101
|
Kumar M, Yadav V, Kumar H, Sharma R, Singh A, Tuteja N, Johri AK. Piriformospora indica enhances plant growth by transferring phosphate. PLANT SIGNALING & BEHAVIOR 2011; 6:723-5. [PMID: 21502815 PMCID: PMC3172848 DOI: 10.4161/psb.6.5.15106] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 02/09/2011] [Indexed: 05/21/2023]
Abstract
Piriformospora indica is an endophytic fungus that colonized monocot as well as dicot. P. indica has been termed as plant probiotic because of its plant growth promoting activity and its role in enhancement of the tolerance of the host plants against abiotic and biotic stresses. In our recent study, we have characterized a high affinity phosphate transporter (PiPT) and by using RNAi approach, we have demonstrated the involvement of PiPT in P transfer to the host plant. When knockdown strains of PiPT-P. indica was colonized with the host plant, it resulted in the impaired growth of the host plants. Here we have analyzed and discussed whether the growth promoting activity of P. indica is its intrinsic property or it is dependent on P availability. Our data explain the correlation between the availability of P and growth-promoting activity of P. indica.
Collapse
Affiliation(s)
- Manoj Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | | | | | | | | | |
Collapse
|
102
|
Mastouri F, Björkman T, Harman GE. Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. PHYTOPATHOLOGY 2010; 100:1213-21. [PMID: 20649416 DOI: 10.1094/phyto-03-10-0091] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Trichoderma spp. are endophytic plant symbionts that are widely used as seed treatments to control diseases and to enhance plant growth and yield. Although some recent work has been published on their abilities to alleviate abiotic stresses, specific knowledge of mechanisms, abilities to control multiple plant stress factors, their effects on seed and seedlings is lacking. We examined the effects of seed treatment with T. harzianum strain T22 on germination of seed exposed to biotic stress (seed and seedling disease caused by Pythium ultimum) and abiotic stresses (osmotic, salinity, chilling, or heat stress). We also evaluated the ability of the beneficial fungus to overcome physiological stress (poor seed quality induced by seed aging). If seed were not under any of the stresses noted above, T22 generally had little effect upon seedling performance. However, under stress, treated seed germinated consistently faster and more uniformly than untreated seeds whether the stress was osmotic, salt, or suboptimal temperatures. The consistent response to varying stresses suggests a common mechanism through which the plant-fungus association enhances tolerance to a wide range of abiotic stresses as well as biotic stress. A common factor that negatively affects plants under these stress conditions is accumulation of toxic reactive oxygen species (ROS), and we tested the hypothesis that T22 reduced damages resulting from accumulation of ROS in stressed plants. Treatment of seeds reduced accumulation of lipid peroxides in seedlings under osmotic stress or in aged seeds. In addition, we showed that the effect of exogenous application of an antioxidant, glutathione, or application of T22, resulted in a similar positive effect on seed germination under osmotic stress or in aged seed. This evidence supports the model that T. harzianum strain T22 increases seedling vigor and ameliorates stress by inducing physiological protection in plants against oxidative damage.
Collapse
Affiliation(s)
- Fatemeh Mastouri
- Department of Horticultural Sciences, Cornell University, Geneva, NY, USA.
| | | | | |
Collapse
|
103
|
Yadav V, Kumar M, Deep DK, Kumar H, Sharma R, Tripathi T, Tuteja N, Saxena AK, Johri AK. WITHDRAWN: A phosphate transporter from the root endophytic fungus Piriformospora indica plays a role in phosphate transport to the host plant. J Biol Chem 2010; 285:26532-44. [PMID: 20479005 PMCID: PMC2924090 DOI: 10.1074/jbc.m110.111021] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 05/12/2010] [Indexed: 11/06/2022] Open
Abstract
Because pure cultures and a stable transformation system are not available for arbuscular mycorrhizal fungi, the role of their phosphate transporters for the symbiotic interaction with the plant up till now could not be studied. Here we report the cloning and the functional analysis of a gene encoding a phosphate transporter (PiPT) from the root endophytic fungus Piriformospora indica, which can be grown axenically. The PiPT polypeptide belongs to the major facilitator superfamily. Homology modeling reveals that PiPT exhibits twelve transmembrane helices divided into two halves connected by a large hydrophilic loop in the middle. The function of the protein encoded by PiPT was confirmed by complementation of a yeast phosphate transporter mutant. The kinetic analysis of PiPT (K(m) 25 mum) reveals that it belongs to the high affinity phosphate transporter family (Pht1). Expression of PiPT was localized to the external hyphae of P. indica colonized with maize plant root, which suggests that external hyphae are the initial site of phosphate uptake from the soil. To understand the physiological role of PiPT, knockdown transformants of the gene were prepared using electroporation and RNA interference. Knockdown transformants transported a significantly lower amount of phosphate to the host plant than wild-type P. indica. Higher amounts of phosphate were found in plants colonized with wild-type P. indica than that of non-colonized and plants colonized with knockdown PiPT P. indica. These observations suggest that PiPT is actively involved in the phosphate transportation and, in turn, P. indica helps improve the nutritional status of the host plant.
Collapse
Affiliation(s)
- Vikas Yadav
- From the School of Life Sciences, Jawaharlal Nehru University, New Meharuli Road, New Delhi 110067 and
| | - Manoj Kumar
- From the School of Life Sciences, Jawaharlal Nehru University, New Meharuli Road, New Delhi 110067 and
| | - Deepak Kumar Deep
- From the School of Life Sciences, Jawaharlal Nehru University, New Meharuli Road, New Delhi 110067 and
| | - Hemant Kumar
- From the School of Life Sciences, Jawaharlal Nehru University, New Meharuli Road, New Delhi 110067 and
| | - Ruby Sharma
- From the School of Life Sciences, Jawaharlal Nehru University, New Meharuli Road, New Delhi 110067 and
| | - Takshashila Tripathi
- From the School of Life Sciences, Jawaharlal Nehru University, New Meharuli Road, New Delhi 110067 and
| | - Narendra Tuteja
- the International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ajay Kumar Saxena
- From the School of Life Sciences, Jawaharlal Nehru University, New Meharuli Road, New Delhi 110067 and
| | - Atul Kumar Johri
- From the School of Life Sciences, Jawaharlal Nehru University, New Meharuli Road, New Delhi 110067 and
| |
Collapse
|
104
|
White JF, Torres MS. Is plant endophyte-mediated defensive mutualism the result of oxidative stress protection? PHYSIOLOGIA PLANTARUM 2010; 138:440-6. [PMID: 20028480 DOI: 10.1111/j.1399-3054.2009.01332.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
In this review, we discuss the biology and beneficial effects of plant endophytes on host plants. The current explanation of endophyte protection (defensive mutualism) of host plants is based on the secondary metabolites (alkaloids) with antiherbivore properties produced by the symbiotic association between host plant and endophytes. We propose an alternative explanation of the mechanism of host protection through enhanced stress tolerance to oxidative stress. Several studies have demonstrated the production of different compounds (phenolics) with antioxidant capacity in endophyte-infected plants. Endophytes may also produce mannitol, other carbohydrates and small molecules (proline) with antioxidant capacity. We suggest that enhanced antioxidant production by symbiotic plants may be the result of the production of reactive oxygen species (ROS) by endophytes. In turn, symbiotic plants are protected from oxidative stress produced by plant diseases, droughts, heavy metals and other oxidative stressors by the production of antioxidants. We also discuss the lichen symbiosis and evaluate whether management of ROS also plays a role in this defensive mutualism. Future experiments are needed to evaluate the hypothesis that antioxidants are responsible for enhanced stress tolerance in endophyte-infected plants.
Collapse
Affiliation(s)
- James F White
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ, USA.
| | | |
Collapse
|
105
|
Yuan ZL, Zhang CL, Lin FC, Kubicek CP. Identity, diversity, and molecular phylogeny of the endophytic mycobiota in the roots of rare wild rice (Oryza granulate) from a nature reserve in Yunnan, China. Appl Environ Microbiol 2010; 76:1642-52. [PMID: 20038691 PMCID: PMC2832373 DOI: 10.1128/aem.01911-09] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2009] [Accepted: 12/16/2009] [Indexed: 11/20/2022] Open
Abstract
Rice (Oryza sativa L.) is, on a global scale, one of the most important food crops. Although endophytic fungi and bacteria associated with rice have been investigated, little is known about the endophytic fungi of wild rice (Oryza granulate) in China. Here we studied the root endophytic mycobiota residing in roots of O. granulate by the use of an integrated approach consisting of microscopy, cultivation, ecological indices, and direct PCR. Microscopy confirmed the ubiquitousness of dark septate endophytes (DSEs) and sclerotium-like structures in root tissues. Isolations from 204 root segments from 15 wild rice plants yielded 58 isolates, for which 31 internal transcribed spacer (ITS)-based genotypes were recorded. The best BLAST match indicated that 34.5% of all taxa encountered may represent hitherto undescribed species. Most of the fungi were isolated with a very low frequency. Calculation of ecological indices and estimation of taxon accumulation curves indicated a high diversity of fungal species. A culture-independent approach was also performed to analyze the endophytic fungal community. Three individual clone libraries were constructed. Using a threshold of 90% similarity, 35 potentially different sequences (phylotypes) were found among 186 positive clones. Phylogenetic analysis showed that frequently detected clones were classified as Basidiomycota, and 60.2% of total analyzed clones were affiliated with unknown taxa. Exophiala, Cladophialophora, Harpophora, Periconia macrospinosa, and the Ceratobasidium/Rhizoctonia complex may act as potential DSE groups. A comparison of the fungal communities characterized by the two approaches demonstrated distinctive fungal groups, and only a few taxa overlapped. Our findings indicate a complex and rich endophytic fungal consortium in wild rice roots, thus offering a potential bioresource for establishing a novel model of plant-fungal mutualistic interactions.
Collapse
Affiliation(s)
- Zhi-lin Yuan
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310029, China, Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang 311400, China, Institute of Chemical Engineering, Research Area Gene Technology and Applied Biochemistry, Vienna University of Technology, 1060 Vienna, Austria
| | - Chu-long Zhang
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310029, China, Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang 311400, China, Institute of Chemical Engineering, Research Area Gene Technology and Applied Biochemistry, Vienna University of Technology, 1060 Vienna, Austria
| | - Fu-cheng Lin
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310029, China, Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang 311400, China, Institute of Chemical Engineering, Research Area Gene Technology and Applied Biochemistry, Vienna University of Technology, 1060 Vienna, Austria
| | - Christian P. Kubicek
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310029, China, Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang 311400, China, Institute of Chemical Engineering, Research Area Gene Technology and Applied Biochemistry, Vienna University of Technology, 1060 Vienna, Austria
| |
Collapse
|
106
|
Varma A, Savita V, Sahay N, Butehorn B, Franken P. Piriformospora indica, a cultivable plant-growth-promoting root endophyte. Appl Environ Microbiol 1999. [PMID: 10347070 DOI: 10.1007/s40003-012-0019-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Piriformospora indica (Hymenomycetes, Basidiomycota) is a newly described cultivable endophyte that colonizes roots. Inoculation with the fungus and application of fungal culture filtrate promotes plant growth and biomass production. Due to its ease of culture, this fungus provides a model organism for the study of beneficial plant-microbe interactions and a new tool for improving plant production systems.
Collapse
Affiliation(s)
- A Varma
- Max-Planck-Institut fur terrestrische Mikrobiologie, Abteilung Biochemie and Laboratorium fur Mikrobiologie des Fachbereichs Biologie der Philipps-Universitat, 35043 Marburg, Germany
| | | | | | | | | |
Collapse
|