating species including cattle and humans. The aim of this study was to analyze the changes induced in the endometrial transcriptome associated with superovulation in cattle and place these observations in the context of our previous data on changes in the endometrial transcriptome associated with elevated progesterone (P4) concentrations within the physiological range and those changes induced in the embryo due to superovulation. Mean serum P4 concentrations were significantly higher from day 4 to day 7 in superovulated compared with unstimulated control heifers (P < 0.05). Between-group analysis revealed a clear separation in the overall transcriptional profile of endometria from unstimulated control heifers (n = 5) compared with superovulated heifers (n = 5). This was reflected in the number of differentially expressed genes (DEGs) identified between the two groups with 795 up- and 440 downregulated in superovulated endometria. Ten times more genes were altered by superovulation (n = 1,234) compared with the number altered due to elevated P4 within physiological ranges by insertion of a P4-releasing intravaginal device (n = 124) with only 22 DEGs common to both models of P4 manipulation. Fewer genes were affected by superovulation in the embryo compared with the endometrium, (443 vs. 1,234 DEGs, respectively), and the manner in which genes were altered was different with 64.5% of genes up- and 35.5% of genes downregulated in the endometrium, compared with the 98.9% of DEGs upregulated in the embryo. In conclusion, superovulation induces significant changes in the transcriptome of the endometrium which are distinct from those in the embryo.
Collapse
Affiliation(s)
- N Forde
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Sandra O, Mansouri-Attia N, Lea RG. Novel aspects of endometrial function: a biological sensor of embryo quality and driver of pregnancy success. Reprod Fertil Dev 2012; 24:68-79. [PMID: 22394719 DOI: 10.1071/rd11908] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Successful pregnancy depends on complex biological processes that are regulated temporally and spatially throughout gestation. The molecular basis of these processes have been examined in relation to gamete quality, early blastocyst development and placental function, and data have been generated showing perturbations of these developmental stages by environmental insults or embryo biotechnologies. The developmental period falling between the entry of the blastocyst into the uterine cavity to implantation has also been examined in terms of the biological function of the endometrium. Indeed several mechanisms underlying uterine receptivity, controlled by maternal factors, and the maternal recognition of pregnancy, requiring conceptus-produced signals, have been clarified. Nevertheless, recent data based on experimental perturbations have unveiled unexpected biological properties of the endometrium (sensor/driver) that make this tissue a dynamic and reactive entity. Persistent or transient modifications in organisation and functionality of the endometrium can dramatically affect pre-implantation embryo trajectory through epigenetic alterations with lasting consequences on later stages of pregnancy, including placentation, fetal development, pregnancy outcome and post-natal health. Developing diagnostic and prognostic tools based on endometrial factors may enable the assessment of maternal reproductive capacity and/or the developmental potential of the embryo, particularly when assisted reproductive technologies are applied.
Collapse
Affiliation(s)
- Olivier Sandra
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78352 Jouy-en-Josas, France.
| | | | | |
Collapse
|
105
|
Abstract
There is a dialogue between the developing conceptus (embryo-fetus and associated placental membranes) and maternal uterus which must be established during the peri-implantation period for pregnancy recognition signaling, implantation, regulation of gene expression by uterine epithelial and stromal cells, placentation and exchange of nutrients and gases. The uterus provide a microenvironment in which molecules secreted by uterine epithelia or transported into the uterine lumen represent histotroph required for growth and development of the conceptus and receptivity of the uterus to implantation. Pregnancy recognition signaling mechanisms sustain the functional lifespan of the corpora lutea (CL) which produce progesterone, the hormone of pregnancy essential for uterine functions that support implantation and placentation required for a successful outcome of pregnancy. It is within the peri-implantation period that most embryonic deaths occur due to deficiencies attributed to uterine functions or failure of the conceptus to develop appropriately, signal pregnancy recognition and/or undergo implantation and placentation. With proper placentation, the fetal fluids and fetal membranes each have unique functions to ensure hematotrophic and histotrophic nutrition in support of growth and development of the fetus. The endocrine status of the pregnant female and her nutritional status are critical for successful establishment and maintenance of pregnancy. This review addresses the complexity of key mechanisms that are characteristic of successful reproduction in sheep and pigs and gaps in knowledge that must be the subject of research in order to enhance fertility and reproductive health of livestock species.
Collapse
|
106
|
Lonergan P. Influence of progesterone on oocyte quality and embryo development in cows. Theriogenology 2012; 76:1594-601. [PMID: 21855985 DOI: 10.1016/j.theriogenology.2011.06.012] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 04/15/2011] [Accepted: 04/15/2011] [Indexed: 11/17/2022]
Abstract
In cattle, the majority of embryo loss occurs very early during pregnancy (approximately Day 16), around or prior to maternal recognition of pregnancy. The actions of P4 in controlling LH pulsatility and ovarian follicular development may impinge negatively on oocyte quality. A considerable proportion of embryo loss may be attributable to inadequate circulating progesterone (P4) concentrations and the subsequent downstream consequences on endometrial gene expression and histotroph secretion into the uterine lumen. Conceptus growth and development require the action of P4 on the uterus to regulate endometrial function, including conceptus-maternal interactions, pregnancy recognition, and uterine receptivity for implantation. This review summarizes recent data highlighting the role of progesterone in determining oocyte quality and embryo development in cattle.
Collapse
Affiliation(s)
- Patrick Lonergan
- School of Agriculture, Food Science and Veterinary Medicine, College of Life Sciences, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
107
|
Bazer FW, Song G, Kim J, Erikson DW, Johnson GA, Burghardt RC, Gao H, Carey Satterfield M, Spencer TE, Wu G. Mechanistic mammalian target of rapamycin (MTOR) cell signaling: effects of select nutrients and secreted phosphoprotein 1 on development of mammalian conceptuses. Mol Cell Endocrinol 2012; 354:22-33. [PMID: 21907263 DOI: 10.1016/j.mce.2011.08.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 08/16/2011] [Accepted: 08/17/2011] [Indexed: 01/30/2023]
Abstract
Morphological differentiation of uterine glands in mammals is a postnatal event vulnerable to adverse effects of endocrine disruptors. Exposure of ewe lambs to a progestin from birth to postnatal day 56 prevents development of uterine glands and, as adults, the ewes are unable to exhibit estrous cycles or maintain pregnancy. Uterine epithelia secrete proteins and transport nutrients into the uterine lumen necessary for conceptus development, pregnancy recognition signaling and implantation, including arginine and secreted phosphoprotein 1 (SPP1). Arginine can be metabolized to nitric oxide and to polyamines or act directly to activate MTOR cell signaling to stimulate proliferation, migration, and mRNA translation in trophectoderm cells. SPP1 binds αvβ3 and α5β1 integrins and induces focal adhesion assembly, adhesion and migration of conceptus trophectoderm cells during implantation. Thus, arginine and SPP1 mediate growth, migration, cytoskeletal remodeling and adhesion of trophectoderm essential for pregnancy recognition signaling and implantation.
Collapse
Affiliation(s)
- Fuller W Bazer
- Center for Animal Biotechnology and Genomics and Department of Animal Science, Texas A&M University, College Station, TX, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Dorniak P, Welsh TH, Bazer FW, Spencer TE. Endometrial HSD11B1 and Cortisol Regeneration in the Ovine Uterus: Effects of Pregnancy, Interferon Tau, and Prostaglandins1. Biol Reprod 2012; 86:124. [DOI: 10.1095/biolreprod.111.097063] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
109
|
Walsh SW, Mehta JP, McGettigan PA, Browne JA, Forde N, Alibrahim RM, Mulligan FJ, Loftus B, Crowe MA, Matthews D, Diskin M, Mihm M, Evans ACO. Effect of the metabolic environment at key stages of follicle development in cattle: focus on steroid biosynthesis. Physiol Genomics 2012; 44:504-17. [PMID: 22414914 DOI: 10.1152/physiolgenomics.00178.2011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Cellular mechanisms that contribute to low estradiol concentrations produced by the preovulatory ovarian follicle in cattle with a compromised metabolic status are largely unknown. To gain insight into the main metabolic mechanisms affecting preovulatory follicle function, two different animal models were used. Experiment 1 compared Holstein-Friesian nonlactating heifers (n = 17) and lactating cows (n = 16) at three stages of preovulatory follicle development: 1) newly selected dominant follicle in the luteal phase (Selection), 2) follicular phase before the LH surge (Differentiation), and 3) preovulatory phase after the LH surge (Luteinization). Experiment 2 compared newly selected dominant follicles in the luteal phase in beef heifers fed a diet of 1.2 times maintenance (M, n = 8) or 0.4 M (n = 11). Lactating cows and 0.4 M beef heifers had higher concentrations of β-hydroxybutyrate, and lower concentrations of glucose, insulin, and IGF-I compared with dairy heifers and 1.2 M beef heifers, respectively. In lactating cows this altered metabolic environment was associated with reduced dominant follicle estradiol and progesterone synthesis during Differentiation and Luteinization, respectively, and in 0.4 M beef heifers with reduced dominant follicle estradiol synthesis. Using a combination of RNA sequencing, Ingenuity Pathway Analysis, and qRT-PCR validation, we identified several important molecular markers involved in steroid biosynthesis, such as the expression of steroidogenic acute regulatory protein (STAR) within developing dominant follicles, to be downregulated by the catabolic state. Based on this, we propose that the adverse metabolic environment caused by lactation or nutritional restriction decreases preovulatory follicle function mainly by affecting cholesterol transport into the mitochondria to initiate steroidogenesis.
Collapse
Affiliation(s)
- S W Walsh
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Interaction of the conceptus and endometrium to establish pregnancy in mammals: role of interleukin 1β. Cell Tissue Res 2012; 349:825-38. [PMID: 22382391 DOI: 10.1007/s00441-012-1356-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 01/30/2012] [Indexed: 01/09/2023]
Abstract
Implantation and the establishment of pregnancy in mammals involves an intricate interplay of hormones, cytokines, growth factors, proteins, lipids, ions and the extracellular matrix between the uterine epithelium, stroma, immune cells and the conceptus trophectoderm. The divergent nature of implantation in the mouse, human and pig provides not only an interesting contrast in the establishment of pregnancy and early embryonic development but also intriguing similarities with regard to early endometrial-conceptus signaling. An interesting pro-inflammatory cytokine expressed in a number of mammalian species during the period of implantation is interleukin-1β (IL1B). The presence of IL1B might be involved with immunotolerance at the maternal-placental interface and has been proposed as one of the mediators in placental viviparity. The production of IL1B and other proinflammatory cytokines might play a role in establishing pregnancy through modulation of the nuclear factor kappa-B (NFKB) system in a number of species. A model for the regulation of cellular progesterone receptor expression and NFKB activation for endometrial receptivity and conceptus attachment is continuing to evolve and is discussed in the present review.
Collapse
|
111
|
Arginine nutrition and fetal brown adipose tissue development in diet-induced obese sheep. Amino Acids 2012; 43:1593-603. [DOI: 10.1007/s00726-012-1235-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 01/28/2012] [Indexed: 12/16/2022]
|
112
|
Rizos D, Scully S, Kelly AK, Ealy AD, Moros R, Duffy P, Al Naib A, Forde N, Lonergan P. Effects of human chorionic gonadotrophin administration on Day 5 after oestrus on corpus luteum characteristics, circulating progesterone and conceptus elongation in cattle. Reprod Fertil Dev 2012; 24:472-81. [DOI: 10.1071/rd11139] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 08/25/2011] [Indexed: 11/23/2022] Open
Abstract
The aim of the present study was to test the hypothesis that elevated concentrations of progesterone (P4) resulting from the induction of an accessory corpus luteum (CL) by human chorionic gonadotrophin (hCG) administration on Day 5 after oestrus would lead to advanced conceptus elongation on Day 14 following embryo transfer on Day 7. The oestrous cycles of cross-bred beef heifers were synchronised and animals were randomly assigned to receive either of two treatments: (1) intramuscular injection of 3000 IU hCG on Day 5 after oestrus (n = 14); or (2) intramuscular injection of saline on Day 5 after oestrus (n = 13). Ovaries were scanned daily by transrectal ultrasonography to assess CL development. Serum concentrations of P4 were determined from daily blood samples collected from the jugular vein. In vitro-produced bovine blastocysts were transferred to synchronised recipients on Day 7 after oestrus (n = 15 blastocysts per recipient). Heifers were killed on Day 14 after oestrus and the uterus was flushed to recover the embryos. Injection of hCG on Day 5 induced ovulation of the dominant follicle in all treated heifers and increased the total area of luteal tissue on the ovary, which was associated with a significant increase (P < 0.001) in serum concentrations of P4 from Day 7 to Day 14. Positive associations were detected between circulating P4 with CL area (within-day correlations ranging from r = 0.45 to r = 0.67) and total area of luteal tissue (within-day correlations ranging from r = 0.65 to r = 0.86) Administration of hCG did not affect the proportion of Day 14 conceptuses recovered. However, compared with the control group, hCG-treated heifers had increased conceptus length (3.91 ± 1.23 vs 5.57 ± 1.02 mm, respectively; P = 0.06), width (1.00 ± 0.06 vs 1.45 ± 0.05 mm, respectively; P = 0.002) and area (5.71 ± 0.97 vs 8.31 ± 0.83, respectively; P = 0.02). Although numerically greater, mean interferon-τ (IFNT) production in vitro did not differ significantly (P = 0.54) between embryos recovered from hCG-treated and control heifers. In contrast, there was a strong positive correlation between individual embryo length (r = 0.76; P < 0.001) and individual embryo area (r = 0.72; P < 0.001) and IFNT production. In conclusion, administration of hCG on Day 5 after oestrus resulted in the formation of an accessory CL and hypertrophy of the original CL, the result of which was an increase in P4 concentrations from Day 7 onwards. These elevated P4 concentrations were associated with an increased conceptus area. Furthermore, conceptus size was highly correlated with IFNT secretion in vitro.
Collapse
|
113
|
MATSUYAMA S, SAKAGUCHI Y, KIMURA K. Relationship between Plasma Progesterone Concentration and Number of Conceptuses and Their Growth in Superovulated Cattle. J Reprod Dev 2012; 58:609-14. [DOI: 10.1262/jrd.2012-079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Shuichi MATSUYAMA
- National Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Tochigi 329-2793, Japan
- National Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Tochigi 329-2793, Japan
| | - Yosuke SAKAGUCHI
- Tokyo University of Agriculture, Kanagawa 243-0034, Japan
- Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Koji KIMURA
- National Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Tochigi 329-2793, Japan
- National Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Tochigi 329-2793, Japan
| |
Collapse
|
114
|
Administration of recombinant bovine somatotropin (rbST) at the time of breeding in superovulated fertile and subfertile ewes. Small Rumin Res 2012. [DOI: 10.1016/j.smallrumres.2011.09.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
115
|
Satterfield MC, Dunlap KA, Keisler DH, Bazer FW, Wu G. Arginine nutrition and fetal brown adipose tissue development in nutrient-restricted sheep. Amino Acids 2011; 45:489-99. [PMID: 22130738 DOI: 10.1007/s00726-011-1168-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 11/18/2011] [Indexed: 01/21/2023]
Abstract
Intrauterine growth restriction is a significant problem worldwide, resulting in increased rates of neonatal morbidity and mortality, as well as increased risks for metabolic and cardiovascular disease. The present study investigated the role of maternal undernutrition and L-arginine administration on fetal growth and development. Embryo transfer was utilized to generate genetically similar singleton pregnancies. On Day 35 of gestation, ewes were assigned to receive either 50 or 100% of their nutritional requirements. Ewes received i.v. injections of either saline or L-arginine three times daily from Day 100 to Day 125. Fetal growth was assessed at necropsy on Day 125. Maternal dietary manipulation altered circulating concentrations of leptin, progesterone, and amino acids in maternal plasma. Fetal weight was reduced in nutrient-restricted ewes on Day 125 compared with 100% fed ewes. Compared with saline-treated underfed ewes, maternal L-arginine administration did not affect fetal weight but increased weight of the fetal pancreas by 32% and fetal peri-renal brown adipose tissue mass by 48%. These results indicate that L-arginine administration enhanced fetal pancreatic and brown adipose tissue development. The postnatal effects of increased pancreatic and brown adipose tissue growth warrant further study.
Collapse
Affiliation(s)
- M Carey Satterfield
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | |
Collapse
|
116
|
Bazer FW, Wu G, Johnson GA, Kim J, Song G. Uterine histotroph and conceptus development: select nutrients and secreted phosphoprotein 1 affect mechanistic target of rapamycin cell signaling in ewes. Biol Reprod 2011; 85:1094-107. [PMID: 21865556 DOI: 10.1095/biolreprod.111.094722] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Interferon tau (IFNT), the pregnancy recognition signal in ruminants, abrogates the uterine luteolytic mechanism to ensure maintenance of function for the corpora lutea to produce progesterone (P4). IFNT also suppresses expression of classical IFN-stimulated genes by uterine lumenal epithelium (LE) and superficial glandular (sGE) epithelium but, acting in concert with progesterone, affects expression of a multitude of genes critical to growth and development of the conceptus. The LE and sGE secrete proteins and transport nutrients into the uterine lumen necessary for conceptus development, pregnancy recognition signaling, and implantation. Secretions include arginine and secreted phosphoprotein 1 (SPP1). Arginine can be metabolized to nitric oxide and to polyamines or act directly to activate the mechanistic target of rapamycin cell signaling pathway to stimulate proliferation, migration, and mRNA translation in trophectoderm cells. SPP1 binds alphavbeta3 and alpha5beta1 integrins to induce focal adhesion assembly, adhesion, and migration of conceptus trophectoderm cells during implantation. Thus, arginine and SPP1 mediate growth, migration, cytoskeletal remodeling, and adhesion of trophectoderm essential for pregnancy recognition signaling and implantation. This minireview focuses on components of histotroph that affect conceptus development in the ewe.
Collapse
Affiliation(s)
- Fuller W Bazer
- Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas, USA.
| | | | | | | | | |
Collapse
|
117
|
|
118
|
Okumu LA, Fair T, Szekeres-Bartho J, O'Doherty AM, Crowe MA, Roche JF, Lonergan P, Forde N. Endometrial expression of progesterone-induced blocking factor and galectins-1, -3, -9, and -3 binding protein in the luteal phase and early pregnancy in cattle. Physiol Genomics 2011; 43:903-10. [DOI: 10.1152/physiolgenomics.00251.2010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Progesterone-induced blocking factor (PIBF) and galectins modulate the maternal immune response during pregnancy. We hypothesized that the relative transcript abundance of the above genes would be different during the luteal phase/early pregnancy and would be affected by progesterone supplementation. To further test this, hypothesis protein expression analyses were carried out to evaluate the abundance and localization of LGALS9 and PIBF. Following estrus synchronization, heifers were inseminated ( n = 140) or not ( n = 70). Half the heifers in each status (cyclic or potentially pregnant) were randomly assigned to receive a progesterone-releasing intravaginal device (PRID) on day 3 after estrus, which elevated progesterone concentrations from day 3.5 to 8 ( P < 0.05), resulting in four treatment groups: cyclic and pregnant heifers, each with normal and high progesterone. After confirmation of pregnancy status in inseminated animals, uterine tissue was collected on days 5, 7, 13, or 16 of the luteal phase of the cycle/pregnancy. Gene and protein expression was determined using Q-RT-PCR and IHC, respectively, on 5 heifers per treatment per time point (i.e., 80 in total). Progesterone concentrations did not affect expression of any of the genes ( P > 0.05). LGALS9 and LGALS3BP were expressed at low levels in both cyclic and pregnant endometria until day 13. On day 16, expression increased only in the pregnant heifers ( P < 0.0001). LGALS1 and LGALS3 decreased on day 7 ( P < 0.0001) and remained low until day 16. Pregnancy had no effect on the expression of LGALS1, LGALS3, and PIBF. Additionally, LGALS9 and PIBF proteins were expressed in distinct uterine cell types. These results indicate that the galectins may be involved in uterine receptivity and/or implantation in heifers.
Collapse
Affiliation(s)
- L. A. Okumu
- School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland; and
| | - T. Fair
- School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland; and
| | - J. Szekeres-Bartho
- Department of Medical Microbiology & Immunology, Medical School, Pecs University, Pecs, Hungary
| | - A. M. O'Doherty
- School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland; and
| | - M. A. Crowe
- School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland; and
| | - J. F. Roche
- School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland; and
| | - P. Lonergan
- School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland; and
| | - N. Forde
- School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland; and
| |
Collapse
|
119
|
Dorniak P, Bazer FW, Spencer TE. Prostaglandins Regulate Conceptus Elongation and Mediate Effects of Interferon Tau on the Ovine Uterine Endometrium1. Biol Reprod 2011; 84:1119-27. [DOI: 10.1095/biolreprod.110.089979] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
120
|
Gad A, Besenfelder U, Rings F, Ghanem N, Salilew-Wondim D, Hossain M, Tesfaye D, Lonergan P, Becker A, Cinar U, Schellander K, Havlicek V, Hölker M. Effect of reproductive tract environment following controlled ovarian hyperstimulation treatment on embryo development and global transcriptome profile of blastocysts: implications for animal breeding and human assisted reproduction. Hum Reprod 2011; 26:1693-707. [DOI: 10.1093/humrep/der110] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
121
|
Kim JY, Burghardt RC, Wu G, Johnson GA, Spencer TE, Bazer FW. Select Nutrients in the Ovine Uterine Lumen. VIII. Arginine Stimulates Proliferation of Ovine Trophectoderm Cells Through MTOR-RPS6K-RPS6 Signaling Cascade and Synthesis of Nitric Oxide and Polyamines1. Biol Reprod 2011; 84:70-8. [DOI: 10.1095/biolreprod.110.085753] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
122
|
Bailey DW, Dunlap KA, Frank JW, Erikson DW, White BG, Bazer FW, Burghardt RC, Johnson GA. Effects of long-term progesterone on developmental and functional aspects of porcine uterine epithelia and vasculature: progesterone alone does not support development of uterine glands comparable to that of pregnancy. Reproduction 2010; 140:583-94. [DOI: 10.1530/rep-10-0170] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In pigs, endometrial functions are regulated primarily by progesterone and placental factors including estrogen. Progesterone levels are high throughout pregnancy to stimulate and maintain secretion of histotroph from uterine epithelia necessary for growth, implantation, placentation, and development of the conceptus (embryo and its extra-embryonic membranes). This study determined effects of long-term progesterone on development and histoarchitecture of endometrial luminal epithelium (LE), glandular epithelium (GE), and vasculature in pigs. Pigs were ovariectomized during diestrus (day 12), and then received daily injections of either corn oil or progesterone for 28 days. Prolonged progesterone treatment resulted in increased weight and length of the uterine horns, and thickness of the endometrium and myometrium. Hyperplasia and hypertrophy of GE were not evident, but LE cell height increased, suggesting elevated secretory activity. Although GE development was deficient, progesterone supported increased endometrial angiogenesis comparable to that of pregnancy. Progesterone also supported alterations to the apical and basolateral domains of LE and GE. Dolichos biflorus agglutinin lectin binding and αv integrin were downregulated at the apical surfaces of LE and GE. Claudin-4, α2β1 integrin, and vimentin were increased at basolateral surfaces, whereas occludins-1 and -2, claudin-3, and E-cadherin were unaffected by progesterone treatment indicating structurally competent trans-epithelial adhesion and tight junctional complexes. Collectively, the results suggest that progesterone affects LE, GE, and vascular development and histoarchitecture, but in the absence of ovarian or placental factors, it does not support development of GE comparable to pregnancy. Furthermore, LE and vascular development are highly responsive to the effects of progesterone.
Collapse
|
123
|
Shorten P, Peterson A, O’Connell A, Juengel J, McNatty K, Soboleva T. A mathematical model of pregnancy recognition in mammals. J Theor Biol 2010; 266:62-9. [DOI: 10.1016/j.jtbi.2010.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 05/31/2010] [Accepted: 06/02/2010] [Indexed: 01/28/2023]
|
124
|
Carter F, Rings F, Mamo S, Holker M, Kuzmany A, Besenfelder U, Havlicek V, Mehta JP, Tesfaye D, Schellander K, Lonergan P. Effect of elevated circulating progesterone concentration on bovine blastocyst development and global transcriptome following endoscopic transfer of in vitro produced embryos to the bovine oviduct. Biol Reprod 2010; 83:707-19. [PMID: 20631399 DOI: 10.1095/biolreprod.109.082354] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Elevated concentrations of circulating progesterone in the immediate postconception period have been associated with an increase in embryonic growth rate, interferon-tau production, and pregnancy rate in cattle and sheep. Much of this effect is likely mediated via downstream effects of progesterone-induced changes in gene expression in the uterine tissues. Using state-of-the-art endoscopic techniques, this study examined the effect of elevated progesterone on the development of in vitro produced bovine zygotes transferred to the oviducts of heifers with high or normal circulating progesterone concentrations and on the transcriptome of blastocysts developing under such conditions. Simmental heifers (n = 34) were synchronized using a controlled internal drug release (CIDR) device for 8 days, with a prostaglandin F(2 alpha) analogue administered 3 days before removal of the CIDR device. Only animals exhibiting a clear standing estrus (Day 0) were used. To produce animals with divergent progesterone concentrations, half of the animals received a progesterone-releasing intravaginal device (PRID) on Day 3 of the estrous cycle; the PRID was left in place until embryo recovery. All animals were sampled for blood daily from Day 0 to Day 7. Cleaved embryos were transferred by endoscopy to the ipsilateral oviduct of each recipient on Day 2 and then recovered by nonsurgically flushing the oviduct and the uterus on Day 7. The number of embryos developing to the blastocyst stage was recorded at recovery and following overnight culture in vitro. Potential effects of elevated progesterone on transcript abundance were examined using the Affymetrix GeneChip Bovine Genome Array. Insertion of a PRID on Day 3 resulted in a significant elevation of progesterone concentration (P < 0.05) from Day 3.5 until Day 6. Elevated progesterone did not affect the proportion of embryos developing to the blastocyst stage. Genomewide gene expression analysis identified 194 differentially expressed genes between embryos collected from heifers with normal or elevated progesterone, and quantitative real-time PCR validation with a subset of selected genes and an independent sample confirmed the microarray results. Interaction network analysis indicated a significant interaction between progesterone-regulated genes in the blastocyst and in the maternal endometrium. These results suggest that elevated concentrations of progesterone do not affect the ability of the early embryo to reach the blastocyst stage in vivo but do result in subtle changes to the transcriptome of the embryo that may be associated with advanced elongation posthatching.
Collapse
Affiliation(s)
- F Carter
- School of Agriculture, Food Science, and Veterinary Medicine, College of Life Sciences, University College Dublin, Dublin, Ireland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Okumu LA, Forde N, Fahey AG, Fitzpatrick E, Roche JF, Crowe MA, Lonergan P. The effect of elevated progesterone and pregnancy status on mRNA expression and localisation of progesterone and oestrogen receptors in the bovine uterus. Reproduction 2010; 140:143-53. [DOI: 10.1530/rep-10-0113] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To investigate the effects of pregnancy or post-ovulatory progesterone (P4) supplementation on the expression of oestrogen and P4 receptors (ESRs and PGRs) in the bovine uterus, heifers (n=263) were randomly assigned to the following treatments: i) cyclic, normal P4; ii) cyclic, high P4; iii) pregnant, normal P4; and iv) pregnant, high P4 on days 5, 7, 13 and 16 of pregnancy/oestrous cycle. Elevated P4 was achieved through P4-releasing intravaginal device insertion on day 3 after oestrus, resulting in increased concentrations from day 3.5 to 8 (P<0.05) in the high groups than in the normal groups. Irrespective of treatment, PGR and ESR1 mRNA expressions were highest on days 5 and 7 and decreased on day 13 (P<0.05), while ESR2 mRNA expression increased on day 7 (P<0.05) and similar levels were maintained within the normal P4 groups subsequently. Expression in the high P4 groups decreased on day 13 (P<0.05). PGR-AB and PGR-B protein expressions were high in the luminal and superficial glands on days 5 and 7, but by day 13, expression had declined to very low or undetectable levels and high P4 concentration tended to decrease or decreased significantly (P<0.05) the expression in these regions on days 5 and 7. ESR1 protein expression was high, with no treatment effect. ESR2 protein was also highly expressed, with no clear effect of treatment. In conclusion, early post-ovulatory P4 supplementation advances the disappearance of PGR protein from the luminal epithelium on days 5 and 7, and decreases ESR2 mRNA expression during the mid-luteal phase, but has no effect on PGR or ESR1 mRNA expression.
Collapse
|
126
|
Bott RC, Ashley RL, Henkes LE, Antoniazzi AQ, Bruemmer JE, Niswender GD, Bazer FW, Spencer TE, Smirnova NP, Anthony RV, Hansen TR. Uterine Vein Infusion of Interferon Tau (IFNT) Extends Luteal Life Span in Ewes1. Biol Reprod 2010; 82:725-35. [DOI: 10.1095/biolreprod.109.079467] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
127
|
Rizos D, Carter F, Besenfelder U, Havlicek V, Lonergan P. Contribution of the female reproductive tract to low fertility in postpartum lactating dairy cows. J Dairy Sci 2010; 93:1022-9. [DOI: 10.3168/jds.2009-2605] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 11/23/2009] [Indexed: 11/19/2022]
|
128
|
Forde N, Spencer TE, Bazer FW, Song G, Roche JF, Lonergan P. Effect of pregnancy and progesterone concentration on expression of genes encoding for transporters or secreted proteins in the bovine endometrium. Physiol Genomics 2010; 41:53-62. [DOI: 10.1152/physiolgenomics.00162.2009] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The objective of this study was to determine the temporal and spatial expression patterns of genes encoding transporters, as well as selected secreted proteins that may be regulated by progesterone (P4) and/or the presence of the conceptus in the bovine endometrium. Estrus-synchronized beef heifers were randomly assigned to either: 1) pregnant, high P4; 2) pregnant, normal P4; 3) cyclic, high P4; or 4) cyclic, normal P4. Uteri were collected on days 5, 7, 13, and 16 of the estrous cycle or pregnancy. Localization of mRNAs for ANPEP, CTGF, LPL, LTF, and SLC5A1 in the uteri was determined by radioactive in situ hybridization, and expression quantified in the endometria by quantitative real-time PCR. ANPEP localized to luminal (LE) and superficial glandular (sGE) epithelia of all heifers on days 5 and 7 only. SLC5A1 mRNA was detected in the LE and sGE on days 13 and 16 in all heifers, and expression increased on day 16 in pregnant groups. CTGF localized weakly to the LE and GE on days 5 and 7 but increased on days 13 and 16 with an increase ( P < 0.05) in CTGF expression in high P4 ( day 7) and pregnant heifers ( day 16). Both LPL and LTF localized to the GE only on days 5 and 7. In conclusion we have characterized the temporal expression pattern of these genes and modulation of their transcript abundance by P4 ( CTGF, LPL) and/or the conceptus ( CTGF, SLC5A1) likely modifies the uterine microenvironment, enhancing histotroph composition and contributing to advanced conceptus elongation.
Collapse
Affiliation(s)
- N. Forde
- School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland; and
| | - T. E. Spencer
- Centre for Animal Biotechnology and Genomics, Department of Animal Science, Texas A&M University, College Station, Texas
| | - F. W. Bazer
- Centre for Animal Biotechnology and Genomics, Department of Animal Science, Texas A&M University, College Station, Texas
| | - G. Song
- Centre for Animal Biotechnology and Genomics, Department of Animal Science, Texas A&M University, College Station, Texas
| | - J. F. Roche
- School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland; and
| | - P. Lonergan
- School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland; and
| |
Collapse
|
129
|
Satterfield MC, Gao H, Li X, Wu G, Johnson GA, Spencer TE, Bazer FW. Select Nutrients and Their Associated Transporters Are Increased in the Ovine Uterus Following Early Progesterone Administration1. Biol Reprod 2010; 82:224-31. [DOI: 10.1095/biolreprod.109.076729] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
130
|
Beltman ME, Forde N, Furney P, Carter F, Roche JF, Lonergan P, Crowe MA. Characterisation of endometrial gene expression and metabolic parameters in beef heifers yielding viable or non-viable embryos on Day 7 after insemination. Reprod Fertil Dev 2010; 22:987-99. [DOI: 10.1071/rd09302] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 01/28/2010] [Indexed: 11/23/2022] Open
Abstract
The aim of the present study was to compare the hormonal and metabolic characteristics and endometrial gene expression profiles in beef heifers yielding either a viable or degenerate embryo on Day 7 after insemination as a means to explain differences in embryo survival. Oestrus was synchronised in cross-bred beef heifers (n = 145) using a controlled internal drug release (CIDR)–prostaglandin protocol. Heifers (n = 102) detected in standing oestrus (within 24–48 h after CIDR removal) were inseminated 12–18 h after detection of oestrus (Day 0) with frozen–thawed semen from a single ejaculate of a bull with proven fertility. Blood samples were collected from Day 4 to Day 7 after oestrus to measure progesterone (on Days 4, 5 and 7), insulin and insulin-like growth factor (IGF)-I (on Days 4 and 6) and urea (on Day 7) concentrations. All animals were killed on Day 7. Uterine pH was determined at the time of death. Animals from which an embryo was recovered were classified as either having a viable embryo (morula/blastocyst stage; n = 32) or a retarded embryo (arrested at the two- to 16-cell stage; n = 19). In addition, 14 single-celled unfertilised oocytes were recovered, giving an overall recovery rate of 64%. There was no significant difference in the blood parameters determined or uterine pH at the time of death between heifers with either a viable or retarded embryo. The relative abundance of nine transcripts (i.e. MOGAT1, PFKB2, LYZ2, SVS8, UHRF1, PTGES, AGPAT4, DGKA and HGPD) of 53 tested in the endometrial tissue differed between heifers with a viable or retarded embryo. Both LYZ2 and UHRF1 are associated with regulation of the immune system; PFKFB2 is a mediator in glycolysis; MOGAT, AGPAT4 and DGKA belong to the triglyceride synthesis pathway; and PTGES and HGPD belong to the prostaglandin pathway. Both these metabolic pathways are important for early embryonic development. In conclusion, retarded embryo development in the present study was not related to serum progesterone, IGF-I, insulin or urea concentrations, nor to uterine pH at the time of death. However, altered expression of genes involved in the prostaglandin and triglyceride pathways, as well as two genes that are closely associated with the regulation of immunity, in the endometrium may indicate a uterine component in the retardation of embryo development in these beef heifers.
Collapse
|
131
|
Forde N, Carter F, Fair T, Crowe M, Evans A, Spencer T, Bazer F, McBride R, Boland M, O'Gaora P, Lonergan P, Roche J. Progesterone-Regulated Changes in Endometrial Gene Expression Contribute to Advanced Conceptus Development in Cattle1. Biol Reprod 2009; 81:784-94. [DOI: 10.1095/biolreprod.108.074336] [Citation(s) in RCA: 232] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
132
|
Satterfield MC, Song G, Kochan KJ, Riggs PK, Simmons RM, Elsik CG, Adelson DL, Bazer FW, Zhou H, Spencer TE. Discovery of candidate genes and pathways in the endometrium regulating ovine blastocyst growth and conceptus elongation. Physiol Genomics 2009; 39:85-99. [DOI: 10.1152/physiolgenomics.00001.2009] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Establishment of pregnancy in ruminants requires blastocyst growth to form an elongated conceptus that produces interferon tau, the pregnancy recognition signal, and initiates implantation. Blastocyst growth and development requires secretions from the uterine endometrium. An early increase in circulating concentrations of progesterone (P4) stimulates blastocyst growth and elongation in ruminants. This study utilized sheep as a model to identify candidate genes and regulatory networks in the endometrium that govern preimplantation blastocyst growth and development. Ewes were treated daily with either P4 or corn oil vehicle from day 1.5 after mating to either day 9 or day 12 of pregnancy when endometrium was obtained by hysterectomy. Microarray analyses revealed many differentially expressed genes in the endometria affected by day of pregnancy and early P4 treatment. In situ hybridization analyses revealed that many differentially expressed genes were expressed in a cell-specific manner within the endometrium. The Database for Annotation, Visualization, and Integrated Discovery (DAVID) was used to identify functional groups of genes and biological processes in the endometrium that are associated with growth and development of preimplantation blastocysts. Notably, biological processes affected by day of pregnancy and/or early P4 treatment included lipid biosynthesis and metabolism, angiogenesis, transport, extracellular space, defense and inflammatory response, proteolysis, amino acid transport and metabolism, and hormone metabolism. This transcriptomic data provides novel insights into the biology of endometrial function and preimplantation blastocyst growth and development in sheep.
Collapse
Affiliation(s)
| | - Gwonhwa Song
- Department of Animal Science, Texas A&M University, College Station, Texas
| | - Kelli J. Kochan
- Department of Animal Science, Texas A&M University, College Station, Texas
| | - Penny K. Riggs
- Department of Animal Science, Texas A&M University, College Station, Texas
| | - Rebecca M. Simmons
- Department of Animal Science, Texas A&M University, College Station, Texas
| | - Christine G. Elsik
- Department of Biology, Georgetown University, Washington, District of Columbia
| | - David L. Adelson
- Department of Biology, Georgetown University, Washington, District of Columbia
| | - Fuller W. Bazer
- Centre for Bioinformatics and Computational Genetics, University of Adelaide, Australia; and
| | - Huaijun Zhou
- Department of Poultry Science, Texas A&M University, College Station, Texas
| | - Thomas E. Spencer
- Department of Animal Science, Texas A&M University, College Station, Texas
| |
Collapse
|
133
|
Beltman M, Roche J, Lonergan P, Forde N, Crowe M. Evaluation of models to induce low progesterone during the early luteal phase in cattle. Theriogenology 2009; 72:986-92. [DOI: 10.1016/j.theriogenology.2009.06.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 06/10/2009] [Accepted: 06/24/2009] [Indexed: 11/25/2022]
|
134
|
Clemente M, de La Fuente J, Fair T, Al Naib A, Gutierrez-Adan A, Roche JF, Rizos D, Lonergan P. Progesterone and conceptus elongation in cattle: a direct effect on the embryo or an indirect effect via the endometrium? Reproduction 2009; 138:507-17. [DOI: 10.1530/rep-09-0152] [Citation(s) in RCA: 225] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The steroid hormone progesterone (P4) plays a key role in the reproductive events associated with pregnancy establishment and maintenance. High concentrations of circulating P4 in the immediate post-conception period have been associated with an advancement of conceptus elongation, an associated increase in interferon-τ production and higher pregnancy rates in cattle. Using in vitro and in vivo models and ∼8500 bovine oocytes across six experiments, the aim of this study was to establish the route through which P4 affects bovine embryo development in vitro and in vivo. mRNA for P4 receptors was present at all stages of embryo development raising the possibility of a direct effect of P4 on the embryo. Exposure to P4 in vitro in the absence or presence of oviduct epithelial cells did not affect the proportion of embryos developing to the blastocyst stage, blastocyst cell number or the relative abundance of selected transcripts in the blastocyst. Furthermore, exposure to P4 in vitro did not affect post-hatching elongation of the embryo following transfer to synchronized recipients and recovery on Day 14. By contrast, transfer of in vitro derived blastocysts to a uterine environment previously primed by elevated P4 resulted in a fourfold increase in conceptus length on Day 14. These data provide clear evidence to support the hypothesis that P4-induced changes in the uterine environment are responsible for the advancement in conceptus elongation reported previously in cattle and that, interestingly, the embryo does not need to be present during the period of high P4 in order to exhibit advanced elongation.
Collapse
|
135
|
Simmons RM, Erikson DW, Kim J, Burghardt RC, Bazer FW, Johnson GA, Spencer TE. Insulin-like growth factor binding protein-1 in the ruminant uterus: potential endometrial marker and regulator of conceptus elongation. Endocrinology 2009; 150:4295-305. [PMID: 19497977 DOI: 10.1210/en.2009-0060] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Establishment of pregnancy in ruminants requires conceptus elongation and production of interferon-tau (IFNT), the pregnancy recognition signal that maintains ovarian progesterone (P4) production. These studies determined temporal and spatial alterations in IGF binding protein (IGFBP)-1 and IGFBP3 in the ovine and bovine uterus; effects of P4 and IFNT on their expression in the ovine uterus; and effects of IGFBP1 on ovine trophectoderm cell proliferation, migration, and attachment. IGFBP1 and IGFBP3 were studied because they are the only IGFBPs specifically expressed by the endometrial luminal epithelia in sheep. In sheep, IGFBP1 and IGFBP3 expression was coordinate with the period of conceptus elongation, whereas only IGFBP1 expression was coordinate with conceptus elongation in cattle. IGFBP1 mRNA in the ovine endometria was between 5- and 29-fold more abundant between d 12 and 16 of pregnancy compared with the estrous cycle and greater on d 16 of pregnancy than nonpregnancy in the bovine uterus. In sheep, P4 induced and IFNT stimulated expression of IGFBP1 but not IGFBP3; however, the effect of IFNT did not mimic the abundant increase observed in pregnant ewes. Therefore, IGFBP1 expression in the endometrium is regulated by another factor from the conceptus. IGFBP1 did not affect the proliferation of ovine trophectoderm cells in vitro but did stimulate their migration and mediate their attachment. These studies reveal that IGFBP1 is a common endometrial marker of conceptus elongation in sheep and cattle and most likely regulates conceptus elongation by stimulating migration and attachment of the trophectoderm.
Collapse
Affiliation(s)
- Rebecca M Simmons
- Department of Animal Science, Texas A&M University, College Station, Texas 77843, USA
| | | | | | | | | | | | | |
Collapse
|
136
|
Simmons RM, Satterfield MC, Welsh TH, Bazer FW, Spencer TE. HSD11B1, HSD11B2, PTGS2, and NR3C1 expression in the peri-implantation ovine uterus: effects of pregnancy, progesterone, and interferon tau. Biol Reprod 2009; 82:35-43. [PMID: 19696010 DOI: 10.1095/biolreprod.109.079608] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Establishment of pregnancy in ruminants requires conceptus elongation and production of interferon tau (IFNT), the pregnancy recognition signal that maintains the corpus luteum and progesterone (P4) secretion. The enzymes hydroxysteroid (11-beta) dehydrogenase 1 (HSD11B1) and HSD11B2 catalyze the interconversion of inactive cortisone and active cortisol, which is a biologically active glucorticoid and ligand for the receptor subfamily 3, group C, member 1 (glucocorticoid receptor) (NR3C1). The activity of HSD11B1 is stimulated by P4, prostaglandins, and cortisol. These studies determined the effects of pregnancy, P4, and IFNT on HSD11B1, HSD11B2, prostaglandin-endoperoxide synthase 2 (prostaglandin G/H synthase and cyclooxygenase) (PTGS2), and nuclear NR3C1 in the ovine uterus. Endometrial HSD11B1 mRNA levels were more abundant between Days 12 and 16 of pregnancy than the estrous cycle, and HSD11B1 and PTGS2 expression in the endometrial luminal and superficial glandular epithelia was coincident with conceptus elongation. HSD11B1 mRNA was very low in the conceptus, whereas HSD11B2 mRNA was abundant in the conceptus but not in the uterus. Treatment of ewes with P4 induced, and intrauterine infusions of IFNT modestly stimulated, HSD11B1 expression in the endometrial luminal and superficial glandular epithelia. In all of the studies, HSD11B1 and PTGS2 expression was coincident in the endometrial epithelia, and NR3C1 was present in all endometrial cell types. Collectively, these results support hypotheses that endometrial epithelial HSD11B1 expression is induced by P4 as well as stimulated by IFNT and PTGS2-derived prostaglandins and that HSD11B1-regenerated cortisol acts via NR3C1 to regulate ovine endometrial functions during early pregnancy.
Collapse
Affiliation(s)
- Rebecca M Simmons
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | | | | | | | | |
Collapse
|
137
|
Igwebuike UM. A review of uterine structural modifications that influence conceptus implantation and development in sheep and goats. Anim Reprod Sci 2008; 112:1-7. [PMID: 19162416 DOI: 10.1016/j.anireprosci.2008.12.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 12/01/2008] [Accepted: 12/10/2008] [Indexed: 10/21/2022]
Abstract
Evolution of the placenta and viviparity in eutherian animals underscores the need for an intimate relationship between the developing conceptus (embryo/foetus and associated extra-embryonic membranes) and the dam throughout the period of pregnancy. Thus, maternal support is unequivocally important for conceptus survival and development in utero. Under the influence of several pregnancy-associated hormones, the maternal uterine architecture undergoes rapid growth and substantial remodeling early in gestation. These changes are necessary preparations to accommodate and support rapid conceptus development and growth in the later two-thirds of pregnancy. There are species variations in the nature and extent of uterine remodeling during pregnancy. The regulatory influence of these uterine wall modifications on conceptus survival, implantation and placentation in sheep and goats are discussed in this review.
Collapse
Affiliation(s)
- U M Igwebuike
- Department of Veterinary Anatomy, University of Nigeria, Nsukka, Nigeria.
| |
Collapse
|
138
|
Song G, Satterfield MC, Kim J, Bazer FW, Spencer TE. Progesterone and interferon tau regulate leukemia inhibitory factor receptor and IL6ST in the ovine uterus during early pregnancy. Reproduction 2008; 137:553-65. [PMID: 19060097 DOI: 10.1530/rep-08-0437] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The actions of leukemia inhibitory factor (LIF) via LIF receptor (LIFR) and its co-receptor, IL6 signal transducer (IL6ST), are implicated in uterine receptivity to conceptus implantation in a number of species including sheep. The present study determined the effects of the estrous cycle, pregnancy, progesterone (P4), and interferon tau (IFNT) on the expression of LIFR and IL6ST in the ovine uterus. LIFR mRNA and protein were localized to the endometrial luminal (LE) and superficial glandular epithelia (sGE), whereas IL6ST mRNA and protein were localized primarily in the middle to deep GE. Both LIFR and IL6ST mRNAs and protein were more abundant in pregnant than cyclic ewes and increased from days 10 to 20 of pregnancy. Treatment of ovariectomized ewes with P4 and/or infusion of ovine IFNT increased LIFR and IL6ST in endometrial LE/sGE and GE respectively. Co-expression of LIFR and IL6ST as well as phosphorylated STAT3 was observed only in the upper GE of the endometrium as well as in the conceptus trophectoderm on days 18 and 20. In mononuclear trophectoderm and GE cells, LIF elicited an increase in phosphorylated STAT3 and MAPK3/1 MAPK proteins. Collectively, these results suggest that LIFR and IL6ST are both stimulated by IFNT and regulated by P4 in a complex stage- and cell-specific manner, and support the hypothesis that LIF exerts effects on the endometrial GE as well as conceptus trophectoderm during early pregnancy in sheep. Thus, LIF and STAT3 may have biological roles in endometrial function and trophectoderm growth and differentiation.
Collapse
Affiliation(s)
- Gwonhwa Song
- Department of Animal Science, Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas 77843-2471, USA
| | | | | | | | | |
Collapse
|
139
|
Interferons and progesterone for establishment and maintenance of pregnancy: interactions among novel cell signaling pathways. Reprod Biol 2008; 8:179-211. [DOI: 10.1016/s1642-431x(12)60012-6] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
140
|
Duranthon V, Watson AJ, Lonergan P. Preimplantation embryo programming: transcription, epigenetics, and culture environment. Reproduction 2008; 135:141-50. [PMID: 18239045 DOI: 10.1530/rep-07-0324] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Preimplantation development directs the formation of an implantation- or attachment-competent embryo so that metabolic interactions with the uterus can occur, pregnancy can be initiated, and fetal development can be sustained. The preimplantation embryo exhibits a form of autonomous development fueled by products provided by the oocyte and also from activation of the embryo's genome. Despite this autonomy, the preimplantation embryo is highly influenced by factors in the external environment and in extreme situations, such as those presented by embryo culture or nuclear transfer, the ability of the embryo to adapt to the changing environmental conditions or chromatin to become reprogrammed can exceed its own adaptive capacity, resulting in aberrant embryonic development. Nuclear transfer or embryo culture-induced influences not only affect implantation and establishment of pregnancy but also can extend to fetal and postnatal development and affect susceptibility to disease in later life. It is therefore critical to define the basic program controlling preimplantation development, and also to utilize nuclear transfer and embryo culture models so that we may design healthier environments for preimplantation embryos to thrive in and also minimize the potential for negative consequences during pregnancy and post-gestational life. In addition, it is necessary to couple gene expression analysis with the investigation of gene function so that effects on gene expression can be fully understood. The purpose of this short review is to highlight our knowledge of the mechanisms controlling preimplantation development and report how those mechanisms may be influenced by nuclear transfer and embryo culture.
Collapse
Affiliation(s)
- Veronique Duranthon
- UMR Biologie du développement et de la Reproduction, INRA, 78352 Jouy en Josas Cedex, France
| | | | | |
Collapse
|
141
|
Satterfield MC, Hayashi K, Song G, Black SG, Bazer FW, Spencer TE. Progesterone regulates FGF10, MET, IGFBP1, and IGFBP3 in the endometrium of the ovine uterus. Biol Reprod 2008; 79:1226-36. [PMID: 18753603 DOI: 10.1095/biolreprod.108.071787] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Progesterone (P4) is unequivocally required to maintain a uterine environment conducive to pregnancy. This study investigated the effects of P4 treatment on expression of selected growth factors (fibroblast growth factor 7 [FGF7], FGF10, hepatocyte growth factor [HGF], and insulin-like growth factors [IGF1 and IGF2]), their receptors (MET, FGFR2(IIIB), and IGF1R), and IGF binding proteins (IGFBPs) in the ovine uterus. Ewes received daily injections of corn oil vehicle (CO) or 25 mg of P4 in vehicle from 36 h after mating (Day 0) to hysterectomy on Day 9 or Day 12. Another group received P4 to Day 8 and 75 mg of mifepristone (RU486, a P4 receptor antagonist) from Day 8 through Day 12. Endometrial FGF10 mRNA levels increased between Day 9 and Day 12 and in response to P4 on Day 9 in CO-treated ewes, which had larger blastocysts, and were substantially reduced in P4+RU486-treated ewes, which had no blastocysts on Day 12. Endometrial FGF7 or HGF mRNA levels were not affected by day or reduced by RU486 treatment, but MET mRNA levels were higher in P4-treated ewes on Day 9 and Day 12. Levels of IGF1, IGF2, and IGF1R mRNA in the endometria were not affected by early P4 treatment. Although stromal IGFBPs were unaffected by P4, levels of IGFBP1 and IGFBP3 mRNA in uterine luminal epithelia were increased substantially between Day 9 and Day 12 of pregnancy in CO-treated ewes and on Day 9 in early P4-treated ewes. Therefore, FGF10, MET, IGFBP1, and IGFBP3 are P4-regulated factors within the endometrium of the ovine uterus that have potential effects on endometrial function and peri-implantation blastocyst growth and development.
Collapse
Affiliation(s)
- M Carey Satterfield
- Center for Animal Biotechnology and Genomics, Department of Animal Science, Texas A&M University, College Station, Texas 77843-2471, USA
| | | | | | | | | | | |
Collapse
|
142
|
Gifford CA, Assiri AM, Satterfield MC, Spencer TE, Ott TL. Receptor transporter protein 4 (RTP4) in endometrium, ovary, and peripheral blood leukocytes of pregnant and cyclic ewes. Biol Reprod 2008; 79:518-24. [PMID: 18495679 DOI: 10.1095/biolreprod.108.069468] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Interferon-tau (IFNT) is secreted by the conceptus trophoblast and signals pregnancy recognition in ruminants. IFNT regulates expression of genes in the endometrium, peripheral blood leukocytes (PBLs), and corpus luteum (CL). Microarray analysis identified that expression of (chemosensory) receptor transporter protein 4 (RTP4) increased in PBLs during early pregnancy in cows. In the present study, we cloned and characterized RTP4 transcription during early pregnancy in ewes. Endometrium, PBLs, and CL were collected on Days 11, 13, and 15 of the cycle and on Days 11, 13, 15, 17, and 19 of pregnancy. Northern blot analysis revealed an expected 1.6-kb mRNA and an unexpected 2.6-kb mRNA. In endometria, RTP4 mRNA levels in cyclic ewes remained low, whereas RTP4 mRNA increased from Day 11 to Day 17 in pregnant ewes. Levels of RTP4 mRNA also increased from Day 15 to Day 19 in CL and PBL samples from pregnant ewes only. The RTP4 mRNA was located in the glandular epithelium, stratum compactum, and caruncular stroma. Ovine glandular epithelial cells were treated with IFNT to determine if IFNT alone could induce RTP4. IFNT increased RTP4 more than 70-fold at 1.5 h after treatment, with maximal induction of nearly 300-fold above values observed in nontreated controls at 6 h after treatment. These results indicate that RTP4 mRNA levels are induced in the ovine endometrium, PBLs, and CL by IFNT during early pregnancy and in cell culture in response to IFNT. If RTP4 expression affects G protein-coupled receptor function, it may be important for establishment of pregnancy in domestic ruminants.
Collapse
Affiliation(s)
- C A Gifford
- Department of Animal and Veterinary Science, University of Idaho, Moscow, Idaho 83843, USA
| | | | | | | | | |
Collapse
|
143
|
Song G, Satterfield MC, Kim J, Bazer FW, Spencer TE. Gastrin-releasing peptide (GRP) in the ovine uterus: regulation by interferon tau and progesterone. Biol Reprod 2008; 79:376-86. [PMID: 18448839 DOI: 10.1095/biolreprod.108.068403] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Gastrin-releasing peptide (GRP) is abundantly expressed by endometrial glands of the ovine uterus and processed into different bioactive peptides, including GRP1-27, GRP18-27, and a C-terminus, that affect cell proliferation and migration. However, little information is available concerning the hormonal regulation of endometrial GRP and expression of GRP receptors in the ovine endometrium and conceptus. These studies determined the effects of pregnancy, progesterone (P4), interferon tau (IFNT), placental lactogen (CSH1), and growth hormone (GH) on expression of GRP in the endometrium and GRP receptors (GRPR, NMBR, BRS3) in the endometrium, conceptus, and placenta. In pregnant ewes, GRP mRNA and protein were first detected predominantly in endometrial glands after Day 10 and were abundant from Days 18 through 120 of gestation. Treatment with IFNT and progesterone but not CSH1 or GH stimulated GRP expression in the endometrial glands. Western blot analyses identified proGRP in uterine luminal fluid and allantoic fluid from Day 80 unilateral pregnant ewes but not in uterine luminal fluid of either cyclic or early pregnant ewes. GRPR mRNA was very low in the Day 18 conceptus and undetectable in the endometrium and placenta; NMBR and BRS3 mRNAs were undetectable in ovine uteroplacental tissues. Collectively, the present studies validate GRP as a novel IFNT-stimulated gene in the glands of the ovine uterus, revealed that IFNT induction of GRP is dependent on P4, and found that exposure of the ovine uterus to P4 for 20 days induces GRP expression in endometrial glands.
Collapse
Affiliation(s)
- Gwonhwa Song
- Center for Animal Biotechnology and Genomics, Department of Animal Science, Texas A&M University, College Station, Texas 77843, USA
| | | | | | | | | |
Collapse
|
144
|
Spencer TE, Sandra O, Wolf E. Genes involved in conceptus–endometrial interactions in ruminants: insights from reductionism and thoughts on holistic approaches. Reproduction 2008; 135:165-79. [DOI: 10.1530/rep-07-0327] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This review summarizes new knowledge on expression of genes and provides insights into approaches for study of conceptus–endometrial interactions in ruminants with emphasis on the peri-implantation stage of pregnancy. Conceptus–endometrial interactions in ruminants are complex and involve carefully orchestrated temporal and spatial alterations in gene expression regulated by hormones from the ovary and conceptus. Progesterone is the hormone of pregnancy and acts on the uterus to stimulate blastocyst survival, growth, and development. Inadequate progesterone levels or a delayed rise in progesterone is associated with pregnancy loss. The mononuclear trophectoderm cells of the elongating blastocyst synthesize and secrete interferon-τ (IFNT), the pregnancy recognition signal. Trophoblast giant binucleate cells begin to differentiate and produce hormones including chorionic somatomammotropin 1 (CSH1 or placental lactogen). A number of genes, induced or stimulated by progesterone, IFNT, and/or CSH1 in a cell-specific manner, are implicated in trophectoderm adhesion to the endometrial luminal epithelium and regulation of conceptus growth and differentiation. Transcriptional profiling experiments are beginning to unravel the complex dynamics of conceptus–endometrial interactions in cattle and sheep. Future experiments should incorporate physiological models of pregnancy loss and be complemented by metabolomic studies of uterine lumen contents to more completely define factors required for blastocyst survival, growth, and implantation. Both reduction and holistic approaches will be important to understand the multifactorial phenomenon of recurrent pregnancy loss and provide a basis for new strategies to improve pregnancy outcome and reproductive efficiency in cattle and other domestic animals.
Collapse
|
145
|
Lonergan P, Woods A, Fair T, Carter F, Rizos D, Ward F, Quinn K, Evans A. Effect of embryo source and recipient progesterone environment on embryo development in cattle. Reprod Fertil Dev 2008; 19:861-8. [PMID: 17897589 DOI: 10.1071/rd07089] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Accepted: 07/12/2007] [Indexed: 11/23/2022] Open
Abstract
The aim of the present study was to examine the effect of embryo source (in vivo v. in vitro) and the progesterone environment into which it was transferred on Day 7 on embryo survival and size on Day 13. Day 7 blastocysts were produced either in vivo using superovulation, artificial insemination and non-surgical embryo recovery or in vitro using in vitro maturation, fertilisation and culture. In order to produce animals with divergent progesterone concentrations, following synchronisation recipients were either superovulated (High progesterone; n = 10) or not (Control progesterone; n = 10). Ten blastocysts, produced either in vivo or in vitro, were transferred to each recipient on Day 7. Both groups were killed on Day 13. The mean progesterone concentration from Day 7 to Day 13 (the period when the embryos were in the uterus) in the High and Control progesterone recipients was 36.32 +/- 1.28 and 10.30 +/- 0.51 ng mL(-1), respectively. Of the in vivo embryos transferred, the overall recovery rate at Day 13 was 64%, which was higher (P < 0.001) than that of 20% for the in vitro embryos transferred. The mean area of embryos recovered from High progesterone recipients was 3.86 +/- 0.45 mm(2) (n = 28) compared with 1.66 +/- 0.38 mm(2) (n = 24) for embryos recovered from Control progesterone recipients (P < 0.001). Similarly, the origin of the embryo used for transfer affected embryo size on Day 13. In summary, the recovery rate of blastocysts was higher for in vivo- than in vitro-derived embryos. Blastocyst size was approximately 2.3-fold greater in recipients with high compared with normal progesterone. The present study lends strong support to the hypothesis that an earlier rise in progesterone after conception stimulates blastocyst growth and the development of competent embryos.
Collapse
Affiliation(s)
- P Lonergan
- School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | | | | | | | | | | | | |
Collapse
|
146
|
Carter F, Forde N, Duffy P, Wade M, Fair T, Crowe MA, Evans ACO, Kenny DA, Roche JF, Lonergan P. Effect of increasing progesterone concentration from Day 3 of pregnancy on subsequent embryo survival and development in beef heifers. Reprod Fertil Dev 2008; 20:368-75. [DOI: 10.1071/rd07204] [Citation(s) in RCA: 225] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Accepted: 12/13/2007] [Indexed: 11/23/2022] Open
Abstract
Higher systemic progesterone in the immediate post-conception period is associated with an increase in embryonic growth rate, interferon-tau production and pregnancy rate in cattle. The objective of this study was to examine the effect of increasing progesterone concentration on Day 3 on subsequent embryo survival and development. Oestrus (Day 0) was synchronised in beef-cross heifers (n = 210) and approximately two-thirds of the heifers were inseminated with semen from a proven sire, while the remainder were not inseminated. In order to produce animals with divergent progesterone concentrations, half of the animals received a progesterone-releasing intravaginal device (PRID) on Day 3 of the oestrous cycle, which was left in situ until slaughter. The four treatment groups were: (i) pregnant, high progesterone; (ii) pregnant, normal progesterone; (iii) non-pregnant, high progesterone; and (iv) non-pregnant, normal progesterone. Animals were blood-sampled twice daily from Days 0 to 8 and once daily thereafter until slaughter on Days 5, 7, 13 or 16, corresponding to the 16-cell stage, the blastocyst stage, the beginning of elongation and the day of maternal recognition of pregnancy, respectively. Embryos were recovered by flushing the tract with phosphate-buffered saline and characterised by stage of development and, in the case of Days 13 and 16, measured. Data were analysed by mixed models ANOVA, Chi-square analysis and Student’s t-test where appropriate. Insertion of a PRID on Day 3 increased (P < 0.05) progesterone concentrations from Day 3.5 onwards. There was no difference between treatments in the proportion of embryos at the expected stage of development on Days 5 or 7 (P > 0.05). While not significantly different, the proportion of viable embryos recovered was numerically greater in the high progesterone group on both Day 13 (58 v. 43%) and Day 16 (90 v. 50%). Elevation of progesterone significantly increased embryonic length on Day 13 (2.24 ± 0.51 mm v. 1.15 ± 0.16 mm, P = 0.034) and Day 16 (14.06 ± 1.18 cm v. 5.97 ± 1.18 cm, P = 0.012). In conclusion, insertion of a PRID on Day 3 of the oestrous cycle increased serum progesterone concentrations on subsequent days, which, while having no phenotypic effect on embryonic development on Days 5 or 7, was associated with an increase in embryonic size on Days 13 and 16.
Collapse
|
147
|
Satterfield MC, Song G, Hayashi K, Bazer FW, Spencer TE. Progesterone regulation of the endometrial WNT system in the ovine uterus. Reprod Fertil Dev 2008; 20:935-46. [DOI: 10.1071/rd08069] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Accepted: 07/28/2008] [Indexed: 12/11/2022] Open
Abstract
WNT signalling regulates cell proliferation, differentiation, polarity and organisation. The present study investigated the effects of progesterone (P4) on the endometrial WNT system in relation to blastocyst development and growth in sheep. Ewes received daily intramuscular injections of either corn oil (CO) vehicle or 25 mg P4 from 36 h after mating (Day 0) until hysterectomy on Day 9 or 12. Another group received P4 until Day 8 and 75 mg mifepristone (RU486) from Day 8 to Day 12. Early P4 treatment increased blastocyst growth on Days 9 and 12, whereas no blastocysts were recovered from P4 + RU486-treated ewes. Levels of WNT2 mRNA in the stroma and WNT11 and WNT7A mRNAs in the endometrial luminal epithelia (LE) were reduced in P4 + RU486-treated ewes on Day 9, whereas WNT11 mRNA was reduced in the endometria of both P4- and P4 + RU486-treated ewes on Day 12. On Day 12, WNT2 mRNA was increased in the stroma, WNT7A mRNA was increased in the LE and WNT5A mRNA was increased in the LE and stroma of P4 + RU486- compared with P4-treated ewes. DKK1 mRNA was absent in the endometrial stroma of P4 + RU486-treated ewes. Expression of transcription factor 7 like-2 (TCF7L2) was transiently increased in endometrial epithelia of P4-treated ewes on Day 9, but decreased in these ewes on Day 12. MSX1 mRNA was decreased by P4 treatment on Day 9 and levels of both MSX1 and MSX2 mRNA were higher in P4 + RU486-treated ewes on Day 12. Thus, P4 modulates the endometrial WNT system and elicits a transient decline in selected WNT pathways and signalling components, which is hypothesised to alter tight and adherens junctions, thereby stimulating blastocyst growth and development.
Collapse
|
148
|
Banu SK, Lee J, Satterfield MC, Spencer TE, Bazer FW, Arosh JA. Molecular cloning and characterization of prostaglandin (PG) transporter in ovine endometrium: role for multiple cell signaling pathways in transport of PGF2alpha. Endocrinology 2008; 149:219-31. [PMID: 17901226 DOI: 10.1210/en.2007-1087] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In ruminants, endometrial prostaglandin F(2alpha) (PGF(2alpha)) is the luteolytic hormone. Cellular transport of PGF(2alpha) in the uterine endometrium is critical for regulation of the estrous cycle. Molecular mechanisms responsible for control of PGF(2alpha) transport in endometrium during luteolysis are largely unknown. In the present study, we characterized the prostaglandin transporter (PGT) in ovine endometrium. Ovine PGT cDNA consists of 1935 nucleotides that encode 644 amino acids. In ovine endometria, PGT is highly expressed during the period of luteolysis, between d 14 and 16 of the estrous cycle, in luminal and glandular epithelia. Pharmacological and genomic inhibition of PGT indicates that it is responsible for influx and efflux of PGF(2alpha) in ovine endometrial epithelial cells. Inhibition of PGT during the period of luteolysis prevents the release of oxytocin-induced PGF(2alpha) pulses, and maintains functional corpus luteum and its secretion of progesterone. In ovine endometrial epithelial cells, protein kinase A and protein kinase C pathways are involved in regulating the influx of PGF(2alpha), whereas epidermal growth factor receptor pathways are implicated in regulation of influx and efflux of PGF(2alpha.) The ERK1/2 pathway is associated with efflux of PGF(2alpha), whereas Jun-amino-terminal kinase/stress-activated protein kinase pathways are involved in both efflux and influx of PGF(2alpha.) Phosphatidylinositol 3-kinase pathways are not involved in either influx or efflux of PGF(2alpha) in ovine endometrial epithelial cells. These are the first results to demonstrate a functional role for PGT in regulation of PGF(2alpha) efflux and influx in ovine endometrial cells that influence luteolytic mechanisms in ruminants.
Collapse
Affiliation(s)
- S K Banu
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas 77843-4458, USA
| | | | | | | | | | | |
Collapse
|
149
|
Lewis SK, Farmer JL, Burghardt RC, Newton GR, Johnson GA, Adelson DL, Bazer FW, Spencer TE. Galectin 15 (LGALS15): A Gene Uniquely Expressed in the Uteri of Sheep and Goats that Functions in Trophoblast Attachment1. Biol Reprod 2007; 77:1027-36. [PMID: 17855730 DOI: 10.1095/biolreprod.107.063594] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Galectins are a family of secreted animal lectins with biological roles in cell adhesion and migration. In sheep, galectin 15 (LGALS15) is expressed specifically in the endometrial luminal (LE) and superficial glandular (sGE) epithelia of the uterus in concert with blastocyst elongation during the peri-implantation period. The present study examined LGALS15 expression in the uterus of cattle, goats, and pigs. Although the bovine genome contains an LGALS15-like gene, expressed sequence tags encoding LGALS15 mRNA were found only for sheep, and full-length LGALS15 cDNAs were cloned only from endometrial total RNA isolated from pregnant sheep and goats, but not pregnant cattle or pigs. Ovine and caprine LGALS15 were highly homologous at the mRNA (95%) and protein (91%) levels, and all contained a conserved carbohydrate recognition domain and RGD recognition sequence for integrin binding. Endometrial LGALS15 mRNA levels increased after Day 11 of both the estrous cycle and pregnancy, and were considerably increased after Day 15 of pregnancy in goats. In situ hybridization detected abundant LGALS15 mRNA in endometrial LE and sGE of early pregnant goats, but not in cattle or pigs. Immunoreactive LGALS15 protein was present in endometrial epithelia and conceptus trophectoderm of goat uteri and detected within intracellular crystal structures in trophectoderm and LE. Recombinant ovine and caprine LGALS15 proteins elicited a dose-dependent increase in ovine trophectoderm cell attachment in vitro that was comparable to bovine fibronectin. These results support the hypothesis that LGALS15 is uniquely expressed in Caprinae endometria and functions as an attachment factor important for peri-implantation blastocyst elongation.
Collapse
Affiliation(s)
- Shaye K Lewis
- Center for Animal Biotechnology and Genomics, Department of Animal Science, Texas A&M University, College Station, Texas 77843, USA
| | | | | | | | | | | | | | | |
Collapse
|
150
|
Das P, Ezashi T, Gupta R, Roberts RM. Combinatorial roles of protein kinase A, Ets2, and 3',5'-cyclic-adenosine monophosphate response element-binding protein-binding protein/p300 in the transcriptional control of interferon-tau expression in a trophoblast cell line. Mol Endocrinol 2007; 22:331-43. [PMID: 17975022 DOI: 10.1210/me.2007-0300] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In ruminants, conceptus interferon-tau (IFNT) production is necessary for maintenance of pregnancy. We examined the role of protein kinase A (PKA) in regulating IFNT expression through the activation of Ets2 in JAr choriocarcinoma cells. Although overexpression of the catalytic subunit of PKA or the addition of 8-bromo-cAMP had little ability to up-regulate boIFNT1 reporter constructs on their own, coexpression with Ets2 led to a large increase in gene expression. Progressive truncation of reporter constructs indicated that the site of PKA/Ets2 responsiveness lay in a region of the promoter between -126 and -67, which lacks a cAMP response element but contains the functional Ets2-binding site and an activator protein 1 (AP1) site. Specific mutation of the former reduced the PKA/Ets2 effects by more than 98%, whereas mutation of an AP1-binding site adjacent to the Ets2 site or pharmacological inhibition of MAPK kinase 2 led to a doubling of the combined Ets2/PKA effects, suggesting there is antagonism between the Ras/MAPK pathway and the PKA signal transduction pathway. Although Ets2 is not a substrate for PKA, lowering the effective concentrations of the coactivators, cAMP response element-binding protein-binding protein (CBP)/p300, known PKA targets, reduced the ability of PKA to synergize with Ets2, suggesting that PKA effects on IFNT regulation might be mediated through CBP/p300 coactivation, particularly as CBP and Ets2 occupy the proximal promoter region of IFNT in bovine trophoblast CT-1 cells. The up-regulation of IFNT in the elongating bovine conceptus is likely due to the combinatorial effects of PKA, Ets2, and CBP/p300 and triggered via growth factors released from maternal endometrium.
Collapse
Affiliation(s)
- Padmalaya Das
- Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, 1201 East Rollins Street, Columbia, MO 65211-7310, USA
| | | | | | | |
Collapse
|