101
|
Nitahara S, Kato S, Urabe T, Usui A, Yamagishi A. Molecular characterization of the microbial community in hydrogenetic ferromanganese crusts of the Takuyo-Daigo Seamount, northwest Pacific. FEMS Microbiol Lett 2011; 321:121-9. [DOI: 10.1111/j.1574-6968.2011.02323.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
102
|
Unsuspected diversity of arsenite-oxidizing bacteria as revealed by widespread distribution of the aoxB gene in prokaryotes. Appl Environ Microbiol 2011; 77:4685-92. [PMID: 21571879 DOI: 10.1128/aem.02884-10] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, new strains were isolated from an environment with elevated arsenic levels, Sainte-Marie-aux-Mines (France), and the diversity of aoxB genes encoding the arsenite oxidase large subunit was investigated. The distribution of bacterial aoxB genes is wider than what was previously thought. AoxB subfamilies characterized by specific signatures were identified. An exhaustive analysis of AoxB sequences from this study and from public databases shows that horizontal gene transfer has likely played a role in the spreading of aoxB in prokaryotic communities.
Collapse
|
103
|
Rosen BP, Ajees AA, McDermott TR. Life and death with arsenic. Arsenic life: an analysis of the recent report "A bacterium that can grow by using arsenic instead of phosphorus". Bioessays 2011; 33:350-7. [PMID: 21387349 PMCID: PMC3801090 DOI: 10.1002/bies.201100012] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Arsenic and phosphorus are group 15 elements with similar chemical properties. Is it possible that arsenate could replace phosphate in some of the chemicals that are required for life? Phosphate esters are ubiquitous in biomolecules and are essential for life, from the sugar phosphates of intermediary metabolism to ATP to phospholipids to the phosphate backbone of DNA and RNA. Some enzymes that form phosphate esters catalyze the formation of arsenate esters. Arsenate esters hydrolyze very rapidly in aqueous solution, which makes it improbable that phosphorous could be completely replaced with arsenic to support life. Studies of bacterial growth at high arsenic:phosphorus ratios demonstrate that relatively high arsenic concentrations can be tolerated, and that arsenic can become involved in vital functions in the cell, though likely much less efficiently than phosphorus. Recently Wolfe-Simon et al. [1 ] reported the isolation of a microorganism that they maintain uses arsenic in place of phosphorus for growth. Here, we examine and evaluate their data and conclusions.
Collapse
Affiliation(s)
- Barry P Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.
| | | | | |
Collapse
|
104
|
Sun W, Sierra-Alvarez R, Field JA. Long term performance of an arsenite-oxidizing-chlorate-reducing microbial consortium in an upflow anaerobic sludge bed (UASB) bioreactor. BIORESOURCE TECHNOLOGY 2011; 102:5010-6. [PMID: 21333531 PMCID: PMC3081540 DOI: 10.1016/j.biortech.2011.01.069] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 01/19/2011] [Accepted: 01/20/2011] [Indexed: 05/13/2023]
Abstract
A chlorate (ClO(3)(-)) reducing microbial consortium oxidized arsenite (As(III)) to arsenate (As(V)) in an upflow anaerobic sludge-bed bioreactor over 550 days operation. As(III) was converted with high conversion efficiencies (>98%) at volumetric loadings ranging from 0.45 to 1.92 mmol As/(L(reactor)d). The oxidation of As(III) was linked to the complete reduction of ClO(3)(-) to Cl(-) and H(2)O, as demonstrated by a molar ratio of approximately 3.0 mol As(III) oxidized per mole of Cl(-) formed and by the greatly lowered ClO(3)(-)-reducing capacity without As(III) feeding. An autotrophic enrichment culture was established from the bioreactor biofilm. A 16S rRNA gene clone library indicated that the culture was dominated by Dechloromonas, and Stenotrophomonas as well as genera within the family Comamonadaceae. The results indicate that the oxidation of As(III) to less mobile As(V) utilizing ClO(3)(-) as a terminal electron acceptor provides a sustainable bioremediation strategy for arsenic contamination in anaerobic environments.
Collapse
Affiliation(s)
- Wenjie Sun
- Department of Chemical and Environmental Engineering, University of Arizona, PO Box 210011, Tucson, AZ, USA.
| | | | | |
Collapse
|
105
|
Discovering the unknown: improving detection of novel species and genera from short reads. J Biomed Biotechnol 2011; 2011:495849. [PMID: 21541181 PMCID: PMC3085467 DOI: 10.1155/2011/495849] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 12/23/2010] [Accepted: 01/25/2011] [Indexed: 12/03/2022] Open
Abstract
High-throughput sequencing technologies enable metagenome profiling, simultaneous sequencing of multiple microbial species present within an environmental sample. Since metagenomic data includes sequence fragments (“reads”) from organisms that are absent from any database, new algorithms must be developed for the identification and annotation of novel sequence fragments. Homology-based techniques have been modified to detect novel species and genera, but, composition-based methods, have not been adapted. We develop a detection technique that can discriminate between “known” and “unknown” taxa, which can be used with composition-based methods, as well as a hybrid method. Unlike previous studies, we rigorously evaluate all algorithms for their ability to detect novel taxa. First, we show that the integration of a detector with a composition-based method performs significantly better than homology-based methods for the detection of novel species and genera, with best performance at finer taxonomic resolutions. Most importantly, we evaluate all the algorithms by introducing an
“unknown” class and show that the modified version of PhymmBL has similar or better overall classification performance than the other modified algorithms, especially for the species-level and ultrashort reads. Finally, we evaluate the performance of several algorithms on a real acid mine drainage dataset.
Collapse
|
106
|
Abstract
Life at high salt concentrations is energetically expensive. The upper salt concentration limit at which different dissimilatory processes occur in nature appears to be determined to a large extent by bioenergetic constraints. The main factors that determine whether a certain type of microorganism can make a living at high salt are the amount of energy generated during its dissimilatory metabolism and the mode of osmotic adaptation used. I here review new data, both from field observations and from the characterization of cultures of new types of prokaryotes growing at high salt concentrations, to evaluate to what extent the theories formulated 12 years ago are still valid, need to be refined, or should be refuted on the basis of the novel information collected. Most data agree well with the earlier theories. Some new observations, however, are not easily explained: the properties of Natranaerobius and other haloalkaliphilic thermophilic fermentative anaerobes, growth of the sulfate-reducing Desulfosalsimonas propionicica with complete oxidation of propionate and Desulfovermiculus halophilus with complete oxidation of butyrate, growth of lactate-oxidizing sulfate reducers related to Desulfonatronovibrio at 346 g l(-1) salts at pH 9.8, and occurrence of methane oxidation in the anaerobic layers of Big Soda Lake and Mono Lake.
Collapse
Affiliation(s)
- Aharon Oren
- Department of Plant and Environmental Sciences, Institute of Life Sciences, and Moshe Shilo Minerva Center for Marine Biogeochemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
107
|
Abstract
Microorganisms play a significant role in the speciation and mobility of arsenic in the environment. In this study, the oxidation of arsenite [As(III)] to arsenate [As(V)] linked to chlorate (ClO₃⁻) reduction was shown to be catalyzed by sludge samples, enrichment cultures (ECs), and pure cultures incubated under anaerobic conditions. No activity was observed in treatments lacking inoculum or with heat-killed sludge, or in controls lacking ClO₃⁻. The As(III) oxidation was linked to the complete reduction of ClO₃⁻ to Cl⁻, and the molar ratio of As(V) formed to ClO₃⁻ consumed approached the theoretical value of 3:1 assuming the e⁻ equivalents from As(III) were used to completely reduce ClO₃⁻. In keeping with O₂ as a putative intermediate of ClO₃⁻ reduction, the ECs could also oxidize As(III) to As(V) with O₂ at low concentrations. Low levels of organic carbon were essential in heterotrophic ECs but not in autotrophic ECs. 16S rRNA gene clone libraries indicated that the ECs were dominated by clones of Rhodocyclaceae (including Dechloromonas, Azospira, and Azonexus phylotypes) and Stenotrophomonas under autotrophic conditions. Additional phylotypes (Alicycliphilus, Agrobacterium, and Pseudoxanthomonas) were identified in heterotrophic ECs. Two isolated autotrophic pure cultures, Dechloromonas sp. strain ECC1-pb1 and Azospira sp. strain ECC1-pb2, were able to grow by linking the oxidation of As(III) to As(V) with the reduction of ClO₃⁻. The presence of the arsenite oxidase subunit A (aroA) gene was demonstrated with PCR in the ECs and pure cultures. This study demonstrates that ClO₃⁻ is an alternative electron acceptor to support the microbial oxidation of As(III).
Collapse
|
108
|
Microbial community dynamics and electron transfer of a biocathode in microbial fuel cells. KOREAN J CHEM ENG 2010. [DOI: 10.1007/s11814-010-0231-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
109
|
Peptidoglycan crosslinking relaxation promotes Helicobacter pylori's helical shape and stomach colonization. Cell 2010; 141:822-33. [PMID: 20510929 DOI: 10.1016/j.cell.2010.03.046] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 01/29/2010] [Accepted: 03/19/2010] [Indexed: 02/07/2023]
Abstract
The mechanisms by which bacterial cells generate helical cell shape and its functional role are poorly understood. Helical shape of the human pathogen Helicobacter pylori may facilitate penetration of the thick gastric mucus where it replicates. We identified four genes required for helical shape: three LytM peptidoglycan endopeptidase homologs (csd1-3) and a ccmA homolog. Surrounding the cytoplasmic membrane of most bacteria, the peptidoglycan (murein) sacculus is a meshwork of glycan strands joined by peptide crosslinks. Intact cells and isolated sacculi from mutants lacking any single csd gene or ccmA formed curved rods and showed increased peptidoglycan crosslinking. Quantitative morphological analyses of multiple-gene deletion mutants revealed each protein uniquely contributes to a shape-generating pathway. This pathway is required for robust colonization of the stomach in spite of normal directional motility. Our findings suggest that the coordinated action of multiple proteins relaxes peptidoglycan crosslinking, enabling helical cell curvature and twist.
Collapse
|
110
|
Coupled arsenotrophy in a hot spring photosynthetic biofilm at Mono Lake, California. Appl Environ Microbiol 2010; 76:4633-9. [PMID: 20511421 DOI: 10.1128/aem.00545-10] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Red-pigmented biofilms grow on rock and cobble surfaces present in anoxic hot springs located on Paoha Island in Mono Lake. The bacterial community was dominated ( approximately 85% of 16S rRNA gene clones) by sequences from the photosynthetic Ectothiorhodospira genus. Scraped biofilm materials incubated under anoxic conditions rapidly oxidized As(III) to As(V) in the light via anoxygenic photosynthesis but could also readily reduce As(V) to As(III) in the dark at comparable rates. Back-labeling experiments with (73)As(V) demonstrated that reduction to (73)As(III) also occurred in the light, thereby illustrating the cooccurrence of these two anaerobic processes as an example of closely coupled arsenotrophy. Oxic biofilms also oxidized As(III) to As(V). Biofilms incubated with [(14)C]acetate oxidized the radiolabel to (14)CO(2) in the light but not the dark, indicating a capacity for photoheterotrophy but not chemoheterotrophy. Anoxic, dark-incubated samples demonstrated As(V) reduction linked to additions of hydrogen or sulfide but not acetate. Chemoautotrophy linked to As(V) as measured by dark fixation of [(14)C]bicarbonate into cell material was stimulated by either H(2) or HS(-). Functional genes for the arsenate respiratory reductase (arrA) and arsenic resistance (arsB) were detected in sequenced amplicons of extracted DNA, with about half of the arrA sequences closely related ( approximately 98% translated amino acid identity) to those from the family Ectothiorhodospiraceae. Surprisingly, no authentic PCR products for arsenite oxidase (aoxB) were obtained, despite observing aerobic arsenite oxidation activity. Collectively, these results demonstrate close linkages of these arsenic redox processes occurring within these biofilms.
Collapse
|
111
|
Population structure and abundance of arsenite-oxidizing bacteria along an arsenic pollution gradient in waters of the upper isle River Basin, France. Appl Environ Microbiol 2010; 76:4566-70. [PMID: 20453153 DOI: 10.1128/aem.03104-09] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Denaturing gradient gel electrophoresis (DGGE) and quantitative real-time PCR (qPCR) were successfully developed to monitor functional aoxB genes as markers of aerobic arsenite oxidizers. DGGE profiles showed a shift in the structure of the aoxB-carrying bacterial population, composed of members of the Alpha-, Beta- and Gammaproteobacteria, depending on arsenic (As) and E(h) levels in Upper Isle River Basin waters. The highest aoxB gene densities were found in the most As-polluted oxic surface waters but without any significant correlation with environmental factors. Arsenite oxidizers seem to play a key role in As mobility in As-impacted waters.
Collapse
|
112
|
Identification of a novel arsenite oxidase gene, arxA, in the haloalkaliphilic, arsenite-oxidizing bacterium Alkalilimnicola ehrlichii strain MLHE-1. J Bacteriol 2010; 192:3755-62. [PMID: 20453090 DOI: 10.1128/jb.00244-10] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although arsenic is highly toxic to most organisms, certain prokaryotes are known to grow on and respire toxic metalloids of arsenic (i.e., arsenate and arsenite). Two enzymes are known to be required for this arsenic-based metabolism: (i) the arsenate respiratory reductase (ArrA) and (ii) arsenite oxidase (AoxB). Both catalytic enzymes contain molybdopterin cofactors and form distinct phylogenetic clades (ArrA and AoxB) within the dimethyl sulfoxide (DMSO) reductase family of enzymes. Here we report on the genetic identification of a "new" type of arsenite oxidase that fills a phylogenetic gap between the ArrA and AoxB clades of arsenic metabolic enzymes. This "new" arsenite oxidase is referred to as ArxA and was identified in the genome sequence of the Mono Lake isolate Alkalilimnicola ehrlichii MLHE-1, a chemolithoautotroph that can couple arsenite oxidation to nitrate reduction. A genetic system was developed for MLHE-1 and used to show that arxA (gene locus ID mlg_0216) was required for chemoautotrophic arsenite oxidation. Transcription analysis also showed that mlg_0216 was only expressed under anaerobic conditions in the presence of arsenite. The mlg_0216 gene is referred to as arxA because of its greater homology to arrA relative to aoxB and previous reports that implicated Mlg_0216 (ArxA) of MLHE-1 in reversible arsenite oxidation and arsenate reduction in vitro. Our results and past observations support the position that ArxA is a distinct clade within the DMSO reductase family of proteins. These results raise further questions about the evolutionary relationships between arsenite oxidases (AoxB) and arsenate respiratory reductases (ArrA).
Collapse
|
113
|
Sun W, Sierra-Alvarez R, Hsu I, Rowlette P, Field JA. Anoxic oxidation of arsenite linked to chemolithotrophic denitrification in continuous bioreactors. Biotechnol Bioeng 2010; 105:909-17. [PMID: 19953675 DOI: 10.1002/bit.22611] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In this study, the anoxic oxidation of arsenite (As(III)) linked to chemolithotrophic denitrification was shown to be feasible in continuous bioreactors. Biological oxidation of As(III) was stable over prolonged periods of operation ranging up to 3 years in continuous denitrifying bioreactors with granular biofilms. As(III) was removed with a high conversion efficiency (>92%) to arsenate (As(V)) in periods with high volumetric loadings (e.g., 3.5-5.1 mmol As L(reactor) (-1) day(-1)). The maximum specific activity of sampled granular sludge from the bioreactors was 0.98 +/- 0.04 mmol As(V) formed g(-1) VSS day(-1) when determined at an initial concentration of 0.5 mM As(III). The microbial population adapted to high influent concentrations of As(III) up to 5.2 mM. However, the As(III) oxidation process was severely inhibited when 7.6-8.1 mM As(III) was fed. Activity was restored upon lowering the As(III) concentration to 3.8 mM. Several experimental strategies were utilized to demonstrate a dependence of the nitrate removal on As(III) oxidation as well as a dependence of the As(III) removal on nitrate reduction. The molar stoichiometric ratio of As(V) formed to nitrate removed (corrected for endogenous denitrification) in the bioreactors approximated 2.5, indicating complete denitrification was occurring. As(III) oxidation was also shown to be linked to the complete denitrification of NO(3) (-) to N(2) gas by demonstrating a significantly enhanced production of N(2) beyond the background endogenous production in a batch bioassay spiked with 3.5 mM As(III). The N(2) production also corresponded closely to the expected stoichiometry of 2.5 mol As(III) mol(-1) N(2)-N for complete denitrification.
Collapse
Affiliation(s)
- Wenjie Sun
- Department of Chemical and Environmental Engineering, University of Arizona, P.O. Box 210011, Tucson, Arizona, USA
| | | | | | | | | |
Collapse
|
114
|
Lieutaud A, van Lis R, Duval S, Capowiez L, Muller D, Lebrun R, Lignon S, Fardeau ML, Lett MC, Nitschke W, Schoepp-Cothenet B. Arsenite oxidase from Ralstonia sp. 22: characterization of the enzyme and its interaction with soluble cytochromes. J Biol Chem 2010; 285:20433-41. [PMID: 20421652 DOI: 10.1074/jbc.m110.113761] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We characterized the aro arsenite oxidation system in the novel strain Ralstonia sp. 22, a beta-proteobacterium isolated from soil samples of the Salsigne mine in southern France. The inducible aro system consists of a heterodimeric membrane-associated enzyme reacting with a dedicated soluble cytochrome c(554). Our biochemical results suggest that the weak association of the enzyme to the membrane probably arises from a still unknown interaction partner. Analysis of the phylogeny of the aro gene cluster revealed that it results from a lateral gene transfer from a species closely related to Achromobacter sp. SY8. This constitutes the first clear cut case of such a transfer in the Aro phylogeny. The biochemical study of the enzyme demonstrates that it can accommodate in vitro various cytochromes, two of which, c(552) and c(554,) are from the parent species. Cytochrome c(552) belongs to the sox and not the aro system. Kinetic studies furthermore established that sulfite and sulfide, substrates of the sox system, are both inhibitors of Aro activity. These results reinforce the idea that sulfur and arsenic metabolism are linked.
Collapse
Affiliation(s)
- Aurélie Lieutaud
- Laboratoire de Bioénergétique et Ingénierie des Protéines UPR 9036, IFR88, CNRS, F-13402 Marseille Cedex 20, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Duval S, Santini JM, Nitschke W, Hille R, Schoepp-Cothenet B. The small subunit AroB of arsenite oxidase: lessons on the [2Fe-2S] Rieske protein superfamily. J Biol Chem 2010; 285:20442-51. [PMID: 20421651 DOI: 10.1074/jbc.m110.113811] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Here, we describe the characterization of the [2Fe-2S] clusters of arsenite oxidases from Rhizobium sp. NT-26 and Ralstonia sp. 22. Both reduced Rieske proteins feature EPR signals similar to their homologs from Rieske-cyt b complexes, with g values at 2.027, 1.88, and 1.77. Redox titrations in a range of pH values showed that both [2Fe-2S] centers have constant E(m) values up to pH 8 at approximately +210 mV. Above this pH value, the E(m) values of both centers are pH-dependent, similar to what is observed for the Rieske-cyt b complexes. The redox properties of these two proteins, together with the low E(m) value (+160 mV) of the Alcaligenes faecalis arsenite oxidase Rieske (confirmed herein), are in line with the structural determinants observed in the primary sequences, which have previously been deduced from the study of Rieske-cyt b complexes. Since the published E(m) value of the Chloroflexus aurantiacus Rieske (+100 mV) is in conflict with this sequence analysis, we re-analyzed membrane samples of this organism and obtain a new value (+200 mV). Arsenite oxidase activity was affected by quinols and quinol analogs, which is similar to what is found with the Rieske-cyt b complexes. Together, these results show that the Rieske protein of arsenite oxidase shares numerous properties with its counterpart in the Rieske-cyt b complex. However, two cysteine residues, strictly conserved in the Rieske-cyt b-Rieske and considered to be crucial for its function, are not conserved in the arsenite oxidase counterpart. We discuss the role of these residues.
Collapse
Affiliation(s)
- Simon Duval
- Laboratoire de Bioénergétique et Ingénierie des Protéines UPR 9036, Institut de Biologie Structurale et Microbiologie, CNRS, F-13402 Marseille Cedex 20, France
| | | | | | | | | |
Collapse
|
116
|
Arsenic-resistant bacteria associated with roots of the wild Cirsium arvense (L.) plant from an arsenic polluted soil, and screening of potential plant growth-promoting characteristics. Syst Appl Microbiol 2010; 33:154-64. [PMID: 20303688 DOI: 10.1016/j.syapm.2010.02.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 01/25/2010] [Accepted: 02/01/2010] [Indexed: 11/20/2022]
Abstract
A rhizobacterial community, associated with the roots of wild thistle Cirsium arvense (L.) growing in an arsenic polluted soil, was studied by fluorescence in situ hybridization (FISH) analysis in conjunction with cultivation-based methods. In the bulk, rhizosphere, and rhizoplane fractions of the soil, the qualitative picture obtained by FISH analysis of the main phylogenetic bacterial groups was similar and was predominantly comprised of Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. The arsenic-resistant isolates belonged to 13 genera, the most abundant being those of Bacillus, Achromobacter, Brevundimonas, Microbacterium, and Ochrobactrum. Most bacteria grew in the presence of high arsenic concentrations (over 100mM arsenate and 10mM arsenite). Most strains possessed the ArsC, ArsB and ACR3 genes homologous to arsenate reductase and to the two classes of arsenite efflux pumps, respectively, peculiar to the ars operon of the arsenic detoxification system. ArsB and ACR3 were present simultaneously in highly resistant strains. An inconsistency between 16S rRNA phylogenetic affiliations and the arsenate reductase sequences of the strains was observed, indicating possible horizontal transfer of arsenic resistance genes in the soil bacterial community. Several isolates were able to reduce arsenate and to oxidise arsenite. In particular, Ancylobacter dichloromethanicum strain As3-1b possessed both characteristics, and arsenite oxidation occurred in the strain also under chemoautotrophic conditions. Some rhizobacteria produced siderophores, indole acetic acid and 1-amino-cyclopropane-1-carboxylic acid deaminase, thus possessing potential plant growth-promoting traits.
Collapse
|
117
|
Sorokin DY, Tourova TP, Kovaleva OL, Kuenen JG, Muyzer G. Aerobic carboxydotrophy under extremely haloalkaline conditions in Alkalispirillum/Alkalilimnicola strains isolated from soda lakes. MICROBIOLOGY-SGM 2009; 156:819-827. [PMID: 19959573 DOI: 10.1099/mic.0.033712-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Aerobic enrichments from soda lake sediments with CO as the only substrate resulted in the isolation of five bacterial strains capable of autotrophic growth with CO at extremely high pH and salinity. The strains belonged to the Alkalispirillum/Alkalilimnicola cluster in the Gammaproteobacteria, where the ability to oxidize CO, but not growth with CO, has been demonstrated previously. The growth with CO was possible only at an oxygen concentration below 5 % and CO concentration below 20 % in the gas phase. The isolates were also capable of growth with formate but not with H(2). The carboxydotrophic growth occurred within a narrow pH range from 8 to 10.5 (optimum at 9.5) and a broad salt concentration from 0.3 to 3.5 M total Na(+) (optimum at 1.0 M). Cells grown on CO had high respiration activity with CO and formate, while the cells grown on formate actively oxidized formate alone. In CO-grown cells, CO-dehydrogenase (CODH) activity was detectable both in soluble and membrane fractions, while the NAD-independent formate dehydrogenase (FDH) resided solely in membranes. The results of total protein profiling and the failure to detect CODH with conventional primers for the coxL gene indicated that the CO-oxidizing enzyme in haloalkaliphilic isolates might differ from the classical aerobic CODH complex. A single cbbL gene encoding the RuBisCO large subunit was detected in all strains, suggesting the presence of the Calvin cycle of inorganic carbon fixation. Overall, these results demonstrated the possibility of aerobic carboxydotrophy under extremely haloalkaline conditions.
Collapse
Affiliation(s)
- Dimitry Yu Sorokin
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60-let Octyabrya 7/2, 117811 Moscow, Russia
| | - Tatjana P Tourova
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60-let Octyabrya 7/2, 117811 Moscow, Russia
| | - Olga L Kovaleva
- Faculty of Biology, Department of Microbiology, Moscow State University, Moscow, Russia
| | - J Gijs Kuenen
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Gerard Muyzer
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
118
|
Sun W, Sierra-Alvarez R, Milner L, Oremland R, Field JA. Arsenite and ferrous iron oxidation linked to chemolithotrophic denitrification for the immobilization of arsenic in anoxic environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:6585-91. [PMID: 19764221 PMCID: PMC4532354 DOI: 10.1021/es900978h] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The objective of this study was to explore a bioremediation strategy based on injecting NO3- to support the anoxic oxidation of ferrous iron (Fe(II)) and arsenite (As(II)) in the subsurface as a means to immobilize As in the form of arsenate (As(V)) adsorbed onto biogenic ferric (Fe(III)) (hydr)oxides. Continuous flow sand filled columns were used to simulate a natural anaerobic groundwater and sediment system with co-occurring As(III) and Fe(II) in the presence (column SF1) or absence (column SF2) of nitrate, respectively. During operation for 250 days, the average influent arsenic concentration of 567 microg L(-1) was reduced to 10.6 (+/-9.6) microg L(-1) in the effluent of column SF1. The cumulative removal of Fe(II) and As(II) in SF1 was 6.5 to 10-fold higher than that in SF2 Extraction and measurement of the mass of iron and arsenic immobilized on the sand packing of the columns were close to the iron and arsenic removed from the aqueous phase during column operation. The dominant speciation of the immobilized iron and arsenic was Fe(III) and As(V) in SF1, compared with Fe(II) and As(III) in SF2. The speciation was confirmed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results indicate that microbial oxidation of As(III) and Fe(II) linked to denitrification resulted in the enhanced immobilization of aqueous arsenic in anaerobic environments by forming Fe(III) (hydr)oxide coated sands with adsorbed As(V).
Collapse
Affiliation(s)
- Wenjie Sun
- Department of Chemical and Environmental Engineering, University of Arizona, P.O. Box 210011, Tucson, AZ 85721
| | - Reyes Sierra-Alvarez
- Department of Chemical and Environmental Engineering, University of Arizona, P.O. Box 210011, Tucson, AZ 85721
| | - Lily Milner
- Department of Chemical and Environmental Engineering, University of Arizona, P.O. Box 210011, Tucson, AZ 85721
| | | | - Jim A. Field
- Department of Chemical and Environmental Engineering, University of Arizona, P.O. Box 210011, Tucson, AZ 85721
- Corresponding author, phone: 520-626-5858; fax: 520-621-6048;
| |
Collapse
|
119
|
Yamamura S, Watanabe M, Yamamoto N, Sei K, Ike M. Potential for microbially mediated redox transformations and mobilization of arsenic in uncontaminated soils. CHEMOSPHERE 2009; 77:169-174. [PMID: 19716583 DOI: 10.1016/j.chemosphere.2009.07.071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 07/30/2009] [Accepted: 07/30/2009] [Indexed: 05/28/2023]
Abstract
Surface soil samples, which had no significant As contamination, were examined for As(V) reduction, As(III) oxidation and As mobilization capability. All five soil samples tested exhibited microbial As(V)-reducing activities both in aerobic and anaerobic conditions. Under aerobic conditions when As(V) reduction had almost ceased, oxidation of As(III) to As(V) occurred, whereas only As(V) reduction was observed under anaerobic conditions. In cultures incubated with As(III), As(III) was oxidized by indigenous soil microbes only under aerobic conditions. These results indicate that microbial redox transformations of As are ubiquitous in the natural environment regardless of background As levels. Mobilization through microbially mediated As(V) and Fe(III) reduction occurred both in the presence and absence of oxygen. Significant variation in dissolved As occurred depending on the Fe contents of soils, and re-immobilization of As arose in the presence of oxygen, presumably as a consequence of dissolved As(III) and Fe(II) oxidation. There was no apparent correlation between dissolved Fe(II) and As, suggesting that reductive dissolution of Fe(III) minerals does not necessarily determine the extent of As release from soils.
Collapse
Affiliation(s)
- Shigeki Yamamura
- National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan.
| | | | | | | | | |
Collapse
|
120
|
Handley KM, Héry M, Lloyd JR. Redox cycling of arsenic by the hydrothermal marine bacteriumMarinobacter santoriniensis. Environ Microbiol 2009; 11:1601-11. [DOI: 10.1111/j.1462-2920.2009.01890.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
121
|
Richey C, Chovanec P, Hoeft SE, Oremland RS, Basu P, Stolz JF. Respiratory arsenate reductase as a bidirectional enzyme. Biochem Biophys Res Commun 2009; 382:298-302. [DOI: 10.1016/j.bbrc.2009.03.045] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 03/04/2009] [Indexed: 11/30/2022]
|
122
|
Hamamura N, Macur RE, Korf S, Ackerman G, Taylor WP, Kozubal M, Reysenbach AL, Inskeep WP. Linking microbial oxidation of arsenic with detection and phylogenetic analysis of arsenite oxidase genes in diverse geothermal environments. Environ Microbiol 2009; 11:421-31. [PMID: 19196273 DOI: 10.1111/j.1462-2920.2008.01781.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The identification and characterization of genes involved in the microbial oxidation of arsenite will contribute to our understanding of factors controlling As cycling in natural systems. Towards this goal, we recently characterized the widespread occurrence of aerobic arsenite oxidase genes (aroA-like) from pure-culture bacterial isolates, soils, sediments and geothermal mats, but were unable to detect these genes in all geothermal systems where we have observed microbial arsenite oxidation. Consequently, the objectives of the current study were to measure arsenite-oxidation rates in geochemically diverse thermal habitats in Yellowstone National Park (YNP) ranging in pH from 2.6 to 8, and to identify corresponding 16S rRNA and aroA genotypes associated with these arsenite-oxidizing environments. Geochemical analyses, including measurement of arsenite-oxidation rates within geothermal outflow channels, were combined with 16S rRNA gene and aroA functional gene analysis using newly designed primers to capture previously undescribed aroA-like arsenite oxidase gene diversity. The majority of bacterial 16S rRNA gene sequences found in acidic (pH 2.6-3.6) Fe-oxyhydroxide microbial mats were closely related to Hydrogenobaculum spp. (members of the bacterial order Aquificales), while the predominant sequences from near-neutral (pH 6.2-8) springs were affiliated with other Aquificales including Sulfurihydrogenibium spp., Thermocrinis spp. and Hydrogenobacter spp., as well as members of the Deinococci, Thermodesulfobacteria and beta-Proteobacteria. Modified primers designed around previously characterized and newly identified aroA-like genes successfully amplified new lineages of aroA-like genes associated with members of the Aquificales across all geothermal systems examined. The expression of Aquificales aroA-like genes was also confirmed in situ, and the resultant cDNA sequences were consistent with aroA genotypes identified in the same environments. The aroA sequences identified in the current study expand the phylogenetic distribution of known Mo-pterin arsenite oxidase genes, and suggest the importance of three prominent genera of the order Aquificales in arsenite oxidation across geochemically distinct geothermal habitats ranging in pH from 2.6 to 8.
Collapse
Affiliation(s)
- N Hamamura
- Department of Biology, Portland State University, Portland, OR 97201, USA.
| | | | | | | | | | | | | | | |
Collapse
|
123
|
Ecophysiology of "Halarsenatibacter silvermanii" strain SLAS-1T, gen. nov., sp. nov., a facultative chemoautotrophic arsenate respirer from salt-saturated Searles Lake, California. Appl Environ Microbiol 2009; 75:1950-60. [PMID: 19218420 DOI: 10.1128/aem.02614-08] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Searles Lake occupies a closed basin harboring salt-saturated, alkaline brines that have exceptionally high concentrations of arsenic oxyanions. Strain SLAS-1(T) was previously isolated from Searles Lake (R. S. Oremland, T. R. Kulp, J. Switzer Blum, S. E. Hoeft, S. Baesman, L. G. Miller, and J. F. Stolz, Science 308:1305-1308, 2005). We now describe this extremophile with regard to its substrate affinities, its unusual mode of motility, sequenced arrABD gene cluster, cell envelope lipids, and its phylogenetic alignment within the order Halanaerobacteriales, assigning it the name "Halarsenatibacter silvermanii" strain SLAS-1(T). We also report on the substrate dynamics of an anaerobic enrichment culture obtained from Searles Lake that grows under conditions of salt saturation and whose members include a novel sulfate reducer of the order Desulfovibriales, the archaeon Halorhabdus utahensis, as well as a close homolog of strain SLAS-1(T).
Collapse
|
124
|
Sun W, Sierra-Alvarez R, Fernandez N, Sanz JL, Amils R, Legatzki A, Maier RM, Field JA. Molecular characterization and in situ quantification of anoxic arsenite-oxidizing denitrifying enrichment cultures. FEMS Microbiol Ecol 2009; 68:72-85. [PMID: 19187211 DOI: 10.1111/j.1574-6941.2009.00653.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
To explore the bacteria involved in the oxidation of arsenite (As(III)) under denitrifying conditions, three enrichment cultures (ECs) and one mixed culture (MC) were characterized that originated from anaerobic environmental samples. The oxidation of As(III) (0.5 mM) was dependent on NO(3) (-) addition and N(2) formation was dependent on As(III) addition. The ratio of N(2)-N formed to As(III) fed approximated the expected stoichiometry of 2.5. A 16S rRNA gene clone library analysis revealed three predominant phylotypes. The first, related to the genus Azoarcus from the division Betaproteobacteria, was found in the three ECs. The other two predominant phylotypes were closely related to the genera Acidovorax and Diaphorobacter within the Comamonadaceae family of Betaproteobacteria, and one of these was present in all of the cultures examined. FISH confirmed that Azoarcus accounted for a large fraction of bacteria present in the ECs. The Azoarcus clones had 96% sequence homology with Azoarcus sp. strain DAO1, an isolate previously reported to oxidize As(III) with nitrate. FISH analysis also confirmed that Comamonadaceae were present in all cultures. Pure cultures of Azoarcus and Diaphorobacter were isolated and shown to be responsible for nitrate-dependent As(III) oxidation. These results, taken as a whole, suggest that bacteria within the genus Azoarcus and the family Comamonadaceae are involved in the observed anoxic oxidation of As(III).
Collapse
Affiliation(s)
- Wenjie Sun
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
| | | | | | | | | | | | | | | |
Collapse
|
125
|
Abstract
Phototrophic sulfur bacteria are characterized by oxidizing various inorganic sulfur compounds for use as electron donors in carbon dioxide fixation during anoxygenic photosynthetic growth. These bacteria are divided into the purple sulfur bacteria (PSB) and the green sulfur bacteria (GSB). They utilize various combinations of sulfide, elemental sulfur, and thiosulfate and sometimes also ferrous iron and hydrogen as electron donors. This review focuses on the dissimilatory and assimilatory metabolism of inorganic sulfur compounds in these bacteria and also briefly discusses these metabolisms in other types of anoxygenic phototrophic bacteria. The biochemistry and genetics of sulfur compound oxidation in PSB and GSB are described in detail. A variety of enzymes catalyzing sulfur oxidation reactions have been isolated from GSB and PSB (especially Allochromatium vinosum, a representative of the Chromatiaceae), and many are well characterized also on a molecular genetic level. Complete genome sequence data are currently available for 10 strains of GSB and for one strain of PSB. We present here a genome-based survey of the distribution and phylogenies of genes involved in oxidation of sulfur compounds in these strains. It is evident from biochemical and genetic analyses that the dissimilatory sulfur metabolism of these organisms is very complex and incompletely understood. This metabolism is modular in the sense that individual steps in the metabolism may be performed by different enzymes in different organisms. Despite the distant evolutionary relationship between GSB and PSB, their photosynthetic nature and their dependency on oxidation of sulfur compounds resulted in similar ecological roles in the sulfur cycle as important anaerobic oxidizers of sulfur compounds.
Collapse
|
126
|
Sun W, Sierra R, Field JA. Anoxic oxidation of arsenite linked to denitrification in sludges and sediments. WATER RESEARCH 2008; 42:4569-77. [PMID: 18762312 PMCID: PMC2614353 DOI: 10.1016/j.watres.2008.08.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 08/01/2008] [Accepted: 08/05/2008] [Indexed: 05/03/2023]
Abstract
In this study, denitrification linked to the oxidation of arsenite (As(III)) to arsenate (As(V)) was shown to be a widespread microbial activity in anaerobic sludge and sediment samples that were not previously exposed to arsenic contamination. When incubated with 0.5mM As(III) and 10mM NO(3)(-), the anoxic oxidation of As(III) commenced within a few days, achieving specific activities of up to 1.24mmol As(V) formed g(-1) volatile suspended solids d(-1) due to growth (doubling times of 0.74-1.4d). The anoxic oxidation of As(III) was partially to completely inhibited by 1.5 and 5mM As(III), respectively. Inhibition was minimized by adding As(III) adsorbed onto activated aluminum (AA). The oxidation of As(III) was shown to be linked to the complete denitrification of NO(3)(-) to N(2) by demonstrating a significantly enhanced production of N(2) beyond the background endogenous production as a result of adding As(III)-AA to the cultures. The N(2) production corresponded closely the expected stoichiometry of the reaction, 2.5mol As(III) mol(-1)N(2)-N. The oxidation of As(III) linked to the use of common-occurring nitrate as an electron acceptor may be an important missing link in the biogeochemical cycling of arsenic.
Collapse
Affiliation(s)
- Wenjie Sun
- Department of Chemical and Environmental Engineering, University of Arizona
| | - Reyes Sierra
- Department of Chemical and Environmental Engineering, University of Arizona
| | - Jim A. Field
- Department of Chemical and Environmental Engineering, University of Arizona
- Department of Chemical and Environmental Engineering, University of Arizona, P.O. Box 210011, Tucson, Arizona, Tel. 520-626-5858, Fax. 520-621-6048,
| |
Collapse
|
127
|
Garcia-Dominguez E, Mumford A, Rhine ED, Paschal A, Young LY. Novel autotrophic arsenite-oxidizing bacteria isolated from soil and sediments. FEMS Microbiol Ecol 2008; 66:401-10. [DOI: 10.1111/j.1574-6941.2008.00569.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
128
|
Isolation and diversity analysis of arsenite-resistant bacteria in communities enriched from deep-sea sediments of the Southwest Indian Ocean Ridge. Extremophiles 2008; 13:39-48. [PMID: 18841325 DOI: 10.1007/s00792-008-0195-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 09/16/2008] [Indexed: 10/21/2022]
Abstract
Microorganisms play an important role in the geobiocycling of arsenic element. However, little is known about the bacteria involved in this process in oceanic environments. In this report, arsenite-resistant bacteria were detected in deep-sea sediments on the Southwest Indian Ridge. From arsenite enriched cultures, 54 isolates were obtained, which showed varied tolerance to arsenite of 2-80 mM. Phylogenetic analysis based on 16S rRNA showed that they mainly belonged to Proteobacteria and Actinobacteria. Denaturing gradient gel electrophoresis revealed that Microbacterium esteraromaticum was the dominant member in the arsenite enriched communities, and this was reconfirmed by 16S rRNA gene library analyses. Thus, M. esteraromaticum showed highest resistant to arsenite among the detected bacteria. These results indicate that there are quite diverse bacteria of arsenite resistance inhabiting the deep sea sediment, which may play a role in the geobiocycling of arsenic element in marine environments.
Collapse
|
129
|
Miller LG, Oremland RS. Electricity generation by anaerobic bacteria and anoxic sediments from hypersaline soda lakes. Extremophiles 2008; 12:837-48. [DOI: 10.1007/s00792-008-0191-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Accepted: 09/01/2008] [Indexed: 11/29/2022]
|
130
|
Kulp TR, Hoeft SE, Asao M, Madigan MT, Hollibaugh JT, Fisher JC, Stolz JF, Culbertson CW, Miller LG, Oremland RS. Arsenic(III) Fuels Anoxygenic Photosynthesis in Hot Spring Biofilms from Mono Lake, California. Science 2008; 321:967-70. [DOI: 10.1126/science.1160799] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
131
|
Fan H, Su C, Wang Y, Yao J, Zhao K, Wang Y, Wang G. Sedimentary arsenite-oxidizing and arsenate-reducing bacteria associated with high arsenic groundwater from Shanyin, Northwestern China. J Appl Microbiol 2008; 105:529-39. [DOI: 10.1111/j.1365-2672.2008.03790.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
132
|
Duval S, Ducluzeau AL, Nitschke W, Schoepp-Cothenet B. Enzyme phylogenies as markers for the oxidation state of the environment: the case of respiratory arsenate reductase and related enzymes. BMC Evol Biol 2008; 8:206. [PMID: 18631373 PMCID: PMC2500031 DOI: 10.1186/1471-2148-8-206] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Accepted: 07/16/2008] [Indexed: 12/01/2022] Open
Abstract
Background Phylogenies of certain bioenergetic enzymes have proved to be useful tools for deducing evolutionary ancestry of bioenergetic pathways and their relationship to geochemical parameters of the environment. Our previous phylogenetic analysis of arsenite oxidase, the molybdopterin enzyme responsible for the biological oxidation of arsenite to arsenate, indicated its probable emergence prior to the Archaea/Bacteria split more than 3 billion years ago, in line with the geochemical fact that arsenite was present in biological habitats on the early Earth. Respiratory arsenate reductase (Arr), another molybdopterin enzyme involved in microbial arsenic metabolism, serves as terminal oxidase, and is thus situated at the opposite end of bioenergetic electron transfer chains as compared to arsenite oxidase. The evolutionary history of the Arr-enzyme has not been studied in detail so far. Results We performed a genomic search of genes related to arrA coding for the molybdopterin subunit. The multiple alignment of the retrieved sequences served to reconstruct a neighbor-joining phylogeny of Arr and closely related enzymes. Our analysis confirmed the previously proposed proximity of Arr to the cluster of polysulfide/thiosulfate reductases but also unravels a hitherto unrecognized clade even more closely related to Arr. The obtained phylogeny strongly suggests that Arr originated after the Bacteria/Archaea divergence in the domain Bacteria, and was subsequently laterally distributed within this domain. It further more indicates that, as a result of accumulation of arsenate in the environment, an enzyme related to polysulfide reductase and not to arsenite oxidase has evolved into Arr. Conclusion These findings are paleogeochemically rationalized by the fact that the accumulation of arsenate over arsenite required the increase in oxidation state of the environment brought about by oxygenic photosynthesis.
Collapse
Affiliation(s)
- Simon Duval
- Laboratoire de Bioénergétique et Ingénierie des Protéines UPR 9036, Institut de Biologie Structurale et Microbiologie, CNRS, F-13402 Marseille Cedex 20, France.
| | | | | | | |
Collapse
|
133
|
Toxic introns and parasitic intein in Coxiella burnetii: legacies of a promiscuous past. J Bacteriol 2008; 190:5934-43. [PMID: 18606739 DOI: 10.1128/jb.00602-08] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The genome of the obligate intracellular pathogen Coxiella burnetii contains a large number of selfish genetic elements, including two group I introns (Cbu.L1917 and Cbu.L1951) and an intervening sequence that interrupts the 23S rRNA gene, an intein (Cbu.DnaB) within dnaB and 29 insertion sequences. Here, we describe the ability of the intron-encoded RNAs (ribozymes) to retard bacterial growth rate (toxicity) and examine the functionality and phylogenetic history of Cbu.DnaB. When expressed in Escherichia coli, both introns repressed growth, with Cbu.L1917 being more inhibitory. Both ribozymes were found to associate with ribosomes of Coxiella and E. coli. In addition, ribozymes significantly reduced in vitro luciferase translation, again with Cbu.L1917 being more inhibitory. We analyzed the relative quantities of ribozymes and genomes throughout a 14-day growth cycle of C. burnetii and found that they were inversely correlated, suggesting that the ribozymes have a negative effect on Coxiella's growth. We determined possible sites for ribozyme associations with 23S rRNA that could explain the observed toxicities. Further research is needed to determine whether the introns are being positively selected because they promote bacterial persistence or whether they were fixed in the population due to genetic drift. The intein, Cbu.DnaB, is able to self-splice, leaving the host protein intact and presumably functional. Similar inteins have been found in two extremophilic bacteria (Alkalilimnicola ehrlichei and Halorhodospira halophila) that are distantly related to Coxiella, making it difficult to determine whether the intein was acquired by horizontal gene transfer or was vertically inherited from a common ancestor.
Collapse
|
134
|
Fisher E, Dawson AM, Polshyna G, Lisak J, Crable B, Perera E, Ranganathan M, Thangavelu M, Basu P, Stolz JF. Transformation of Inorganic and Organic Arsenic byAlkaliphilus oremlandiisp. nov. Strain OhILAs. Ann N Y Acad Sci 2008; 1125:230-41. [DOI: 10.1196/annals.1419.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
135
|
Selenate-dependent anaerobic arsenite oxidation by a bacterium from Mono Lake, California. Appl Environ Microbiol 2008; 74:2588-94. [PMID: 18326681 DOI: 10.1128/aem.01995-07] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Arsenate was produced when anoxic Mono Lake water samples were amended with arsenite and either selenate or nitrate. Arsenite oxidation did not occur in killed control samples or live samples with no added terminal electron acceptor. Potential rates of anaerobic arsenite oxidation with selenate were comparable to those with nitrate ( approximately 12 to 15 mumol.liter(-1) h(-1)). A pure culture capable of selenate-dependent anaerobic arsenite oxidation (strain ML-SRAO) was isolated from Mono Lake water into a defined salts medium with selenate, arsenite, and yeast extract. This strain does not grow chemoautotrophically, but it catalyzes the oxidation of arsenite during growth on an organic carbon source with selenate. No arsenate was produced in pure cultures amended with arsenite and nitrate or oxygen, indicating that the process is selenate dependent. Experiments with washed cells in mineral medium demonstrated that the oxidation of arsenite is tightly coupled to the reduction of selenate. Strain ML-SRAO grows optimally on lactate with selenate or arsenate as the electron acceptor. The amino acid sequences deduced from the respiratory arsenate reductase gene (arrA) from strain ML-SRAO are highly similar (89 to 94%) to those from two previously isolated Mono Lake arsenate reducers. The 16S rRNA gene sequence of strain ML-SRAO places it within the Bacillus RNA group 6 of gram-positive bacteria having low G+C content.
Collapse
|
136
|
Tourova TP, Spiridonova EM, Berg IA, Slobodova NV, Boulygina ES, Sorokin DY. Phylogeny and evolution of the family Ectothiorhodospiraceae based on comparison of 16S rRNA, cbbL and nifH gene sequences. Int J Syst Evol Microbiol 2008; 57:2387-2398. [PMID: 17911316 DOI: 10.1099/ijs.0.65041-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The occurrence of genes encoding nitrogenase and ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) was investigated in the members of the family Ectothiorhodospiraceae. This family forms a separate phylogenetic lineage within the Gammaproteobacteria according to 16S rRNA gene sequence analysis and mostly includes photo- and chemoautotrophic halophilic and haloalkaliphilic bacteria. The cbbL gene encoding the large subunit of 'green-like' form I RubisCO was found in all strains, except the type strains of Alkalispirillum mobile and Arhodomonas aquaeolei. The nifH gene encoding nitrogenase reductase was present in all investigated species of the phototrophic genera Ectothiorhodospira, Halorhodospira and Thiorhodospira, but not of the genus Ectothiorhodosinus. Unexpectedly, nifH fragments were also obtained for the chemotrophic species Thioalkalispira microaerophila and Alkalilimnicola halodurans, for which diazotrophic potential has not previously been assumed. The cbbL-, nifH- and 16S rRNA gene-based trees were not highly congruent in their branching patterns since, in the 'RubisCO' and 'nitrogenase' trees, representatives of the Ectothiorhodospiraceae are divided in a number of broadly distributed clusters and branches. However, the data obtained may be regarded as evidence of the monophyletic origin of the cbbL and nifH genes in most species within the family Ectothiorhodospiraceae and mainly corresponded to the current taxonomic structure of this family. The cbbL phylogeny of the chemolithoautotrophic sulfur-oxidizers Thioalkalivibrio nitratireducens and Thioalkalivibrio paradoxus and the nitrifier Nitrococcus mobilis deviated significantly from the 16S-rRNA gene-based phylogeny. These species clustered with one of the duplicated cbbL genes of the purple sulfur bacterium Allochromatium vinosum, a member of the family Chromatiaceae.
Collapse
MESH Headings
- Bacterial Proteins/genetics
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Ectothiorhodospiraceae/classification
- Ectothiorhodospiraceae/genetics
- Evolution, Molecular
- Genes, rRNA
- Molecular Sequence Data
- Oxidoreductases/genetics
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- Ribulose-Bisphosphate Carboxylase/genetics
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- Tatjana P Tourova
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia
| | | | - Ivan A Berg
- Department of Microbiology, Moscow State University, Moscow, Russia
| | | | | | - Dimitry Yu Sorokin
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
137
|
Inskeep WP, Macur RE, Hamamura N, Warelow TP, Ward SA, Santini JM. Detection, diversity and expression of aerobic bacterial arsenite oxidase genes. Environ Microbiol 2007; 9:934-43. [PMID: 17359265 DOI: 10.1111/j.1462-2920.2006.01215.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The arsenic (As) drinking water crisis in south and south-east Asia has stimulated intense study of the microbial processes controlling the redox cycling of As in soil-water systems. Microbial oxidation of arsenite is a critical link in the global As cycle, and phylogenetically diverse arsenite-oxidizing microorganisms have been isolated from various aquatic and soil environments. However, despite progress characterizing the metabolism of As in various pure cultures, no functional gene approaches have been developed to determine the importance and distribution of arsenite-oxidizing genes in soil-water-sediment systems. Here we report for the first time the successful amplification of arsenite oxidase-like genes (aroA/asoA/aoxB) from a variety of soil-sediment and geothermal environments where arsenite is known to be oxidized. Prior to the current work, only 16 aroA/asoA/aoxB-like gene sequences were available in GenBank, most of these being putative assignments from homology searches of whole genomes. Although aroA/asoA/aoxB gene sequences are not highly conserved across disparate phyla, degenerate primers were used successfully to characterize over 160 diverse aroA-like sequences from 10 geographically isolated, arsenic-contaminated sites and from 13 arsenite-oxidizing organisms. The primer sets were also useful for confirming the expression of aroA-like genes in an arsenite-oxidizing organism and in geothermal environments where arsenite is oxidized to arsenate. The phylogenetic and ecological diversity of aroA-like sequences obtained from this study suggests that genes for aerobic arsenite oxidation are widely distributed in the bacterial domain, are widespread in soil-water systems containing As, and play a critical role in the biogeochemical cycling of As.
Collapse
Affiliation(s)
- William P Inskeep
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717 USA.
| | | | | | | | | | | |
Collapse
|
138
|
King GM. Chemolithotrohic Bacteria: Distributions, Functions and Significance in Volcanic Environments. Microbes Environ 2007. [DOI: 10.1264/jsme2.22.309] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Gary M. King
- Department of Biological Sciences, Louisiana State University
| |
Collapse
|