101
|
Patel R, Montagut‐Bordas C, Dickenson AH. Calcium channel modulation as a target in chronic pain control. Br J Pharmacol 2018; 175:2173-2184. [PMID: 28320042 PMCID: PMC5980588 DOI: 10.1111/bph.13789] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/03/2017] [Accepted: 03/05/2017] [Indexed: 01/13/2023] Open
Abstract
Neuropathic pain remains poorly treated for large numbers of patients, and little progress has been made in developing novel classes of analgesics. To redress this issue, ziconotide (Prialt™) was developed and approved as a first-in-class synthetic version of ω-conotoxin MVIIA, a peptide blocker of Cav 2.2 channels. Unfortunately, the impracticalities of intrathecal delivery, low therapeutic index and severe neurological side effects associated with ziconotide have restricted its use to exceptional circumstances. Ziconotide exhibits no state or use-dependent block of Cav 2.2 channels; activation state-dependent blockers were hypothesized to circumvent the side effects of state-independent blockers by selectively targeting high-frequency firing of nociceptive neurones in chronic pain states, thus alleviating aberrant pain but not affecting normal sensory transduction. Unfortunately, numerous drugs, including state-dependent calcium channel blockers, have displayed efficacy in preclinical models but have subsequently been disappointing in clinical trials. In recent years, it has become more widely acknowledged that trans-aetiological sensory profiles exist amongst chronic pain patients and may indicate similar underlying mechanisms and drug sensitivities. Heterogeneity amongst patients, a reliance on stimulus-evoked endpoints in preclinical studies and a failure to utilize translatable endpoints, all are likely to have contributed to negative clinical trial results. We provide an overview of how electrophysiological and operant-based assays provide insight into sensory and affective aspects of pain in animal models and how these may relate to chronic pain patients in order to improve the bench-to-bedside translation of calcium channel modulators. LINKED ARTICLES This article is part of a themed section on Recent Advances in Targeting Ion Channels to Treat Chronic Pain. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.12/issuetoc.
Collapse
Affiliation(s)
- Ryan Patel
- Department of Neuroscience, Physiology and PharmacologyUniversity College LondonLondonUK
| | | | - Anthony H Dickenson
- Department of Neuroscience, Physiology and PharmacologyUniversity College LondonLondonUK
| |
Collapse
|
102
|
Da Silva JT, Zhang Y, Asgar J, Ro JY, Seminowicz DA. Diffuse noxious inhibitory controls and brain networks are modulated in a testosterone-dependent manner in Sprague Dawley rats. Behav Brain Res 2018; 349:91-97. [PMID: 29733874 PMCID: PMC7184319 DOI: 10.1016/j.bbr.2018.04.055] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/30/2018] [Accepted: 04/30/2018] [Indexed: 12/14/2022]
Abstract
Diffuse noxious inhibitory control (DNIC), which involves endogenous pain modulation, has been investigated as a potential mechanism for the differences in pain modulation observed between men and women, though the literature shows contradictory findings. We used a capsaicin-induced DNIC behavioral assay and resting state functional magnetic resonance imaging (rsfMRI) to assess the effect of testosterone on pain modulation and related brain circuitry in rats. We hypothesized that testosterone is required for DNIC that leads to efficient pain inhibition by increasing descending pain modulation. Male, female, and orchidectomized (GDX) male rats had a capsaicin injection into the forepaw to induce DNIC and mechanical thresholds were observed on the hindpaw. rsfMRI scans were acquired before and after capsaicin injection to analyze the effects of DNIC on periaqueductal gray (PAG), anterior cingulate cortex (ACC) and nucleus accumbens (NAc) connectivity to the whole brain. The strength of DNIC was higher in males compared to females and GDX males. PAG connectivity with prelimbic cortex (PrL), ACC and insula was stronger in males compared to females and GDX males, whereas females and GDX males had increased connectivity between the right ACC, hippocampus and thalamus. GDX males also showed a stronger connectivity between right ACC and NAc, and right NAc with PrL, ACC, insula and thalamus. Our findings suggest that testosterone plays a key role in reinforcing the endogenous pain inhibitory system, while circuitries related to reward and emotion are more strongly recruited in the absence of testosterone.
Collapse
Affiliation(s)
- Joyce T Da Silva
- Department of Neural and Pain Sciences, School of Dentistry, Center to Advance Chronic Pain Research, University of Maryland, Baltimore, United States.
| | - Youping Zhang
- Department of Neural and Pain Sciences, School of Dentistry, Center to Advance Chronic Pain Research, University of Maryland, Baltimore, United States
| | - Jamila Asgar
- Department of Neural and Pain Sciences, School of Dentistry, Center to Advance Chronic Pain Research, University of Maryland, Baltimore, United States
| | - Jin Y Ro
- Department of Neural and Pain Sciences, School of Dentistry, Center to Advance Chronic Pain Research, University of Maryland, Baltimore, United States
| | - David A Seminowicz
- Department of Neural and Pain Sciences, School of Dentistry, Center to Advance Chronic Pain Research, University of Maryland, Baltimore, United States
| |
Collapse
|
103
|
Yuan XC, Zhu B, Jing XH, Xiong LZ, Wu CH, Gao F, Li HP, Xiang HC, Zhu H, Zhou B, He W, Lin CY, Pan HL, Wang Q, Li M. Electroacupuncture Potentiates Cannabinoid Receptor-Mediated Descending Inhibitory Control in a Mouse Model of Knee Osteoarthritis. Front Mol Neurosci 2018; 11:112. [PMID: 29681797 PMCID: PMC5897736 DOI: 10.3389/fnmol.2018.00112] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/20/2018] [Indexed: 11/13/2022] Open
Abstract
Knee osteoarthritis (KOA) is a highly prevalent, chronic joint disorder, which can lead to chronic pain. Although electroacupuncture (EA) is effective in relieving chronic pain in the clinic, the involved mechanisms remain unclear. Reduced diffuse noxius inhibitory controls (DNIC) function is associated with chronic pain and may be related to the action of endocannabinoids. In the present study, we determined whether EA may potentiate cannabinoid receptor-mediated descending inhibitory control and inhibit chronic pain in a mouse model of KOA. We found that the optimized parameters of EA inhibiting chronic pain were the low frequency and high intensity (2 Hz + 1 mA). EA reversed the reduced expression of CB1 receptors and the 2-arachidonoylglycerol (2-AG) level in the midbrain in chronic pain. Microinjection of the CB1 receptor antagonist AM251 into the ventrolateral periaqueductal gray (vlPAG) can reversed the EA effect on pain hypersensitivity and DNIC function. In addition, CB1 receptors on GABAergic but not glutamatergic neurons are involved in the EA effect on DNIC function and descending inhibitory control of 5-HT in the medulla, thus inhibiting chronic pain. Our data suggest that endocannabinoid (2-AG)-CB1R-GABA-5-HT may be a novel signaling pathway involved in the effect of EA improving DNIC function and inhibiting chronic pain.
Collapse
Affiliation(s)
- Xiao-Cui Yuan
- Department of Neurobiology and Key Laboratory of Neurological Diseases of Ministry of Education, The Institute of Brain Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bing Zhu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiang-Hong Jing
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li-Ze Xiong
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Cai-Hua Wu
- Department of Neurobiology and Key Laboratory of Neurological Diseases of Ministry of Education, The Institute of Brain Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Gao
- Department of Neurobiology and Key Laboratory of Neurological Diseases of Ministry of Education, The Institute of Brain Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong-Ping Li
- Department of Neurobiology and Key Laboratory of Neurological Diseases of Ministry of Education, The Institute of Brain Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong-Chun Xiang
- Department of Neurobiology and Key Laboratory of Neurological Diseases of Ministry of Education, The Institute of Brain Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - He Zhu
- Department of Neurobiology and Key Laboratory of Neurological Diseases of Ministry of Education, The Institute of Brain Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Zhou
- Department of Neurobiology and Key Laboratory of Neurological Diseases of Ministry of Education, The Institute of Brain Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei He
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chuan-You Lin
- Department of Neurobiology and Key Laboratory of Neurological Diseases of Ministry of Education, The Institute of Brain Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui-Lin Pan
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Qiang Wang
- Department of Anesthesiology, First Affiliated Hospital of Xi'an JiaoTong University, Xi'an, China
| | - Man Li
- Department of Neurobiology and Key Laboratory of Neurological Diseases of Ministry of Education, The Institute of Brain Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
104
|
Abstract
Injury to or disease of the nervous system can invoke chronic and sometimes intractable neuropathic pain. Many parallel, interdependent, and time-dependent processes, including neuroimmune interactions at the peripheral, supraspinal, and spinal levels, contribute to the etiology of this "disease of pain." Recent work emphasizes the roles of colony-stimulating factor 1, ATP, and brain-derived neurotrophic factor. Excitatory processes are enhanced, and inhibitory processes are attenuated in the spinal dorsal horn and throughout the somatosensory system. This leads to central sensitization and aberrant processing such that tactile and innocuous thermal information is perceived as pain (allodynia). Processes involved in the onset of neuropathic pain differ from those involved in its long-term maintenance. Opioids display limited effectiveness, and less than 35% of patients derive meaningful benefit from other therapeutic approaches. We thus review promising therapeutic targets that have emerged over the last 20 years, including Na+, K+, Ca2+, hyperpolarization-activated cyclic nucleotide-gated channels, transient receptor potential channel type V1 channels, and adenosine A3 receptors. Despite this progress, the gabapentinoids retain their status as first-line treatments, yet their mechanism of action is poorly understood. We outline recent progress in understanding the etiology of neuropathic pain and show how this has provided insights into the cellular actions of pregabalin and gabapentin. Interactions of gabapentinoids with the α2δ-1 subunit of voltage-gated Ca2+ channels produce multiple and neuron type-specific actions in spinal cord and higher centers. We suggest that drugs that affect multiple processes, rather than a single specific target, show the greatest promise for future therapeutic development.
Collapse
Affiliation(s)
- Sascha R A Alles
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada (S.R.A.A.); and Neuroscience and Mental Health Institute and Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada (P.A.S.)
| | - Peter A Smith
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada (S.R.A.A.); and Neuroscience and Mental Health Institute and Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada (P.A.S.)
| |
Collapse
|
105
|
Meléndez-Gallardo J, Eblen-Zajjur A. Thermo-dependence of noxious mechanical heterotopic stimulation-dependent modulation of the spinal dorsal horn response to somatosensory stimulation. J Integr Neurosci 2018; 17:413-424. [PMID: 29562550 DOI: 10.3233/jin-180076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Despite the frequent clinical hyper- or hypothermia cases, thermal-dependence of the endogenous pain modulation system at the spinal cord is not well understood. We evaluate spinal dorsal horn neuronal network responses during mechanical heterotopic noxious stimuli (HNS) at three different body temperatures (34; 37 or 40°C) by measuring lumbar cord dorsum potentials activated by electrical stimulation of the ipsilateral sural nerve in adult thiopental anesthetized rats. A noxious clamp was applied randomly to the tail, right hindpaw, right forepaw, muzzle and left forepaw. HNS induced a decrease of the N wave amplitude and duration at 37°C. This effect was reduced at 40°C for both amplitude (-18.2% for 37-40°C; P<0.0005) and duration (-16.4% for 37-40°C; P<0.0001). P wave did not show neither amplitude nor duration changes at neither 3 tested temperatures. Clinical range changes of temperature could modify pain sensation, moreover, hyperthermia increases nociceptive sensory input to dorsal horn, and could exacerbate pain sensation in individuals with fever.
Collapse
Affiliation(s)
- J Meléndez-Gallardo
- Centro de Biofísica y Bioquímica del Instituto Venezolano de Investigaciones Científicas, IVIC, Caracas, Venezuela.,Centro de Biofísica y Neurociencias, CBN-UC, Facultad de Ciencias de la Salud, Universidad de Carabobo, Valencia, Venezuela
| | - A Eblen-Zajjur
- Centro de Biofísica y Neurociencias, CBN-UC, Facultad de Ciencias de la Salud, Universidad de Carabobo, Valencia, Venezuela.,Instituto de Ingeniería Biológica y Médica, Facultades de Ingeniería, Medicina y Biología, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, P.O. 7820436, Santiago de Chile, Chile
| |
Collapse
|
106
|
Arendt‐Nielsen L, Morlion B, Perrot S, Dahan A, Dickenson A, Kress H, Wells C, Bouhassira D, Drewes AM. Assessment and manifestation of central sensitisation across different chronic pain conditions. Eur J Pain 2018; 22:216-241. [DOI: 10.1002/ejp.1140] [Citation(s) in RCA: 435] [Impact Index Per Article: 62.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
AbstractDifferent neuroplastic processes can occur along the nociceptive pathways and may be important in the transition from acute to chronic pain and for diagnosis and development of optimal management strategies. The neuroplastic processes may result in gain (sensitisation) or loss (desensitisation) of function in relation to the incoming nociceptive signals. Such processes play important roles in chronic pain, and although the clinical manifestations differ across condition processes, they share some common mechanistic features. The fundamental understanding and quantitative assessment of particularly some of the central sensitisation mechanisms can be translated from preclinical studies into the clinic. The clinical perspectives are implementation of such novel information into diagnostics, mechanistic phenotyping, prevention, personalised treatment, and drug development. The aims of this paper are to introduce and discuss (1) some common fundamental central pain mechanisms, (2) how they may translate into the clinical signs and symptoms across different chronic pain conditions, (3) how to evaluate gain and loss of function using quantitative pain assessment tools, and (4) the implications for optimising prevention and management of pain. The chronic pain conditions selected for the paper are neuropathic pain in general, musculoskeletal pain (chronic low back pain and osteoarthritic pain in particular), and visceral pain (irritable bowel syndrome in particular). The translational mechanisms addressed are local and widespread sensitisation, central summation, and descending pain modulation.SignificanceCentral sensitisation is an important manifestation involved in many different chronic pain conditions. Central sensitisation can be different to assess and evaluate as the manifestations vary from pain condition to pain condition. Understanding central sensitisation may promote better profiling and diagnosis of pain patients and development of new regimes for mechanism based therapy. Some of the mechanisms underlying central sensitisation can be translated from animals to humans providing new options in development of therapies and profiling drugs under development.
Collapse
Affiliation(s)
| | - B. Morlion
- The Leuven Centre for Algology University Hospitals Leuven University of Leuven Belgium
| | - S. Perrot
- INSERM U987 Pain Center Cochin Hospital Paris Descartes University Paris France
| | - A. Dahan
- Department of Anesthesiology Leiden University Medical Center Leiden The Netherlands
| | - A. Dickenson
- Neuroscience Physiology & Pharmacology University College London UK
| | - H.G. Kress
- Department of Special Anaesthesia and Pain Therapy Medizinische Universität/AKH Wien Vienna Austria
| | | | - D. Bouhassira
- INSERM U987 Centre d'Evaluation et de Traitement de la Douleur Hôpital Ambroise Paré Boulogne Billancourt France
| | - A. Mohr Drewes
- Mech‐Sense Department of Gastroenterology and Hepatology Clinical Institute Aalborg University Hospital Aalborg Denmark
| |
Collapse
|
107
|
Involvement of 5-HT 1A/1B receptors in the antinociceptive effect of paracetamol in the rat formalin test. NEUROBIOLOGY OF PAIN 2018; 3:15-21. [PMID: 31194055 PMCID: PMC6550097 DOI: 10.1016/j.ynpai.2018.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/28/2018] [Accepted: 01/29/2018] [Indexed: 12/16/2022]
Abstract
The mechanism of analgesic action of paracetamol (acetominophen) remains still unknown. However, a relationship between serotonergic system and the effect of paracetamol has been previously demonstrated. The serotonin activity in the brainstem is primarily under the control of 5-HT1A somatodendritic receptors, although some data also suggest the involvement of 5-HT1B receptors. To determine whether the 5-HT1A and 5-HT1B receptors are involved in the antinociceptive effect of paracetamol, we evaluated the effect of paracetamol (0.125-1 g/kg i.p.) followed by different antagonists [WAY 100,635 (0.8 mg/kg s.c.) and SB 216,641 (0.8 mg/kg s.c.)] or agonists [8-OH-DPAT (0.125 mg/kg s.c.) and CP 93,129 (0.125 mg/kg s.c.)] of 5-HT1A and 5-HT1B receptors, respectively, in the rat model of formalin-induced pain. We demonstrated that paracetamol administration showed a dose-dependent antinociceptive effect in the formalin test. WAY 100,635 (5-HT1A antagonist) induced an increase in the antinociceptive effect of paracetamol at 250 mg/kg doses. Conversely, 8-OH-DPAT (5-HT1A agonist) decreased the antinociceptive effect of paracetamol at 500-1000 mg/kg doses. However, SB216641 (5-HT1B antagonist) modified weakly the antinociceptive effect of paracetamol at 250 mg/kg doses and CP 93,129 (5-HT1B agonist) not produce a clear effect in the antinociceptive effect of paracetamol. These results suggest that the antinociceptive effect of paracetamol can be enhanced mainly by compounds having 5-HT1A antagonist properties in the formalin test and maybe by 5-HT1B receptors antagonists.
Collapse
|
108
|
|
109
|
Abstract
PURPOSE OF REVIEW Here, we give a topical overview of the ways in which brain processing can alter spinal pain transmission through descending control pathways, and how these change in pain states. We link preclinical findings on the transmitter systems involved and discuss how the monoamines, noradrenaline, 5-hydroxytryptamine (5-HT), and dopamine, can interact through inhibitory and excitatory pathways. RECENT FINDINGS Descending pathways control sensory events and the actions of the neurotransmitters noradrenaline and 5-HT in the dorsal horn of the spinal cord are chiefly implicated in nociception or antinociception according to the receptor that is activated. Abnormalities in descending controls effect central pain processing. Following nerve injury a noradrenaline-mediated control of spinal excitability is lost, whereas its restoration reduces neuropathic hypersensitivity. The story with 5-HT remains more complex because of the myriad of receptors that it can act upon; however the most recent findings support that facilitations may dominate over inhibitions. SUMMARY The monoaminergic system can be manipulated to great effect in the clinic resulting in improved treatment outcomes and is the basis for the actions of the antidepressant drugs in pain. Looking to the future, prediction of treatment responses will possible by monitoring a form of inhibitory descending control for optimized pain relief.
Collapse
|
110
|
Analgesic Mechanisms of Antidepressants for Neuropathic Pain. Int J Mol Sci 2017; 18:ijms18112483. [PMID: 29160850 PMCID: PMC5713449 DOI: 10.3390/ijms18112483] [Citation(s) in RCA: 226] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 11/17/2017] [Accepted: 11/19/2017] [Indexed: 12/16/2022] Open
Abstract
Tricyclic antidepressants and serotonin noradrenaline reuptake inhibitors are used to treat chronic pain, such as neuropathic pain. Why antidepressants are effective for treatment of neuropathic pain and the precise mechanisms underlying their effects, however, remain unclear. The inhibitory effects of these antidepressants for neuropathic pain manifest more quickly than their antidepressive effects, suggesting different modes of action. Recent studies of animal models of neuropathic pain revealed that noradrenaline is extremely important for the inhibition of neuropathic pain. First, increasing noradrenaline in the spinal cord by reuptake inhibition directly inhibits neuropathic pain through α2-adrenergic receptors. Second, increasing noradrenaline acts on the locus coeruleus and improves the function of an impaired descending noradrenergic inhibitory system. Serotonin and dopamine may reinforce the noradrenergic effects to inhibit neuropathic pain. The mechanisms of neuropathic pain inhibition by antidepressants based mainly on experimental findings from animal models of neuropathic pain are discussed in this review.
Collapse
|
111
|
Pickering G, Martin E, Tiberghien F, Delorme C, Mick G. Localized neuropathic pain: an expert consensus on local treatments. Drug Des Devel Ther 2017; 11:2709-2718. [PMID: 29066862 PMCID: PMC5604568 DOI: 10.2147/dddt.s142630] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Pain localization is one of the hallmarks for the choice of first-line treatment in neuropathic pain. This literature review has been conducted to provide an overview of the current knowledge regarding the etiology and pathophysiology of localized neuropathic pain (LNP), its assessment and the existing topical pharmacological treatments. MATERIALS AND METHODS Literature review was performed using Medline from 2010 to December 2016, and all studies involving LNP and treatments were examined. A multidisciplinary expert panel of five pain specialists in this article reports a consensus on topical approaches that may be recommended to alleviate LNP and on their advantages in clinical practice. RESULTS Successive international recommendations have included topical 5% lidocaine and 8% capsaicin for LNP treatment. The expert panel considers that these compounds can be a first-line treatment for LNP, especially in elderly patients and patients with comorbidities and polypharmacy. Regulatory LNP indications should cover the whole range of LNP and not be restricted to specific etiologies or sites. Precautions for the use of plasters must be followed cautiously. CONCLUSION Although there is a real need for more randomized controlled trials for both drugs, publications clearly demonstrate excellent risk/benefit ratios, safety, tolerance and continued efficacy throughout long-term treatment. A major advantage of both plasters is that they have proven efficacy and may reduce the risk of adverse events such as cognitive impairment, confusion, somnolence, dizziness and constipation that are often associated with systemic neuropathic pain treatment and reduce the quality of life. Topical modalities also may be used in combination with other drugs and analgesics with limited drug-drug interactions.
Collapse
Affiliation(s)
- Gisèle Pickering
- Centre de Pharmacologie Clinique, CHU Clermont-Ferrand
- Inserm, CIC 1405, Neurodol 1107
- Laboratoire de Pharmacologie, Faculté de Médecine, Clermont Université, Clermont-Ferrand
| | - Elodie Martin
- Centre de Pharmacologie Clinique, CHU Clermont-Ferrand
- Laboratoire de Pharmacologie, Faculté de Médecine, Clermont Université, Clermont-Ferrand
| | - Florence Tiberghien
- Centre d’Evaluation et de Traitement de la Douleur, CHU Jean Minjoz, Besançon
| | | | - Gérard Mick
- Unité d’Evaluation et Traitement de la Douleur, Voiron
- Laboratoire AGEIS, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
112
|
Lopes LCG, Galhardoni R, Silva V, Jorge FMH, Yeng LT, Callegaro D, Chadi G, Teixeira MJ, Ciampi de Andrade D. Beyond weakness: Characterization of pain, sensory profile and conditioned pain modulation in patients with motor neuron disease: A controlled study. Eur J Pain 2017; 22:72-83. [PMID: 28833988 DOI: 10.1002/ejp.1091] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Motor neuron diseases (MND) represent a group of disorders that evolve with inexorable muscle weakness and medical management is based on symptom control. However, deeper characterization of non-motor symptoms in these patients have been rarely reported. METHODS This cross-sectional study aimed to describe non-motor symptoms in MND and their impact on quality of life and functional status, with a focus on pain and sensory changes. Eighty patients (31 females, 55.7 ± 12.9 years old) with MND underwent a neurological examination, pain, mood, catastrophizing and psychophysics assessments [quantitative sensory testing (QST) and conditioned pain modulation (CPM)], and were compared to sex- and age-matched healthy controls (HC). RESULTS Chronic pain was present in 46% of patients (VAS =5.18 ± 2.0). Pain of musculoskeletal origin occurred in 40.5% and was mainly located in the head/neck (51%) and lower back (35%). Neuropathic pain was not present in this sample. Compared to HC, MND patients had a lower cold detection threshold (p < 0.002), and significantly lower CPM scores (4.9 ± 0.2% vs. 22.1 ± 0.2%, p = 0.012). QST/CPM results did not differ between MND patients with and without pain. Pain intensity was statistically correlated with anxiety, depression and catastrophism, and spasticity scores were inversely correlated with CPM (ρ = -0.30, p = 0.026). CONCLUSIONS Pain is frequently reported by patients with MNDs. Somatosensory and CPM changes exist in MNDs and may be related to the neurodegenerative nature of the disease. Further studies should investigate the most appropriate treatment strategies for these patients. SIGNIFICANCE We report a comprehensive evaluation of pain and sensory abnormalities in motor neuron disease (MND) patients. We assessed the different pain syndromes present in MND with validated tools, and described the QST and conditioned pain modulation profiles in a controlled design.
Collapse
Affiliation(s)
- L C G Lopes
- Pain Center, Instituto do Câncer do Estado de São Paulo Octavio Frias de Oliveira, São Paulo, Brazil.,Neurology Division, Department of Neurology, São Paulo State University (Unesp) Medical School, Botucatu, Brazil
| | - R Galhardoni
- Pain Center, Department of Neurology, University of São Paulo, Brazil.,Transcranial Magnetic Stimulation Laboratory, Psychiatry Institute, University of São Paulo, Brazil
| | - V Silva
- Transcranial Magnetic Stimulation Laboratory, Psychiatry Institute, University of São Paulo, Brazil
| | - F M H Jorge
- Neuroregeneration Center and ALS Brazil Project, Department of Neurology, University of São Paulo School of Medicine, Brazil
| | - L T Yeng
- Instituto de Ortopedia e Traumatologia, Division of Physical Medicine and Rehabilitation, University of São Paulo, Brazil
| | - D Callegaro
- Neuroimmunology Group, Department of Neurology, University of São Paulo, Brazil
| | - G Chadi
- Neuroregeneration Center and ALS Brazil Project, Department of Neurology, University of São Paulo School of Medicine, Brazil
| | - M J Teixeira
- Pain Center, Instituto do Câncer do Estado de São Paulo Octavio Frias de Oliveira, São Paulo, Brazil.,Pain Center, Department of Neurology, University of São Paulo, Brazil.,Transcranial Magnetic Stimulation Laboratory, Psychiatry Institute, University of São Paulo, Brazil
| | - D Ciampi de Andrade
- Pain Center, Instituto do Câncer do Estado de São Paulo Octavio Frias de Oliveira, São Paulo, Brazil.,Pain Center, Department of Neurology, University of São Paulo, Brazil.,Transcranial Magnetic Stimulation Laboratory, Psychiatry Institute, University of São Paulo, Brazil
| |
Collapse
|
113
|
Martins I, Tavares I. Reticular Formation and Pain: The Past and the Future. Front Neuroanat 2017; 11:51. [PMID: 28725185 PMCID: PMC5497058 DOI: 10.3389/fnana.2017.00051] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/19/2017] [Indexed: 01/10/2023] Open
Abstract
The involvement of the reticular formation (RF) in the transmission and modulation of nociceptive information has been extensively studied. The brainstem RF contains several areas which are targeted by spinal cord afferents conveying nociceptive input. The arrival of nociceptive input to the RF may trigger alert reactions which generate a protective/defense reaction to pain. RF neurons located at the medulla oblongata and targeted by ascending nociceptive information are also involved in the control of vital functions that can be affected by pain, namely cardiovascular control. The RF contains centers that belong to the pain modulatory system, namely areas involved in bidirectional balance (decrease or enhancement) of pain responses. It is currently accepted that the imbalance of pain modulation towards pain facilitation accounts for chronic pain. The medullary RF has the peculiarity of harboring areas involved in bidirectional pain control namely by the existence of specific neuronal populations involved in antinociceptive or pronociceptive behavioral responses, namely at the rostroventromedial medulla (RVM) and the caudal ventrolateral medulla (VLM). Furthermore the dorsal reticular nucleus (also known as subnucleus reticularis dorsalis; DRt) may enhance nociceptive responses, through a reverberative circuit established with spinal lamina I neurons and inhibit wide-dynamic range (WDR) neurons of the deep dorsal horn. The components of the triad RVM-VLM-DRt are reciprocally connected and represent a key gateway for top-down pain modulation. The RVM-VLM-DRt triad also represents the neurobiological substrate for the emotional and cognitive modulation of pain, through pathways that involve the periaqueductal gray (PAG)-RVM connection. Collectively, we propose that the RVM-VLM-DRt triad represents a key component of the “dynamic pain connectome” with special features to provide integrated and rapid responses in situations which are life-threatening and involve pain. The new available techniques in neurobiological studies both in animal and human studies are producing new and fascinating data which allow to understand the complex role of the RF in pain modulation and its integration with several body functions and also how the RF accounts for chronic pain.
Collapse
Affiliation(s)
- Isabel Martins
- Departamento de Biomedicina, Faculdade de Medicina do PortoPorto, Portugal.,Unidade de Biologia Experimental, Faculdade de Medicina do Porto, Universidade do PortoPorto, Portugal.,Instituto de Biologia Celular e Molecular (IBMC), Universidade do PortoPorto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S)Porto, Portugal
| | - Isaura Tavares
- Departamento de Biomedicina, Faculdade de Medicina do PortoPorto, Portugal.,Unidade de Biologia Experimental, Faculdade de Medicina do Porto, Universidade do PortoPorto, Portugal.,Instituto de Biologia Celular e Molecular (IBMC), Universidade do PortoPorto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S)Porto, Portugal
| |
Collapse
|
114
|
Nagasaka K, Yamanaka K, Ogawa S, Takamatsu H, Higo N. Brain activity changes in a macaque model of oxaliplatin-induced neuropathic cold hypersensitivity. Sci Rep 2017; 7:4305. [PMID: 28655928 PMCID: PMC5487329 DOI: 10.1038/s41598-017-04677-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 05/18/2017] [Indexed: 01/25/2023] Open
Abstract
The antineoplastic agent oxaliplatin induces a painful peripheral neuropathy characterized by an acute cold hypersensitivity. There is a lack of effective treatments to manage oxaliplatin-induced cold hypersensitivity which is due, in part, to a lack of understanding of the pathophysiology of oxaliplatin-induced cold hypersensitivity. Thus, brain activity in oxaliplatin-treated macaques was examined using functional magnetic resonance imaging (fMRI). Oxaliplatin treatment reduced tail withdrawal latency to a cold (10 °C) stimulus, indicating cold hypersensitivity and increased activation in the secondary somatosensory cortex (SII) and the anterior insular cortex (Ins) was observed. By contrast, no activation was observed in these areas following cold stimulation in untreated macaques. Systemic treatment with an antinociceptive dose of the serotonergic-noradrenergic reuptake inhibitor duloxetine decreased SII and Ins activity. Pharmacological inactivation of SII and Ins activity by microinjection of the GABAA receptor agonist muscimol increased tail withdrawal latency. The current findings indicate that SII/Ins activity is a potential mediator of oxaliplatin-induced cold hypersensitivity.
Collapse
Affiliation(s)
- Kazuaki Nagasaka
- Human Informatics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8568, Japan.,Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| | - Kazunori Yamanaka
- Pharmacology Group, Hamamatsu Pharma Research, Inc., Hamamatsu, Shizuoka, 431-2103, Japan
| | - Shinya Ogawa
- Pharmacology Group, Hamamatsu Pharma Research, Inc., Hamamatsu, Shizuoka, 431-2103, Japan
| | - Hiroyuki Takamatsu
- Pharmacology Group, Hamamatsu Pharma Research, Inc., Hamamatsu, Shizuoka, 431-2103, Japan
| | - Noriyuki Higo
- Human Informatics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8568, Japan.
| |
Collapse
|
115
|
Vo L, Drummond PD. Effect of combined opioid receptor and α 2-adrenoceptor blockade on anxiety and electrically evoked startle responses. J Psychopharmacol 2017; 31:722-729. [PMID: 28168894 DOI: 10.1177/0269881116689259] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The R3 component of the electrically evoked blink reflex may form part of a startle reaction. Acoustic startle responses are augmented by yohimbine, an α2-adrenoceptor antagonist that blocks α2-autoreceptors, and are potentiated by opioid receptor blockade. To investigate these influences on electrically evoked startle responses, 16 mg yohimbine, with (16 participants) or without 50 mg naltrexone (23 participants), was administered in separate double-blind placebo-controlled cross-over experiments. In each experiment, R3 (a probable component of the startle response) was examined before and after high-frequency electrical stimulation of the forearm, a procedure that initiates inhibitory pain controls. Anxiety and somatic symptoms were greater after yohimbine than placebo, and were potentiated by naltrexone. Pain ratings for the electrically evoked startle stimuli decreased after high-frequency electrical stimulation in the placebo session but remained stable after drug administration. Yohimbine with naltrexone, but not yohimbine alone, also blocked an inhibitory effect of high-frequency electrical stimulation on electrically evoked sharp sensations and R3. Together, the findings suggest that adding naltrexone to yohimbine potentiated anxiety and blocked inhibitory influences of high-frequency electrical stimulation on electrically evoked sensations and startle responses. Thus, opioid peptides could reduce activity in nociceptive and startle-reflex pathways, or inhibit crosstalk between these pathways. Failure of this inhibitory opioid influence might be important in chronically painful conditions that are aggravated by startle stimuli.
Collapse
Affiliation(s)
- Lechi Vo
- Centre for Research on Chronic Pain and Inflammatory Diseases, Murdoch University, Perth, WA, Australia
| | - Peter D Drummond
- Centre for Research on Chronic Pain and Inflammatory Diseases, Murdoch University, Perth, WA, Australia
| |
Collapse
|
116
|
Bannister K, Dickenson AH. The plasticity of descending controls in pain: translational probing. J Physiol 2017; 595:4159-4166. [PMID: 28387936 DOI: 10.1113/jp274165] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/15/2017] [Indexed: 01/26/2023] Open
Abstract
Descending controls, comprising pathways that originate in midbrain and brainstem regions and project onto the spinal cord, have long been recognised as key links in the multiple neural networks that interact to produce the overall pain experience. There is clear evidence from preclinical and clinical studies that both peripheral and central sensitisation play important roles in determining the level of pain perceived. Much emphasis has been put on spinal cord mechanisms in central excitability, but it is now becoming clear that spinal hyperexcitability can be regulated by descending pathways from the brain that originate from predominantly noradrenergic and serotonergic systems. One pain can inhibit another. In this respect diffuse noxious inhibitory controls (DNIC) are a unique form of endogenous descending inhibitory pathway since they can be easily evoked and quantified in animals and man. The spinal pharmacology of pathways that subserve DNIC are complicated; in the normal situation these descending controls produce a final inhibitory effect through the actions of noradrenaline at spinal α2 -adrenoceptors, although serotonin, acting on facilitatory spinal 5-HT3 receptors, influences the final expression of DNIC also. These descending pathways are altered in neuropathy and the effects of excess serotonin may now become inhibitory through activation of spinal 5-HT7 receptors. Conditioned pain modulation (CPM) is the human counterpart of DNIC and requires a descending control also. Back and forward translational studies between DNIC and CPM, gauged between bench and bedside, are key for the development of analgesic therapies that exploit descending noradrenergic and serotonergic control pathways.
Collapse
Affiliation(s)
| | - A H Dickenson
- University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
117
|
Bannister K, Kucharczyk M, Dickenson AH. Hopes for the Future of Pain Control. Pain Ther 2017; 6:117-128. [PMID: 28536900 PMCID: PMC5693804 DOI: 10.1007/s40122-017-0073-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Indexed: 12/26/2022] Open
Abstract
Here we aim to present an accessible review of the pharmacological targets for pain management, and succinctly discuss the newest trends in pain therapy. A key task for current pain pharmacotherapy is the identification of receptors and channels orchestrating nociception. Notwithstanding peripheral alterations in the receptors and channels following pathophysiological events, the modulatory mechanisms in the central nervous system are also fundamental to the regulation of pain perception. Bridging preclinical and clinical studies of peripheral and central components of pain modulation, we present the different types of pain and relate these to pharmacological interventions. We firstly highlight the roles of several peripheral nociceptors, such as NGF, CGRP, sodium channels, and TRP-family channels that may become novel targets for therapies. In the central nervous system, the roles of calcium channels and gabapentinoids as well as NMDA receptors in generating excitability are covered including ideas on central sensitization. We then turn to central modulatory systems and discuss opioids and monoamines. We aim to explain the importance of central sensitization and the dialogue of the spinal circuits with the brain descending modulatory controls before discussing a mechanism-based effectiveness of antidepressants in pain therapy and their potential to modulate the descending controls. Emphasizing the roles of conditioned pain modulation and its animal's equivalent, diffuse noxious inhibitory controls, we discuss these unique descending modulations as a potential tool for understanding mechanisms in patients suffering from pain. Mechanism-based therapy is the key to picking the correct treatments and recent clinical studies using sensory symptoms of patients as surrogates for underlying mechanisms can be used to subgroup patients and reveal actions of drugs that may be lost when studying heterogenous groups of patients. Key advances in the understanding of basic pain principles will impact our thinking about therapy targets. The complexity of pain syndromes will require tailored pharmacological drugs, often in combination or through drugs with more than one action, and often psychotherapy, to fully control pain.
Collapse
Affiliation(s)
- Kirsty Bannister
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Mateusz Kucharczyk
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Anthony H Dickenson
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| |
Collapse
|
118
|
Abstract
Aim To provide an overview of mechanisms underlying craniofacial pain; to highlight peripheral and central adaptations that may promote chronification of pain in craniofacial pain states such as migraine and temporomandibular disorders (TMD). Background Pain is a common symptom associated with disorders involving craniofacial tissues including the teeth and their supporting structures, the temporomandibular joint and the muscles of the head. Most acute painful craniofacial conditions are easily recognized and well managed, but others, especially those that are chronic (e.g., migraine, TMD and trigeminal neuropathies), present clinical challenges. Preclinical studies have provided substantial information about the anatomical and physiological mechanisms related to the initiation and modulation of nociceptive signals in the trigeminal system. While knowledge of the mechanisms underlying chronic craniofacial pain remains limited, both clinical and preclinical investigations suggest that changes in afferent inputs to the brain as well as in brain structure and modulatory pathways occur in chronic pain. Collectively, these changes result in amplification of nociception that promotes and sustains craniofacial chronic pain states. Conclusions The increased understanding gained of the physiological and pathological processing of nociception in the trigeminal system has provided new perspectives for the mechanistic understanding of acute craniofacial pain conditions and the peripheral and central adaptations that are related to pain chronification. Such knowledge may contribute to improvements in currently available treatments as well as to the development of novel analgesic therapies.
Collapse
Affiliation(s)
- Juliana Geremias Chichorro
- 1 Departamento de Farmacologia, Universidade Federal do Parana - UFPR Setor de Ciências Biológicas, Curitiba, PR, Brasil
| | - Frank Porreca
- 2 Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - Barry Sessle
- 3 Department of Oral Physiology Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.,4 Department of Physiology Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
119
|
Fidanza F, Varanini M, Ciaramella A, Carli G, Santarcangelo EL. Pain modulation as a function of hypnotizability: Diffuse noxious inhibitory control induced by cold pressor test vs explicit suggestions of analgesia. Physiol Behav 2017; 171:135-141. [PMID: 28082248 DOI: 10.1016/j.physbeh.2017.01.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/07/2017] [Accepted: 01/08/2017] [Indexed: 01/20/2023]
Abstract
The aim of the present study was to compare the effects of explicit suggestions of analgesia and of the activation of the Diffuse Noxious Inhibitory Control (DNIC) by cold pressor test on pain perception and heart rate in healthy participants with high (highs, N=18), low (lows, N=18) and intermediate scores of hypnotizability (mediums, N=15) out of hypnosis. Pain reports and the stimulus-locked heart rate changes induced by electrical nociceptive stimulation of the left hand were studied in the absence of concomitant stimuli (Control), during suggestions of analgesia (SUGG, glove analgesia) and during cold pressor test used as a conditioning stimulus to the right hand (DNIC, water temperature=10-12°C) in the REAL session. Participants were submitted also to a SHAM session in which the DNIC water temperature was 30°C and the suggestions for analgesia were substituted with weather forecast information. Both suggestions and DNIC reduced pain significantly in all subjects; however, the percentage of reduction was significantly larger in highs (pain intensity=55% of the control condition) than in mediums (70%) and lows (80%) independently of the REAL/SHAM session and of the specific pain manipulation. Heart rate was not modulated consistently with pain experience. Findings indicate that both suggestions and DNIC influence pain experience as a function of hypnotizability and suggest that both sensory and cognitive mechanisms co-operate in DNIC induced analgesia.
Collapse
Affiliation(s)
- Fabrizia Fidanza
- Dept. Surgical, Medical, Molecular and Critical Area, University of Pisa, Pisa, Italy
| | - Maurizio Varanini
- Institute of Clinical Physiology, National Council of Research, Pisa, Italy
| | | | - Giancarlo Carli
- Dept. Medicine, Surgery and Neuroscience, Siena University, Siena, Italy
| | - Enrica L Santarcangelo
- Dept. Translational Research and New Technologies in Medicine and Surgery, Pisa University, Pisa, Italy.
| |
Collapse
|
120
|
Cimolai N. An Overview of Yohimbine in Sports Medicine. SUSTAINED ENERGY FOR ENHANCED HUMAN FUNCTIONS AND ACTIVITY 2017:251-260. [DOI: 10.1016/b978-0-12-805413-0.00015-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
121
|
Bannister K, Lockwood S, Goncalves L, Patel R, Dickenson AH. An investigation into the inhibitory function of serotonin in diffuse noxious inhibitory controls in the neuropathic rat. Eur J Pain 2016; 21:750-760. [PMID: 27891703 DOI: 10.1002/ejp.979] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2016] [Indexed: 01/09/2023]
Abstract
BACKGROUND Following neuropathy α2-adrenoceptor-mediated diffuse noxious inhibitory controls (DNIC), whereby a noxious conditioning stimulus inhibits the activity of spinal wide dynamic range (WDR) neurons, are abolished, and spinal 5-HT7 receptor densities are increased. Here, we manipulate spinal 5-HT content in spinal nerve ligated (SNL) animals and investigate which 5-HT receptor mediated actions predominate. METHODS Using in vivo electrophysiology we recorded WDR neuronal responses to von frey filaments applied to the hind paw before, and concurrent to, a noxious ear pinch (the conditioning stimulus) in isoflurane-anaesthetised rats. The expression of DNIC was quantified as a reduction in WDR neuronal firing in the presence of conditioning stimulus and was investigated in SNL rats following spinal application of (1) selective serotonin reuptake inhibitors (SSRIs) citalopram or fluoxetine, or dual application of (2) SSRI plus 5-HT7 receptor antagonist SB269970, or (3) SSRI plus α2 adrenoceptor antagonist atipamezole. RESULTS DNIC were revealed in SNL animals following spinal application of SSRI, but this effect was abolished upon joint application of SSRI plus SB269970 or atipamezole. CONCLUSIONS We propose that in SNL animals the inhibitory actions (quantified as the presence of DNIC) of excess spinal 5-HT (presumed present following application of SSRI) were mediated via 5-HT7 receptors. The anti-nociception depends upon an underlying tonic noradrenergic inhibitory tone via the α2-adrenoceptor. SIGNIFICANCE Following neuropathy enhanced spinal serotonin availability switches the predominant spinal 5-HT receptor-mediated actions but also alters noradrenergic signalling. We highlight the therapeutic complexity of SSRIs and monoamine modulators for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- K Bannister
- Department of Neuroscience, Physiology and Pharmacology, University College London, UK
| | - S Lockwood
- Department of Neuroscience, Physiology and Pharmacology, University College London, UK
| | - L Goncalves
- Department of Neuroscience, Physiology and Pharmacology, University College London, UK
| | - R Patel
- Department of Neuroscience, Physiology and Pharmacology, University College London, UK
| | - A H Dickenson
- Department of Neuroscience, Physiology and Pharmacology, University College London, UK
| |
Collapse
|
122
|
Vo L, Hood S, Drummond PD. Involvement of Opioid Receptors and α2-Adrenoceptors in Inhibitory Pain Modulation Processes: A Double-Blind Placebo-Controlled Crossover Study. THE JOURNAL OF PAIN 2016; 17:1164-1173. [DOI: 10.1016/j.jpain.2016.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/27/2016] [Accepted: 07/27/2016] [Indexed: 12/25/2022]
|
123
|
Langford RM, Knaggs R, Farquhar-Smith P, Dickenson AH. Is tapentadol different from classical opioids? A review of the evidence. Br J Pain 2016; 10:217-221. [PMID: 27867511 DOI: 10.1177/2049463716657363] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Tapentadol is a single molecule able to deliver analgesia by two distinct mechanisms, a feature which differentiates it from many other analgesics. Pre-clinical data demonstrate two mechanisms of action: mu-opioid receptor agonist activity and noradrenaline re-uptake inhibition. From these, one may predict that tapentadol would be applicable across a broad spectrum of pain from nociceptive to neuropathic. The evidence in animal models suggests that norepinephrine re-uptake inhibition (NRI) is a key mechanism and may even predominate over opioid actions in chronic (and especially neuropathic) pain states, reinforcing that tapentadol is different to classical opioids and may, therefore, be an a priori choice for the treatment of neuropathic and mixed pain. The clinical studies and subsequent practice experience and surveillance support the concept of opioid and non-opioid mechanisms of action. The reduced incidence of some of the typical opioid-induced side effects, compared to equianalgesic doses of classical opioids, supports the hypothesis that tapentadol analgesia is only partially mediated by opioid agonist mechanisms. Both the pre-clinical and clinical profiles appear to be differentiated from those of classical opioids.
Collapse
|
124
|
|
125
|
Abstract
BACKGROUND The use of psychotropic medications, particularly antidepressants, is common in patients with inflammatory bowel disease (IBD) in spite of a lack of their robust efficacy in this population. This review provides an overview of the use trends of different classes of antidepressant and anti-anxiety medication and their effects on mood, nervous system function, gastrointestinal physiology and immunity drawing from the literature available in the general population, other medical conditions, and when available, patients with IBD. It also covers the evidence base for the actions, efficacy, and potential complications of antidepressants organized by different classes. METHODS We conducted a PubMed search of articles relating the different drug classes probed to the terms above in different populations of interest. All types of articles were accepted including case reports and series, open and randomized trials, reviews, and expert opinion. We also examined the reference lists of the publications found. RESULTS Selective serotonin reuptake inhibitors (SSRIs) and tricyclic antidepressants (TCAs) are the most commonly prescribed agents for anxiety and depression in patients with IBD, though their efficacy for these conditions in the general population are mild to moderate at best. SSRIs are generally well tolerated, though at higher doses, they, like most antidepressant classes, can be associated with activation, serotonergic syndrome, and increased suicidal ideation. TCAs have many more serious side effects but have some shown efficacy for functional GI symptoms. A newer class, the serotonin noradrenergic reuptake inhibitors (SNRIs), can be effective for refractory depression, anxiety and chronic pain syndromes with a side effect profile similar to both SSRIs and more mild manifestations of TCAs. Mirtazapine has moderate efficacy for depression if sedation and weight gain side effects are tolerated and some small support for use in nausea and vomiting. Bupropion targets dopamine and noradrenaline reuptake and has moderate efficacy for depression, and some small support for use in fatigue and smoking cessation. Buspirone has an indication for generalized anxiety disorder though studies show only a minimal benefit. It has some growing evidence for use in functional dyspepsia. Most of these agents have physiological effects on the brain, immune system, and gastrointestinal tract (with the exception of bupropion) hence their therapeutic and side effects manifested in these systems. CONCLUSION Antidepressant medications are frequently prescribed for depression, anxiety disorders, and chronic pain syndromes, but overall support for their efficacy is modest at best. Psychological interventions have growing support for having much more robust effects without the side effects of antidepressants and should be considered first-line treatment or at least an adjunct to psychotropic medications for these conditions.
Collapse
|
126
|
Patel R, Dickenson AH. Mechanisms of the gabapentinoids and α 2 δ-1 calcium channel subunit in neuropathic pain. Pharmacol Res Perspect 2016; 4:e00205. [PMID: 27069626 PMCID: PMC4804325 DOI: 10.1002/prp2.205] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/17/2015] [Accepted: 11/19/2015] [Indexed: 12/18/2022] Open
Abstract
The gabapentinoid drugs gabapentin and pregabalin are key front‐line therapies for various neuropathies of peripheral and central origin. Originally designed as analogs of GABA, the gabapentinoids bind to the α2δ‐1 and α2δ‐2 auxiliary subunits of calcium channels, though only the former has been implicated in the development of neuropathy in animal models. Transgenic approaches also identify α2δ‐1 as key in mediating the analgesic effects of gabapentinoids, however the precise molecular mechanisms remain unclear. Here we review the current understanding of the pathophysiological role of the α2δ‐1 subunit, the mechanisms of analgesic action of gabapentinoid drugs and implications for efficacy in the clinic. Despite widespread use, the number needed to treat for gabapentin and pregabalin averages from 3 to 8 across neuropathies. The failure to treat large numbers of patients adequately necessitates a novel approach to treatment selection. Stratifying patients by sensory profiles may imply common underlying mechanisms, and a greater understanding of these mechanisms could lead to more direct targeting of gabapentinoids.
Collapse
Affiliation(s)
- Ryan Patel
- Department of Neuroscience, Physiology and Pharmacology University College London Gower Street London WC1E 6BT UK
| | - Anthony H Dickenson
- Department of Neuroscience, Physiology and Pharmacology University College London Gower Street London WC1E 6BT UK
| |
Collapse
|
127
|
Tamano R, Ishida M, Asaki T, Hasegawa M, Shinohara S. Effect of spinal monoaminergic neuronal system dysfunction on pain threshold in rats, and the analgesic effect of serotonin and norepinephrine reuptake inhibitors. Neurosci Lett 2016; 615:78-82. [DOI: 10.1016/j.neulet.2016.01.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/15/2016] [Accepted: 01/16/2016] [Indexed: 01/24/2023]
|