101
|
Marlétaz F, Le Parco Y. Careful with understudied phyla: the case of chaetognath. BMC Evol Biol 2008; 8:251. [PMID: 18798978 PMCID: PMC2566580 DOI: 10.1186/1471-2148-8-251] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Accepted: 09/17/2008] [Indexed: 11/10/2022] Open
Abstract
Background A recent study by Barthélémy et al. described a set of ribosomal protein (RP) genes extracted from a collection of expressed sequence tags (ESTs) of the chaetognath (arrow worm) Spadella cephaloptera. Three main conclusions were drawn in this paper. First, the authors stated that RP genes present paralogous copies, which have arisen through allopolyploidization. Second, they reported two alternate nucleotide stretches conserved within the 5' untranslated regions (UTR) of multiple ribosomal cDNAs and they suggested that these motifs are involved in the differential transcriptional regulation of paralogous RP genes. Third, they claimed that the phylogenetic position of chaetognaths could not be accurately inferred from a RP dataset because of the persistence of two problems: a long branch attraction (LBA) artefact and a compositional bias. Results We reconsider here the results described in Barthélémy et al. and question the evidence on which they are based. We find that their evidence for paralogous copies relies on faulty PCR experiments since they attempted to amplify DNA fragments absent from the genomic template. Our PCR experiments proved that the conserved motifs in 5'UTRs that they targeted in their amplifications are added post-transcriptionally by a trans-splicing mechanism. Then, we showed that the lack of phylogenetic resolution observed by these authors is due to limited taxon sampling and not to LBA or to compositional bias. A ribosomal protein dataset thus fully supports the position of chaetognaths as sister group of all other protostomes. This reinterpretation demonstrates that the statements of Barthélémy et al. should be taken with caution because they rely on inaccurate evidence. Conclusion The genomic study of an unconventional model organism is a meaningful approach to understand the evolution of animals. However, the previous study came to incorrect conclusions on the basis of experiments that omitted validation procedures.
Collapse
Affiliation(s)
- Ferdinand Marlétaz
- Station Marine d'Endoume, CNRS UMR 6540 DIMAR, Centre d'Océanologie de Marseille, Université de Méditerranée, Marseille, France.
| | | |
Collapse
|
102
|
Telford MJ, Bourlat SJ, Economou A, Papillon D, Rota-Stabelli O. The evolution of the Ecdysozoa. Philos Trans R Soc Lond B Biol Sci 2008; 363:1529-37. [PMID: 18192181 DOI: 10.1098/rstb.2007.2243] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ecdysozoa is a clade composed of eight phyla: the arthropods, tardigrades and onychophorans that share segmentation and appendages and the nematodes, nematomorphs, priapulids, kinorhynchs and loriciferans, which are worms with an anterior proboscis or introvert. Ecdysozoa contains the vast majority of animal species and there is a great diversity of body plans among both living and fossil members. The monophyly of the clade has been called into question by some workers based on analyses of whole genome datasets. We review the evidence that now conclusively supports the unique origin of these phyla. Relationships within Ecdysozoa are also controversial and we discuss the molecular and morphological evidence for a number of monophyletic groups within this superphylum.
Collapse
|
103
|
Marlétaz F, Gilles A, Caubit X, Perez Y, Dossat C, Samain S, Gyapay G, Wincker P, Le Parco Y. Chaetognath transcriptome reveals ancestral and unique features among bilaterians. Genome Biol 2008; 9:R94. [PMID: 18533022 PMCID: PMC2481426 DOI: 10.1186/gb-2008-9-6-r94] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 03/03/2008] [Accepted: 06/04/2008] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The chaetognaths (arrow worms) have puzzled zoologists for years because of their astonishing morphological and developmental characteristics. Despite their deuterostome-like development, phylogenomic studies recently positioned the chaetognath phylum in protostomes, most likely in an early branching. This key phylogenetic position and the peculiar characteristics of chaetognaths prompted further investigation of their genomic features. RESULTS Transcriptomic and genomic data were collected from the chaetognath Spadella cephaloptera through the sequencing of expressed sequence tags and genomic bacterial artificial chromosome clones. Transcript comparisons at various taxonomic scales emphasized the conservation of a core gene set and phylogenomic analysis confirmed the basal position of chaetognaths among protostomes. A detailed survey of transcript diversity and individual genotyping revealed a past genome duplication event in the chaetognath lineage, which was, surprisingly, followed by a high retention rate of duplicated genes. Moreover, striking genetic heterogeneity was detected within the sampled population at the nuclear and mitochondrial levels but cannot be explained by cryptic speciation. Finally, we found evidence for trans-splicing maturation of transcripts through splice-leader addition in the chaetognath phylum and we further report that this processing is associated with operonic transcription. CONCLUSION These findings reveal both shared ancestral and unique derived characteristics of the chaetognath genome, which suggests that this genome is likely the product of a very original evolutionary history. These features promote chaetognaths as a pivotal model for comparative genomics, which could provide new clues for the investigation of the evolution of animal genomes.
Collapse
Affiliation(s)
- Ferdinand Marlétaz
- CNRS UMR 6540 DIMAR, Station Marine d'Endoume, Centre d'Océanologie de Marseille, Chemin de la Batterie des Lions, 13007, Marseille, France
- Université de la Méditerranée Aix-Marseille II, Bd Charles Livon, 13284, Marseille, France
| | - André Gilles
- Université de Provence Aix-Marseille I, place Victor-Hugo, 13331, Marseille, France
- CNRS UMR 6116 IMEP, Centre St Charles, place Victor-Hugo, 13331, Marseille, France
| | - Xavier Caubit
- Université de la Méditerranée Aix-Marseille II, Bd Charles Livon, 13284, Marseille, France
- CNRS UMR 6216, IBDML, Campus de Luminy, Route Léon Lachamp, 13288, Marseille, France
| | - Yvan Perez
- Université de Provence Aix-Marseille I, place Victor-Hugo, 13331, Marseille, France
- CNRS UMR 6116 IMEP, Centre St Charles, place Victor-Hugo, 13331, Marseille, France
| | - Carole Dossat
- Genoscope (CEA), rue Gaston Crémieux, BP5706, 91057 Evry, France
- CNRS, UMR 8030, rue Gaston Crémieux, BP5706, 91057 Evry, France
- Université d'Evry, Boulevard François Mitterrand, 91025, Evry, France
| | - Sylvie Samain
- Genoscope (CEA), rue Gaston Crémieux, BP5706, 91057 Evry, France
- CNRS, UMR 8030, rue Gaston Crémieux, BP5706, 91057 Evry, France
- Université d'Evry, Boulevard François Mitterrand, 91025, Evry, France
| | - Gabor Gyapay
- Genoscope (CEA), rue Gaston Crémieux, BP5706, 91057 Evry, France
- CNRS, UMR 8030, rue Gaston Crémieux, BP5706, 91057 Evry, France
- Université d'Evry, Boulevard François Mitterrand, 91025, Evry, France
| | - Patrick Wincker
- Genoscope (CEA), rue Gaston Crémieux, BP5706, 91057 Evry, France
- CNRS, UMR 8030, rue Gaston Crémieux, BP5706, 91057 Evry, France
- Université d'Evry, Boulevard François Mitterrand, 91025, Evry, France
| | - Yannick Le Parco
- CNRS UMR 6540 DIMAR, Station Marine d'Endoume, Centre d'Océanologie de Marseille, Chemin de la Batterie des Lions, 13007, Marseille, France
- Université de la Méditerranée Aix-Marseille II, Bd Charles Livon, 13284, Marseille, France
| |
Collapse
|
104
|
Telford MJ, Littlewood DTJ. The evolution of the animals: introduction to a Linnean tercentenary celebration. Philos Trans R Soc Lond B Biol Sci 2008; 363:1421-4. [PMID: 18192193 DOI: 10.1098/rstb.2007.2231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Celebrating 300 years since the birth of Carl Linnaeus (1707-1778), a meeting was held in June 2007 to review recent progress made in understanding the origins and evolutionary radiation of the animals. The year 2008 celebrates the 250th anniversary of the publication of the 10th edition of Linnaeus' Systema Naturae, generally considered to be the starting point of zoological nomenclature. With subsequent advances in comparative taxonomic and systematic studies, Darwin's discovery of evolution by natural selection, the birth of phylogenetic systematics, and the wider interest in biodiversity, it is salutary to consider that many of the major advances in our understanding of animal evolution have been made in recent years. Phylogenetic systematics, drawing from evidence provided by genotype, phenotype and an understanding of the link between them through comparative embryological and evolutionary developmental studies, has provided a wide consensus of the major branching patterns of the tree of life. More importantly, the integrated approaches discussed in the 16 contributions to this volume highlight the identity and nature of problematic taxa, the missing data, errors in existing analytical procedures and the promise of a wealth of additional characters from genomes that need to be accumulated and assessed in providing a definitive Systema Naturae.
Collapse
|