101
|
Li S, Li T, Xu Y, Zhang Q, Zhang W, Che S, Liu R, Wang Y, Bartlam M. Structural insights into YfiR sequestering by YfiB in Pseudomonas aeruginosa PAO1. Sci Rep 2015; 5:16915. [PMID: 26593397 PMCID: PMC4655355 DOI: 10.1038/srep16915] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 10/22/2015] [Indexed: 12/18/2022] Open
Abstract
YfiBNR is a tripartite signalling system in Pseudomonas aeruginosa that modulates intracellular c-di-GMP levels in response to signals received in the periplasm. YfiB is an outer membrane lipoprotein and presumed sensor protein that sequesters the repressor protein YfiR. To provide insights into YfiBNR function, we have determined three-dimensional crystal structures of YfiB and YfiR from P. aeruginosa PAO1 alone and as a 1:1 complex. A YfiB(27–168) construct is predominantly dimeric, whereas a YfiB(59–168) is monomeric, indicating that YfiB can dimerize via its N-terminal region. YfiR forms a stable complex with YfiB(59–168), while the YfiR binding interface is obstructed by the N-terminal region in YfiB(27–168). The YfiB-YfiR complex reveals a conserved interaction surface on YfiR that overlaps with residues predicted to interact with the periplasmic PAS domain of YfiN. Comparison of native and YfiR-bound structures of YfiB suggests unwinding of the N-terminal linker region for attachment to the outer membrane. A model is thus proposed for YfiR sequestration at the outer membrane by YfiB. Our work provides the first detailed insights into the interaction between YfiB and YfiR at the molecular level and is a valuable starting point for further functional and mechanistic studies of the YfiBNR signalling system.
Collapse
Affiliation(s)
- Shanshan Li
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,College of Life Sciences, Nankai University, Tianjin, China
| | - Tingting Li
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,College of Life Sciences, Nankai University, Tianjin, China
| | - Yueyang Xu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Qionglin Zhang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Wei Zhang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Shiyou Che
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,College of Life Sciences, Nankai University, Tianjin, China
| | - Ruihua Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,College of Life Sciences, Nankai University, Tianjin, China
| | - Yingying Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science &Engineering, Nankai University, Tianjin, China
| | - Mark Bartlam
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
102
|
Friman VP, Soanes-Brown D, Sierocinski P, Molin S, Johansen HK, Merabishvili M, Pirnay JP, De Vos D, Buckling A. Pre-adapting parasitic phages to a pathogen leads to increased pathogen clearance and lowered resistance evolution with Pseudomonas aeruginosa cystic fibrosis bacterial isolates. J Evol Biol 2015; 29:188-98. [PMID: 26476097 DOI: 10.1111/jeb.12774] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/12/2015] [Indexed: 12/17/2022]
Abstract
Recent years have seen renewed interest in phage therapy--the use of viruses to specifically kill disease-causing bacteria--because of the alarming rise in antibiotic resistance. However, a major limitation of phage therapy is the ease at with bacteria can evolve resistance to phages. Here, we determined whether in vitro experimental coevolution can increase the efficiency of phage therapy by limiting the resistance evolution of intermittent and chronic cystic fibrosis Pseudomonas aeruginosa lung isolates to four different phages. We first pre-adapted all phage strains against all bacterial strains and then compared the efficacy of pre-adapted and nonadapted phages against ancestral bacterial strains. We found that evolved phages were more efficient in reducing bacterial densities than ancestral phages. This was primarily because only 50% of bacterial strains were able to evolve resistance to evolved phages, whereas all bacteria were able to evolve some level of resistance to ancestral phages. Although the rate of resistance evolution did not differ between intermittent and chronic isolates, it incurred a relatively higher growth cost for chronic isolates when measured in the absence of phages. This is likely to explain why evolved phages were more effective in reducing the densities of chronic isolates. Our data show that pathogen genotypes respond differently to phage pre-adaptation, and as a result, phage therapies might need to be individually adjusted for different patients.
Collapse
Affiliation(s)
- V-P Friman
- Biosciences, University of Exeter, Penryn, UK.,Department of Biology, University of York, York, UK
| | | | - P Sierocinski
- Biosciences, University of Exeter, Penryn, UK.,European Centre for Environment and Human Health in Cornwall, University of Exeter, Penryn, UK
| | - S Molin
- Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - H K Johansen
- Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark.,Department of Clinical Microbiology 9301, Rigshospitalet, København Ø, Denmark
| | - M Merabishvili
- Burn Wound Center, Queen Astrid Military Hospital, Brussel, Belgium.,Research and Development Department, George Eliava Institute of Bacteriophages, Microbiology and Virology, Tbilisi, Georgia.,Laboratory for Bacteriology Research, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - J-P Pirnay
- Burn Wound Center, Queen Astrid Military Hospital, Brussel, Belgium
| | - D De Vos
- Burn Wound Center, Queen Astrid Military Hospital, Brussel, Belgium
| | - A Buckling
- Biosciences, University of Exeter, Penryn, UK
| |
Collapse
|
103
|
Connelly BD, Dickinson KJ, Hammarlund SP, Kerr B. Negative niche construction favors the evolution of cooperation. Evol Ecol 2015. [DOI: 10.1007/s10682-015-9803-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
104
|
Draft Genome Sequence of Burkholderia cordobensis Type Strain LMG 27620, Isolated from Agricultural Soils in Argentina. GENOME ANNOUNCEMENTS 2015; 3:3/5/e01238-15. [PMID: 26494680 PMCID: PMC4616187 DOI: 10.1128/genomea.01238-15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Bacteria of the genus
Burkholderia
are commonly found in diverse ecological niches in nature. We report here the draft genome sequence of
Burkholderia cordobensis
type strain LMG 27620, isolated from agricultural soil in Córdoba, Argentina. This strain harbors several genes involved in chitin utilization and phenol degradation, which make it an interesting candidate for biocontrol purposes and xenobiotic degradation in polluted environments.
Collapse
|
105
|
Pompilio A, Crocetta V, De Nicola S, Verginelli F, Fiscarelli E, Di Bonaventura G. Cooperative pathogenicity in cystic fibrosis: Stenotrophomonas maltophilia modulates Pseudomonas aeruginosa virulence in mixed biofilm. Front Microbiol 2015; 6:951. [PMID: 26441885 PMCID: PMC4584994 DOI: 10.3389/fmicb.2015.00951] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 08/27/2015] [Indexed: 12/23/2022] Open
Abstract
The present study was undertaken in order to understand more about the interaction occurring between S. maltophilia and P. aeruginosa, which are frequently co-isolated from CF airways. For this purpose, S. maltophilia RR7 and P. aeruginosa RR8 strains, co-isolated from the lung of a chronically infected CF patient during a pulmonary exacerbation episode, were evaluated for reciprocal effect during planktonic growth, adhesion and biofilm formation onto both polystyrene and CF bronchial cell monolayer, motility, as well as for gene expression in mixed biofilms. P. aeruginosa significantly affected S. maltophilia growth in both planktonic and biofilm cultures, due to an inhibitory activity probably requiring direct contact. Conversely, no effect was observed on P. aeruginosa by S. maltophilia. Compared with monocultures, the adhesiveness of P. aeruginosa on CFBE41o- cells was significantly reduced by S. maltophilia, which probably acts by reducing P. aeruginosa's swimming motility. An opposite trend was observed for biofilm formation, confirming the findings obtained using polystyrene. When grown in mixed biofilm with S. maltophilia, P. aeruginosa significantly over-expressed aprA, and algD-codifying for protease and alginate, respectively-while the quorum sensing related rhlR and lasI genes were down-regulated. The induced alginate expression by P. aeruginosa might be responsible for the protection of S. maltophilia against tobramycin activity we observed in mixed biofilms. Taken together, our results suggest that the existence of reciprocal interference of S. maltophilia and P. aeruginosa in CF lung is plausible. In particular, S. maltophilia might confer some selective "fitness advantage" to P. aeruginosa under the specific conditions of chronic infection or, alternatively, increase the virulence of P. aeruginosa thus leading to pulmonary exacerbation.
Collapse
Affiliation(s)
- Arianna Pompilio
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara Chieti, Italy ; Aging Research Center (Ce.S.I.), "G. d'Annunzio" University Foundation Chieti, Italy
| | - Valentina Crocetta
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara Chieti, Italy ; Aging Research Center (Ce.S.I.), "G. d'Annunzio" University Foundation Chieti, Italy
| | - Serena De Nicola
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara Chieti, Italy ; Aging Research Center (Ce.S.I.), "G. d'Annunzio" University Foundation Chieti, Italy
| | - Fabio Verginelli
- Aging Research Center (Ce.S.I.), "G. d'Annunzio" University Foundation Chieti, Italy ; Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara Chieti, Italy
| | | | - Giovanni Di Bonaventura
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara Chieti, Italy ; Aging Research Center (Ce.S.I.), "G. d'Annunzio" University Foundation Chieti, Italy
| |
Collapse
|
106
|
Genetic Adaptation of Achromobacter sp. during Persistence in the Lungs of Cystic Fibrosis Patients. PLoS One 2015; 10:e0136790. [PMID: 26313451 PMCID: PMC4552427 DOI: 10.1371/journal.pone.0136790] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 08/07/2015] [Indexed: 12/26/2022] Open
Abstract
Achromobacter species are increasingly isolated from the respiratory tract of cystic fibrosis patients and often a chronic infection is established. How Achromobacter sp. adapts to the human host remains uncharacterised. By comparing longitudinally collected isolates of Achromobacter sp. isolated from five CF patients, we have investigated the within-host evolution of clonal lineages. The majority of identified mutations were isolate-specific suggesting co-evolution of several subpopulations from the original infecting isolate. The largest proportion of mutated genes were involved in the general metabolism of the bacterium, but genes involved in virulence and antimicrobial resistance were also affected. A number of virulence genes required for initiation of acute infection were selected against, e.g. genes of the type I and type III secretion systems and genes related to pilus and flagellum formation or function. Six antimicrobial resistance genes or their regulatory genes were mutated, including large deletions affecting the repressor genes of an RND-family efflux pump and a beta-lactamase. Convergent evolution was observed for five genes that were all implicated in bacterial virulence. Characterisation of genes involved in adaptation of Achromobacter to the human host is required for understanding the pathogen-host interaction and facilitate design of future therapeutic interventions.
Collapse
|
107
|
Kaur J, Pethani BP, Kumar S, Kim M, Sunna A, Kautto L, Penesyan A, Paulsen IT, Nevalainen H. Pseudomonas aeruginosa inhibits the growth of Scedosporium aurantiacum, an opportunistic fungal pathogen isolated from the lungs of cystic fibrosis patients. Front Microbiol 2015; 6:866. [PMID: 26379643 PMCID: PMC4547459 DOI: 10.3389/fmicb.2015.00866] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/07/2015] [Indexed: 12/25/2022] Open
Abstract
The filamentous fungus Scedosporium aurantiacum and the bacterium Pseudomonas aeruginosa are opportunistic pathogens isolated from lungs of the cystic fibrosis (CF) patients. P. aeruginosa has been known to suppress the growth of a number of CF related fungi such as Aspergillus fumigatus, Candida albicans, and Cryptococcus neoformans. However, the interactions between P. aeruginosa and S. aurantiacum have not been investigated in depth. Hence we assessed the effect of P. aeruginosa reference strain PAO1 and two clinical isolates PASS1 and PASS2 on the growth of two clinical S. aurantiacum isolates WM 06.482 and WM 08.202 using solid plate assays and liquid cultures, in a synthetic medium mimicking the nutrient condition in the CF sputum. Solid plate assays showed a clear inhibition of growth of both S. aurantiacum strains when cultured with P. aeruginosa strains PASS1 and PAO1. The inhibitory effect was confirmed by confocal microscopy. In addition to using chemical fluorescent stains, strains tagged with yfp (P. aeruginosa PASS1) and mCherry (S. aurantiacum WM 06.482) were created to facilitate detailed microscopic observations on strain interaction. To our knowledge, this is the first study describing successful genetic transformation of S. aurantiacum. Inhibition of growth was observed only in co-cultures of P. aeruginosa and S. aurantiacum; the cell fractions obtained from independent bacterial monocultures failed to initiate a response against the fungus. In the liquid co-cultures, biofilm forming P. aeruginosa strains PASS1 and PAO1 displayed higher inhibition of fungal growth when compared to PASS2. No change was observed in the inhibition pattern when direct cell contact between the bacterial and fungal strains was prevented using a separation membrane suggesting the involvement of extracellular metabolites in the fungal inhibition. However, one of the most commonly described bacterial virulence factors, pyocyanin, had no effect against either of the S. aurantiacum strains. This study shows that P. aeruginosa has a substantial inhibitory effect on the growth of the recently described CF fungal pathogen S. aurantiacum. The findings also highlighted that P. aeruginosa biofilm formation is important but not crucial for inhibiting the growth of S. aurantiacum in a lung- mimicking environment.
Collapse
Affiliation(s)
- Jashanpreet Kaur
- Department of Chemistry and Biomolecular Sciences, Macquarie University Sydney, NSW, Australia ; Biomolecular Frontiers Research Centre, Macquarie University Sydney, NSW, Australia
| | - Bhavin P Pethani
- Department of Chemistry and Biomolecular Sciences, Macquarie University Sydney, NSW, Australia ; Biomolecular Frontiers Research Centre, Macquarie University Sydney, NSW, Australia
| | - Sheemal Kumar
- Department of Chemistry and Biomolecular Sciences, Macquarie University Sydney, NSW, Australia ; Biomolecular Frontiers Research Centre, Macquarie University Sydney, NSW, Australia
| | - Minkyoung Kim
- Department of Chemistry and Biomolecular Sciences, Macquarie University Sydney, NSW, Australia ; Biomolecular Frontiers Research Centre, Macquarie University Sydney, NSW, Australia
| | - Anwar Sunna
- Department of Chemistry and Biomolecular Sciences, Macquarie University Sydney, NSW, Australia ; Biomolecular Frontiers Research Centre, Macquarie University Sydney, NSW, Australia
| | - Liisa Kautto
- Department of Chemistry and Biomolecular Sciences, Macquarie University Sydney, NSW, Australia ; Biomolecular Frontiers Research Centre, Macquarie University Sydney, NSW, Australia
| | - Anahit Penesyan
- Department of Chemistry and Biomolecular Sciences, Macquarie University Sydney, NSW, Australia ; Biomolecular Frontiers Research Centre, Macquarie University Sydney, NSW, Australia
| | - Ian T Paulsen
- Department of Chemistry and Biomolecular Sciences, Macquarie University Sydney, NSW, Australia ; Biomolecular Frontiers Research Centre, Macquarie University Sydney, NSW, Australia
| | - Helena Nevalainen
- Department of Chemistry and Biomolecular Sciences, Macquarie University Sydney, NSW, Australia ; Biomolecular Frontiers Research Centre, Macquarie University Sydney, NSW, Australia
| |
Collapse
|
108
|
Abstract
Competition between microbes is widespread in nature, especially among those that are closely related. To combat competitors, bacteria have evolved numerous protein-based systems (bacteriocins) that kill strains closely related to the producer. In characterizing the bacteriocin complement and killing spectra for the model strain Pseudomonas syringae B728a, we discovered that its activity was not linked to any predicted bacteriocin but is derived from a prophage. Instead of encoding an active prophage, this region encodes a bacteriophage-derived bacteriocin, termed an R-type syringacin. This R-type syringacin is striking in its convergence with the well-studied R-type pyocin of P. aeruginosa in both genomic location and molecular function. Genomic alignment, amino acid percent sequence identity, and phylogenetic inference all support a scenario where the R-type syringacin has been co-opted independently of the R-type pyocin. Moreover, the presence of this region is conserved among several other Pseudomonas species and thus is likely important for intermicrobial interactions throughout this important genus. Evolutionary innovation is often achieved through modification of complexes or processes for alternate purposes, termed co-option. Notable examples include the co-option of a structure functioning in locomotion (bacterial flagellum) to one functioning in protein secretion (type three secretion system). Similar co-options can occur independently in distinct lineages. We discovered a genomic region in the plant pathogen Pseudomonas syringae that consists of a fragment of a bacteriophage genome. The fragment encodes only the tail of the bacteriophage, which is lethal toward strains of this species. This structure is similar to a previously described structure produced by the related species Pseudomonas aeruginosa. The two structures, however, are not derived from the same evolutionary event. Thus, they represent independent bacteriophage co-options. The co-opted bacteriophage from P. syringae is found in the genomes of many other Pseudomonas species, suggesting ecological importance across this genus.
Collapse
|
109
|
Malone JG. Role of small colony variants in persistence of Pseudomonas aeruginosa infections in cystic fibrosis lungs. Infect Drug Resist 2015; 8:237-47. [PMID: 26251621 PMCID: PMC4524453 DOI: 10.2147/idr.s68214] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that predominates during the later stages of cystic fibrosis (CF) lung infections. Over many years of chronic lung colonization, P. aeruginosa undergoes extensive adaptation to the lung environment, evolving both toward a persistent, low virulence state and simultaneously diversifying to produce a number of phenotypically distinct morphs. These lung-adapted P. aeruginosa strains include the small colony variants (SCVs), small, autoaggregative isolates that show enhanced biofilm formation, strong attachment to surfaces, and increased production of exopolysaccharides. Their appearance in the sputum of CF patients correlates with increased resistance to antibiotics, poor lung function, and prolonged persistence of infection, increasing their relevance as a subject for clinical investigation. The evolution of SCVs in the CF lung is associated with overproduction of the ubiquitous bacterial signaling molecule cyclic-di-GMP, with increased cyclic-di-GMP levels shown to be responsible for the SCV phenotype in a number of different CF lung isolates. Here, we review the current state of research in clinical P. aeruginosa SCVs. We will discuss the phenotypic characteristics underpinning the SCV morphotype, the clinical implications of lung colonization with SCVs, and the molecular basis and clinical evolution of the SCV phenotype in the CF lung environment.
Collapse
Affiliation(s)
- Jacob G Malone
- John Innes Centre, Norwich, UK ; School of Biological Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
110
|
Smith K, Rajendran R, Kerr S, Lappin DF, Mackay WG, Williams C, Ramage G. Aspergillus fumigatus enhances elastase production in Pseudomonas aeruginosa co-cultures. Med Mycol 2015; 53:645-55. [PMID: 26162475 DOI: 10.1093/mmy/myv048] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 05/25/2015] [Indexed: 02/07/2023] Open
Abstract
In the cystic fibrosis (CF) lung the presence of bacteria and fungi in the airways promotes an inflammatory response causing progressive lung damage, ultimately leading to high rates of morbidity and mortality. We hypothesized that polymicrobial interactions play an important role in promoting airway pathogenesis. We therefore examined the interplay between the most commonly isolated bacterial CF pathogen, Pseudomonas aeruginosa, and the most prevalent filamentous fungi, Aspergillus fumigatus, to test this. Co-culture experiments showed that in the presence of A. fumigatus the production of P. aeruginosa elastase was enhanced. This was confirmed by the presence of zones of clearance on Elastin-Congo Red (ECR) agar, which was identified as elastase by mass spectrometry. When P. aeruginosa were grown in a co-culture model with mature A. fumigatus biofilms, 60% of isolates produced significantly more elastase in the presence of the filamentous fungi than in its absence (P < .05). The expression of lasB also increased when P. aeruginosa isolates PA01 and PA14 were grown in co-culture with A. fumigatus. Supernatants from co-culture experiments were also significantly toxic to a human lung epithelial cell line (19-38% cell cytotoxicity) in comparison to supernatants from P. aeruginosa only cultures (P < .0001). Here we report that P. aeruginosa cytotoxic elastase is enhanced in the presence of the filamentous fungi A. fumigatus, suggesting that this may have a role to play in the damaging pathology associated with the lung tissue in this disease. This indicates that patients who have a co-colonisation with these two organisms may have a poorer prognosis.
Collapse
Affiliation(s)
- Karen Smith
- Institute of Healthcare Associated Infection, School of Health, Nursing and Midwifery, University of the West of Scotland, United Kingdom
| | - Ranjith Rajendran
- Infection and Immunity Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Stephen Kerr
- Infection and Immunity Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - David F Lappin
- Infection and Immunity Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - William G Mackay
- Institute of Healthcare Associated Infection, School of Health, Nursing and Midwifery, University of the West of Scotland, United Kingdom
| | - Craig Williams
- Institute of Healthcare Associated Infection, School of Health, Nursing and Midwifery, University of the West of Scotland, United Kingdom
| | - Gordon Ramage
- Infection and Immunity Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| |
Collapse
|
111
|
Gifford DR, Toll-Riera M, Kojadinovic M, MacLean RC. Here’s to the Losers: Evolvable Residents Accelerate the Evolution of High-Fitness Invaders. Am Nat 2015; 186:41-9. [DOI: 10.1086/681598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
112
|
Lu H, Qian G, Ren Z, Zhang C, Zhang H, Xu W, Ye P, Yang Y, Li L. Alterations of Bacteroides sp., Neisseria sp., Actinomyces sp., and Streptococcus sp. populations in the oropharyngeal microbiome are associated with liver cirrhosis and pneumonia. BMC Infect Dis 2015; 15:239. [PMID: 26099252 PMCID: PMC4477430 DOI: 10.1186/s12879-015-0977-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 06/03/2015] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The microbiomes of humans are associated with liver and lung inflammation. We identified and verified alterations of the oropharyngeal microbiome and assessed their association with cirrhosis and pneumonia. METHODS Study components were as follows: (1) determination of the temporal stability of the oropharyngeal microbiome; (2) identification of oropharyngeal microbial variation in 90 subjects; (3) quantitative identification of disease-associated bacteria. DNAs enriched in bacterial sequences were produced from low-biomass oropharyngeal swabs using whole genome amplification and were analyzed using denaturing gradient gel electrophoresis analysis. RESULTS Whole genome amplification combined with denaturing gradient gel electrophoresis analysis monitored successfully oropharyngeal microbial variations and showed that the composition of each subject's oropharyngeal microbiome remained relatively stable during the follow-up. The microbial composition of cirrhotic patients with pneumonia differed from those of others and clustered together in subgroup analysis. Further, species richness and the value of Shannon's diversity and evenness index increased significantly in patients with cirrhosis and pneumonia versus others (p < 0.001, versus healthy controls; p < 0.01, versus cirrhotic patients without pneumonia). Moreover, we identified variants of Bacteroides, Eubacterium, Lachnospiraceae, Neisseria, Actinomyces, and Streptococcus through phylogenetic analysis. Quantitative polymerase chain reaction assays revealed that the populations of Bacteroides, Neisseria, and Actinomycetes increased, while that of Streptococcus decreased in cirrhotic patients with pneumonia versus others (p < 0.001, versus Healthy controls; p < 0.01, versus cirrhotic patients without pneumonia). CONCLUSIONS Alterations of Bacteroides, Neisseria, Actinomyces, and Streptococcus populations in the oropharyngeal microbiome were associated with liver cirrhosis and pneumonia.
Collapse
Affiliation(s)
- Haifeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, People's Republic of China.
| | - Guirong Qian
- Tonglu First People's Hospital, 338 Xuesheng Road, Tonglu, Hangzhou, 311500, People's Republic of China.
| | - Zhigang Ren
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, People's Republic of China.
| | - Chunxia Zhang
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, People's Republic of China.
| | - Hua Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, People's Republic of China.
| | - Wei Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, People's Republic of China.
| | - Ping Ye
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, People's Republic of China.
| | - Yunmei Yang
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, People's Republic of China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, People's Republic of China.
| |
Collapse
|
113
|
Birger RB, Kouyos RD, Cohen T, Griffiths EC, Huijben S, Mina MJ, Volkova V, Grenfell B, Metcalf CJE. The potential impact of coinfection on antimicrobial chemotherapy and drug resistance. Trends Microbiol 2015; 23:537-544. [PMID: 26028590 DOI: 10.1016/j.tim.2015.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/20/2015] [Accepted: 05/05/2015] [Indexed: 01/06/2023]
Abstract
Across a range of pathogens, resistance to chemotherapy is a growing problem in both public health and animal health. Despite the ubiquity of coinfection, and its potential effects on within-host biology, the role played by coinfecting pathogens on the evolution of resistance and efficacy of antimicrobial chemotherapy is rarely considered. In this review, we provide an overview of the mechanisms of interaction of coinfecting pathogens, ranging from immune modulation and resource modulation, to drug interactions. We discuss their potential implications for the evolution of resistance, providing evidence in the rare cases where it is available. Overall, our review indicates that the impact of coinfection has the potential to be considerable, suggesting that this should be taken into account when designing antimicrobial drug treatments.
Collapse
Affiliation(s)
- Ruthie B Birger
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Roger D Kouyos
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zürich, University of Zürich, Zürich, Switzerland.,Institute of Medical Virology, University of Zürich, Zürich, Switzerland
| | - Ted Cohen
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Emily C Griffiths
- Department of Entomology, Gardner Hall, Derieux Place, North Carolina State University, Raleigh, NC 27695-7613, USA
| | - Silvie Huijben
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic -Universitat de Barcelona, Barcelona, Spain
| | - Michael J Mina
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA.,Medical Scientist Training Program, Emory University School of Medicine, Atlanta, GA, USA
| | - Victoriya Volkova
- Department of Diagnostic Medicine/Pathobiology, Institute of Computational Comparative Medicine, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Bryan Grenfell
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA.,Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | - C Jessica E Metcalf
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA.,Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
114
|
Chihara K, Matsumoto S, Kagawa Y, Tsuneda S. Mathematical modeling of dormant cell formation in growing biofilm. Front Microbiol 2015; 6:534. [PMID: 26074911 PMCID: PMC4446547 DOI: 10.3389/fmicb.2015.00534] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 05/14/2015] [Indexed: 11/13/2022] Open
Abstract
Understanding the dynamics of dormant cells in microbial biofilms, in which the bacteria are embedded in extracellular matrix, is important for developing successful antibiotic therapies against pathogenic bacteria. Although some of the molecular mechanisms leading to bacterial persistence have been speculated in planktonic bacterial cell, how dormant cells emerge in the biofilms of pathogenic bacteria such as Pseudomonas aeruginosa remains unclear. The present study proposes four hypotheses of dormant cell formation; stochastic process, nutrient-dependent, oxygen-dependent, and time-dependent processes. These hypotheses were implemented into a three-dimensional individual-based model of biofilm formation. Numerical simulations of the different mechanisms yielded qualitatively different spatiotemporal distributions of dormant cells in the growing biofilm. Based on these simulation results, we discuss what kinds of experimental studies are effective for discriminating dormant cell formation mechanisms in biofilms.
Collapse
Affiliation(s)
- Kotaro Chihara
- Department of Life Science and Medical Bioscience, Waseda University Tokyo, Japan
| | - Shinya Matsumoto
- Center for Biofilm Engineering, Montana State University Bozeman, MT, USA
| | - Yuki Kagawa
- Institute for Nanoscience and Nanotechnology, Waseda University Tokyo, Japan
| | - Satoshi Tsuneda
- Department of Life Science and Medical Bioscience, Waseda University Tokyo, Japan ; Institute for Nanoscience and Nanotechnology, Waseda University Tokyo, Japan
| |
Collapse
|
115
|
Brockhurst MA. Experimental evolution can unravel the complex causes of natural selection in clinical infections. MICROBIOLOGY-SGM 2015; 161:1175-9. [PMID: 25957311 DOI: 10.1099/mic.0.000107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
It is increasingly clear that rapid evolutionary dynamics are an important process in microbial ecology. Experimental evolution, wherein microbial evolution is observed in real-time, has revealed many instances of appreciable evolutionary change occurring on very short timescales of a few days or weeks in response to a variety of biotic and abiotic selection pressures. From clinical infections, including the chronic bacterial lung infections associated with cystic fibrosis that form a focus of my research, there is now abundant evidence suggesting that rapid evolution by infecting microbes contributes to host adaptation, treatment failure and worsening patient prognosis. However, disentangling the drivers of natural selection in complex infection environments is extremely challenging and limits our understanding of the selective pressures acting upon microbes in infections. Controlled evolution experiments can make a vital contribution to this by determining the causal links between predicted drivers of natural selection and the evolutionary responses of microbes. Integration of experimental evolution into studies of clinical infections is a key next step towards a better understanding of the causes and consequences of rapid microbial evolution in infections, and discovering how these evolutionary processes might be influenced to improve patient health.A video of this Prize Lecture, presented at the Society for General Microbiology Annual Conference 2015, can be viewed via this link: Michael A. Brockhurst https://www.youtube.com/watch?v=N1bodVSl27E.
Collapse
|
116
|
Iron Depletion Enhances Production of Antimicrobials by Pseudomonas aeruginosa. J Bacteriol 2015; 197:2265-75. [PMID: 25917911 DOI: 10.1128/jb.00072-15] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/23/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Cystic fibrosis (CF) is a heritable disease characterized by chronic, polymicrobial lung infections. While Staphylococcus aureus is the dominant lung pathogen in young CF patients, Pseudomonas aeruginosa becomes predominant by adulthood. P. aeruginosa produces a variety of antimicrobials that likely contribute to this shift in microbial populations. In particular, secretion of 2-alkyl-4(1H)-quinolones (AQs) contributes to lysis of S. aureus in coculture, providing an iron source to P. aeruginosa both in vitro and in vivo. We previously showed that production of one such AQ, the Pseudomonas quinolone signal (PQS), is enhanced by iron depletion and that this induction is dependent upon the iron-responsive PrrF small RNAs (sRNAs). Here, we demonstrate that antimicrobial activity against S. aureus during coculture is also enhanced by iron depletion, and we provide evidence that multiple AQs contribute to this activity. Strikingly, a P. aeruginosa ΔprrF mutant, which produces very little PQS in monoculture, was capable of mediating iron-regulated growth suppression of S. aureus. We show that the presence of S. aureus suppresses the ΔprrF1,2 mutant's defect in iron-regulated PQS production, indicating that a PrrF-independent iron regulatory pathway mediates AQ production in coculture. We further demonstrate that iron-regulated antimicrobial production is conserved in multiple P. aeruginosa strains, including clinical isolates from CF patients. These results demonstrate that iron plays a central role in modulating interactions of P. aeruginosa with S. aureus. Moreover, our studies suggest that established iron regulatory pathways of these pathogens are significantly altered during polymicrobial infections. IMPORTANCE Chronic polymicrobial infections involving Pseudomonas aeruginosa and Staphylococcus aureus are a significant cause of morbidity and mortality, as the interplay between these two organisms exacerbates infection. This is in part due to enhanced production of antimicrobial metabolites by P. aeruginosa when these two species are cocultured. Using both established and newly developed coculture techniques, this report demonstrates that iron depletion increases P. aeruginosa's ability to suppress growth of S. aureus. These findings present a novel role for iron in modulating microbial interaction and provide the basis for understanding how essential nutrients drive polymicrobial infections.
Collapse
|
117
|
Wang S, Liu X, Liu H, Zhang L, Guo Y, Yu S, Wozniak DJ, Ma LZ. The exopolysaccharide Psl-eDNA interaction enables the formation of a biofilm skeleton in Pseudomonas aeruginosa. ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:330-40. [PMID: 25472701 PMCID: PMC4656019 DOI: 10.1111/1758-2229.12252] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 11/21/2014] [Indexed: 05/07/2023]
Abstract
A hallmark of bacterial biofilms is a self-produced extracellular matrix of exopolysaccharide, extracellular DNA (eDNA) and proteins that hold bacterial cells together in the community. However, interactions among matrix components and how the interactions contribute to the formation of matrix remain unclear. Here, we show the physical interaction between exopolysaccharide Psl and eDNA, the two key biofilm matrix components of the opportunistic pathogen Pseudomonas aeruginosa. The interaction allows the two components to combine to form a web of eDNA-Psl fibres, which resembles a biofilm skeleton in the centre of pellicles to give bacteria structural support and capability against agents targeted on one matrix component. The web of eDNA-Psl fibres was also found in flow-cell biofilms at microcolonies initiation stage. The colocalization of eDNA or Psl fibres with bacterial cell membrane stain suggests that fibre-like eDNA is likely derived from the lysis of dead bacteria in biofilms. Psl can interact with DNA from diverse sources, suggesting that P. aeruginosa has the ability to use DNA of other organisms (such as human neutrophils and other bacterial species) to form its own communities, which might increase the survival of P. aeruginosa in multispecies biofilms or within a human host.
Collapse
Affiliation(s)
- Shiwei Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xi Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hongsheng Liu
- School of Life Science, Liaoning University, Shenyang 110036, China
| | - Li Zhang
- School of Life Science, Liaoning University, Shenyang 110036, China
| | - Yuan Guo
- Center for Applied Geosciences, Eberhard Karls University Tuebingen, Tuebingen 72074, Germany
| | - Shan Yu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Daniel J. Wozniak
- Department of Microbial Infection and Immunity, Department of Microbiology, Center for Microbial Interface Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Luyan Z. Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
118
|
Quinn RA, Whiteson K, Lim YW, Salamon P, Bailey B, Mienardi S, Sanchez SE, Blake D, Conrad D, Rohwer F. A Winogradsky-based culture system shows an association between microbial fermentation and cystic fibrosis exacerbation. THE ISME JOURNAL 2015; 9:1024-38. [PMID: 25514533 PMCID: PMC4817692 DOI: 10.1038/ismej.2014.234] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/24/2014] [Accepted: 11/04/2014] [Indexed: 01/09/2023]
Abstract
There is a poor understanding of how the physiology of polymicrobial communities in cystic fibrosis (CF) lungs contributes to pulmonary exacerbations and lung function decline. In this study, a microbial culture system based on the principles of the Winogradsky column (WinCF system) was developed to study the physiology of CF microbes. The system used glass capillary tubes filled with artificial sputum medium to mimic a clogged airway bronchiole. Chemical indicators were added to observe microbial physiology within the tubes. Characterization of sputum samples from seven patients showed variation in pH, respiration, biofilm formation and gas production, indicating that the physiology of CF microbial communities varied among patients. Incubation of homogenized tissues from an explant CF lung mirrored responses of a Pseudomonas aeruginosa pure culture, supporting evidence that end-stage lungs are dominated by this pathogen. Longitudinal sputum samples taken through two exacerbation events in a single patient showed that a two-unit drop in pH and a 30% increase in gas production occurred in the tubes prior to exacerbation, which was reversed with antibiotic treatment. Microbial community profiles obtained through amplification and sequencing of the 16S rRNA gene showed that fermentative anaerobes became more abundant during exacerbation and were then reduced during treatment where P. aeruginosa became the dominant bacterium. Results from the WinCF experiments support the model where two functionally different CF microbial communities exist, the persistent Climax Community and the acute Attack Community. Fermentative anaerobes are hypothesized to be the core members of the Attack Community and production of acidic and gaseous products from fermentation may drive developing exacerbations. Treatment targeting the Attack Community may better resolve exacerbations and resulting lung damage.
Collapse
Affiliation(s)
- Robert A Quinn
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Katrine Whiteson
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Yan-Wei Lim
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Peter Salamon
- Department of Mathematics and Statistics, San Diego State University, San Diego, CA, USA
| | - Barbara Bailey
- Department of Mathematics and Statistics, San Diego State University, San Diego, CA, USA
| | - Simone Mienardi
- Department of Chemistry, University of California, Irvine, CA, USA
| | | | - Don Blake
- Department of Chemistry, University of California, Irvine, CA, USA
| | - Doug Conrad
- Department of Medicine, University of California, San Diego, CA, USA
| | - Forest Rohwer
- Department of Biology, San Diego State University, San Diego, CA, USA
| |
Collapse
|
119
|
Abstract
Bacterial whole-genome sequencing of longitudinally collected isolates enables the investigation of evolutionary trajectories, which may inform both the prevention and treatment of human-associated pathogen infections. A new study explores the adaptation of multiple lineages of Pseudomonas aeruginosa to the lungs of young patients with cystic fibrosis and finds evidence of convergent molecular evolution and historical contingencies.
Collapse
|
120
|
Whiley RA, Fleming EV, Makhija R, Waite RD. Environment and colonisation sequence are key parameters driving cooperation and competition between Pseudomonas aeruginosa cystic fibrosis strains and oral commensal streptococci. PLoS One 2015; 10:e0115513. [PMID: 25710466 PMCID: PMC4339374 DOI: 10.1371/journal.pone.0115513] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 11/25/2014] [Indexed: 11/18/2022] Open
Abstract
Cystic fibrosis (CF) patient airways harbour diverse microbial consortia that, in addition to the recognized principal pathogen Pseudomonas aeruginosa, include other bacteria commonly regarded as commensals. The latter include the oral (viridans) streptococci, which recent evidence indicates play an active role during infection of this environmentally diverse niche. As the interactions between inhabitants of the CF airway can potentially alter disease progression, it is important to identify key cooperators/competitors and environmental influences if therapeutic intervention is to be improved and pulmonary decline arrested. Importantly, we recently showed that virulence of the P. aeruginosa Liverpool Epidemic Strain (LES) could be potentiated by the Anginosus-group of streptococci (AGS). In the present study we explored the relationships between other viridans streptococci (Streptococcus oralis, Streptococcus mitis, Streptococcus gordonii and Streptococcus sanguinis) and the LES and observed that co-culture outcome was dependent upon inoculation sequence and environment. All four streptococcal species were shown to potentiate LES virulence factor production in co-culture biofilms. However, in the case of S. oralis interactions were environmentally determined; in air cooperation within a high cell density co-culture biofilm occurred together with stimulation of LES virulence factor production, while in an atmosphere containing added CO2 this species became a competitor antagonising LES growth through hydrogen peroxide (H2O2) production, significantly altering biofilm population dynamics and appearance. Streptococcus mitis, S. gordonii and S. sanguinis were also capable of H2O2 mediated inhibition of P. aeruginosa growth, but this was only visible when inoculated as a primary coloniser prior to introduction of the LES. Therefore, these observations, which are made in conditions relevant to the biology of CF disease pathogenesis, show that the pathogenic and colonisation potential of P. aeruginosa isolates can be modulated positively and negatively by the presence of oral commensal streptococci.
Collapse
Affiliation(s)
- Robert A. Whiley
- Department of Clinical & Diagnostic Oral Sciences, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, United Kingdom, E1 2AT
| | - Emily V. Fleming
- Centre for Immunology and Infectious Disease, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, United Kingdom, E1 2AT
| | - Ridhima Makhija
- Department of Clinical & Diagnostic Oral Sciences, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, United Kingdom, E1 2AT
| | - Richard D. Waite
- Centre for Immunology and Infectious Disease, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, United Kingdom, E1 2AT
- * E-mail:
| |
Collapse
|
121
|
High individuality of respiratory bacterial communities in a large cohort of adult cystic fibrosis patients under continuous antibiotic treatment. PLoS One 2015; 10:e0117436. [PMID: 25671713 PMCID: PMC4324987 DOI: 10.1371/journal.pone.0117436] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 12/22/2014] [Indexed: 12/14/2022] Open
Abstract
Background Routine clinical diagnostics of CF patients focus only on a restricted set of well-known pathogenic species. Recent molecular studies suggest that infections could be polymicrobial with many bacteria not detected by culture-based diagnostics. Methodology and Principal Findings A large cohort of 56 adults with continuous antibiotic treatment was studied and different microbial diagnostic methods were compared, including culture-independent and culture-based bacterial diagnostics. A total of 72 sputum samples including longitudinal observations was analysed by 16S rRNA gene sequence comparison. Prevalence of known pathogens was highly similar among all methods but the vast spectrum of bacteria associated with CF was only revealed by culture-independent techniques. The sequence comparison enabled confident determination of the bacterial community composition and revealed a high diversity and individuality in the communities across the cohort. Results of microbiological analyses were further compared with individual host factors, such as age, lung function and CFTR genotype. No statistical relationship between these factors and the diversity of the entire community or single bacterial species could be identified. However, patients with non-ΔF508 mutations in the CFTR gene often had low abundances of Pseudomonas aeruginosa. Persistence of specific bacteria in some communities was demonstrated by longitudinal analyses of 13 patients indicating a potential clinical relevance of anaerobic bacteria, such as Fusobacterium nucleatum and Streptococcus millerii. Conclusions The high individuality in community composition and the lack of correlation to clinical host factors might be due to the continuous treatment with antibiotics. Since this is current practice for adult CF patients, the life-long history of the patient and the varying selection pressure on the related microbial communities should be a focus of future studies and its relation to disease progression. These studies should be substantially larger, providing more molecular information on the microbial communities complemented by detailed genetic assessment of the host.
Collapse
|
122
|
Ouellet MM, Leduc A, Nadeau C, Barbeau J, Charette SJ. Pseudomonas aeruginosa isolates from dental unit waterlines can be divided in two distinct groups, including one displaying phenotypes similar to isolates from cystic fibrosis patients. Front Microbiol 2015; 5:802. [PMID: 25653647 PMCID: PMC4301018 DOI: 10.3389/fmicb.2014.00802] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 12/29/2014] [Indexed: 11/15/2022] Open
Abstract
Pseudomonas aeruginosa displays broad genetic diversity, giving it an astonishing capacity to adapt to a variety of environments and to infect a wide range of hosts. While many P. aeruginosa isolates of various origins have been analyzed, isolates from cystic fibrosis (CF) patients have received the most attention. Less is known about the genetic and phenotypic diversity of P. aeruginosa isolates that colonize other environments where flourishing biofilms can be found. In the present study, 29 P. aeruginosa isolates from dental unit waterlines and CF patients were collected and their genetic and phenotypes profiles were compared to determine whether environmental and clinical isolates are related. The isolates were first classified using the random amplified polymorphic DNA method. This made it possible to distribute the isolates into one clinical cluster and two environmental clusters. The isolates in the environmental cluster that were genetically closer to the clinical cluster also displayed phenotypes similar to the clinical isolates. The isolates from the second environmental cluster displayed opposite phenotypes, particularly an increased capacity to form biofilms. The isolates in this cluster were also the only ones harboring genes that encoded specific epimerases involved in the synthesis of lipopolysaccharides, which could explain their increased ability to form biofilms. In conclusion, the isolates from the dental unit waterlines could be distributed into two clusters, with some of the environmental isolates resembled the clinical isolates.
Collapse
Affiliation(s)
- Myriam M. Ouellet
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de QuébecQué, QC, Canada
- Institut de Biologie Intégrative et des Systèmes, UniversitéLaval, Québec, QC, Canada
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, UniversitéLaval, Québec, QC, Canada
| | - Annie Leduc
- Faculté de Médecine Dentaire, Université de MontréalMontréal, QC, Canada
| | - Christine Nadeau
- Faculté de Médecine Dentaire, UniversitéLaval, Québec, QC, Canada
| | - Jean Barbeau
- Faculté de Médecine Dentaire, Université de MontréalMontréal, QC, Canada
| | - Steve J. Charette
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de QuébecQué, QC, Canada
- Institut de Biologie Intégrative et des Systèmes, UniversitéLaval, Québec, QC, Canada
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, UniversitéLaval, Québec, QC, Canada
| |
Collapse
|
123
|
Kamath KS, Kumar SS, Kaur J, Venkatakrishnan V, Paulsen IT, Nevalainen H, Molloy MP. Proteomics of hosts and pathogens in cystic fibrosis. Proteomics Clin Appl 2015; 9:134-46. [DOI: 10.1002/prca.201400122] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/27/2014] [Accepted: 11/18/2014] [Indexed: 12/13/2022]
Affiliation(s)
| | - Sheemal Shanista Kumar
- Department of Chemistry and Biomolecular Sciences; Macquarie University; Sydney Australia
| | - Jashanpreet Kaur
- Department of Chemistry and Biomolecular Sciences; Macquarie University; Sydney Australia
| | | | - Ian T. Paulsen
- Department of Chemistry and Biomolecular Sciences; Macquarie University; Sydney Australia
| | - Helena Nevalainen
- Department of Chemistry and Biomolecular Sciences; Macquarie University; Sydney Australia
| | - Mark P. Molloy
- Department of Chemistry and Biomolecular Sciences; Macquarie University; Sydney Australia
- Australian Proteome Analysis Facility; Macquarie University; Sydney Australia
| |
Collapse
|
124
|
Chen CW, Hsu CY, Lai SM, Syu WJ, Wang TY, Lai PS. Metal nanobullets for multidrug resistant bacteria and biofilms. Adv Drug Deliv Rev 2014; 78:88-104. [PMID: 25138828 DOI: 10.1016/j.addr.2014.08.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 06/27/2014] [Accepted: 08/11/2014] [Indexed: 12/19/2022]
Abstract
Infectious diseases were one of the major causes of mortality until now because drug-resistant bacteria have arisen under broad use and abuse of antibacterial drugs. These multidrug-resistant bacteria pose a major challenge to the effective control of bacterial infections and this threat has prompted the development of alternative strategies to treat bacterial diseases. Recently, use of metallic nanoparticles (NPs) as antibacterial agents is one of the promising strategies against bacterial drug resistance. This review first describes mechanisms of bacterial drug resistance and then focuses on the properties and applications of metallic NPs as antibiotic agents to deal with antibiotic-sensitive and -resistant bacteria. We also provide an overview of metallic NPs as bactericidal agents combating antibiotic-resistant bacteria and their potential in vivo toxicology for further drug development.
Collapse
Affiliation(s)
- Ching-Wen Chen
- Department of Chemistry, National Chung Hsing University, 250, Kuo Kuang Rd., Taichung 402, Taiwan
| | - Chia-Yen Hsu
- Department of Chemistry, National Chung Hsing University, 250, Kuo Kuang Rd., Taichung 402, Taiwan
| | - Syu-Ming Lai
- Department of Chemistry, National Chung Hsing University, 250, Kuo Kuang Rd., Taichung 402, Taiwan
| | - Wei-Jhe Syu
- Department of Chemistry, National Chung Hsing University, 250, Kuo Kuang Rd., Taichung 402, Taiwan
| | - Ting-Yi Wang
- Department of Chemistry, National Chung Hsing University, 250, Kuo Kuang Rd., Taichung 402, Taiwan
| | - Ping-Shan Lai
- Department of Chemistry, National Chung Hsing University, 250, Kuo Kuang Rd., Taichung 402, Taiwan; Research Center for Sustainable Energy and Nanotechnology, National Chung Hsing University, 250, Kuo Kuang Rd., Taichung 402, Taiwan.
| |
Collapse
|
125
|
A French multicentric study and review of pulmonary Nocardia spp. in cystic fibrosis patients. Med Microbiol Immunol 2014; 204:493-504. [DOI: 10.1007/s00430-014-0360-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/22/2014] [Indexed: 01/21/2023]
|
126
|
Pseudomonas aeruginosa eradicates Staphylococcus aureus by manipulating the host immunity. Nat Commun 2014; 5:5105. [PMID: 25290234 DOI: 10.1038/ncomms6105] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 08/29/2014] [Indexed: 12/12/2022] Open
Abstract
Young cystic fibrosis (CF) patients' airways are mainly colonized by Staphylococcus aureus, while Pseudomonas aeruginosa predominates in adults. However, the mechanisms behind this infection switch are unclear. Here, we show that levels of type-IIA-secreted phospholipase A2 (sPLA2-IIA, a host enzyme with bactericidal activity) increase in expectorations of CF patients in an age-dependent manner. These levels are sufficient to kill S. aureus, with marginal effects on P. aeruginosa strains. P. aeruginosa laboratory strains and isolates from CF patients induce sPLA2-IIA expression in bronchial epithelial cells from CF patients (these cells are a major source of the enzyme). In an animal model of lung infection, P. aeruginosa induces sPLA2-IIA production that favours S. aureus killing. We suggest that sPLA2-IIA induction by P. aeruginosa contributes to S. aureus eradication in CF airways. Our results indicate that a bacterium can eradicate another bacterium by manipulating the host immunity.
Collapse
|
127
|
Dalhoff A. Pharmacokinetics and pharmacodynamics of aerosolized antibacterial agents in chronically infected cystic fibrosis patients. Clin Microbiol Rev 2014; 27:753-82. [PMID: 25278574 PMCID: PMC4187638 DOI: 10.1128/cmr.00022-14] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bacteria adapt to growth in lungs of patients with cystic fibrosis (CF) by selection of heterogeneously resistant variants that are not detected by conventional susceptibility testing but are selected for rapidly during antibacterial treatment. Therefore, total bacterial counts and antibiotic susceptibilities are misleading indicators of infection and are not helpful as guides for therapy decisions or efficacy endpoints. High drug concentrations delivered by aerosol may maximize efficacy, as decreased drug susceptibilities of the pathogens are compensated for by high target site concentrations. However, reductions of the bacterial load in sputum and improvements in lung function were within the same ranges following aerosolized and conventional therapies. Furthermore, the use of conventional pharmacokinetic/pharmacodynamic (PK/PD) surrogates correlating pharmacokinetics in serum with clinical cure and presumed or proven eradication of the pathogen as a basis for PK/PD investigations in CF patients is irrelevant, as minimization of systemic exposure is one of the main objectives of aerosolized therapy; in addition, bacterial pathogens cannot be eradicated, and chronic infection cannot be cured. Consequently, conventional PK/PD surrogates are not applicable to CF patients. It is nonetheless obvious that systemic exposure of patients, with all its sequelae, is minimized and that the burden of oral treatment for CF patients suffering from chronic infections is reduced.
Collapse
Affiliation(s)
- Axel Dalhoff
- University Medical Center Schleswig-Holstein, Institute for Infection Medicine, Kiel, Germany
| |
Collapse
|
128
|
Otto M. Physical stress and bacterial colonization. FEMS Microbiol Rev 2014; 38:1250-70. [PMID: 25212723 DOI: 10.1111/1574-6976.12088] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 09/01/2014] [Accepted: 09/05/2014] [Indexed: 02/07/2023] Open
Abstract
Bacterial surface colonizers are subject to a variety of physical stresses. During the colonization of human epithelia such as on the skin or the intestinal mucosa, bacteria mainly have to withstand the mechanical stress of being removed by fluid flow, scraping, or epithelial turnover. To that end, they express a series of molecules to establish firm attachment to the epithelial surface, such as fibrillar protrusions (pili) and surface-anchored proteins that bind to human matrix proteins. In addition, some bacteria--in particular gut and urinary tract pathogens--use internalization by epithelial cells and other methods such as directed inhibition of epithelial turnover to ascertain continued association with the epithelial layer. Furthermore, many bacteria produce multilayered agglomerations called biofilms with a sticky extracellular matrix, providing additional protection from removal. This review will give an overview over the mechanisms human bacterial colonizers have to withstand physical stresses with a focus on bacterial adhesion.
Collapse
Affiliation(s)
- Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Human Bacterial Pathogenesis, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
129
|
Azevedo AS, Almeida C, Melo LF, Azevedo NF. Interaction between atypical microorganisms and E. coli in catheter-associated urinary tract biofilms. BIOFOULING 2014; 30:893-902. [PMID: 25184430 DOI: 10.1080/08927014.2014.944173] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Most biofilms involved in catheter-associated urinary tract infections (CAUTIs) are polymicrobial, with disease causing (eg Escherichia coli) and atypical microorganisms (eg Delftia tsuruhatensis) frequently inhabiting the same catheter. Nevertheless, there is a lack of knowledge about the role of atypical microorganisms. Here, single and dual-species biofilms consisting of E. coli and atypical bacteria (D. tsuruhatensis and Achromobacter xylosoxidans), were evaluated. All species were good biofilm producers (Log 5.84-7.25 CFU cm(-2) at 192 h) in artificial urine. The ability of atypical species to form a biofilm appeared to be hampered by the presence of E. coli. Additionally, when E. coli was added to a pre-formed biofilm of the atypical species, it seemed to take advantage of the first colonizers to accelerate adhesion, even when added at lower concentrations. The results suggest a greater ability of E. coli to form biofilms in conditions mimicking the CAUTIs, whatever the pre-existing microbiota and the inoculum concentration.
Collapse
Affiliation(s)
- Andreia S Azevedo
- a Laboratory for Process Engineering, Environment, and Energy and Biotechnology Engineering (LEPABE), Department of Chemical Engineering, Faculty of Engineering , University of Porto , Rua Dr Roberto Frias, 4200-465 Porto , Portugal
| | | | | | | |
Collapse
|
130
|
Martina P, Feliziani S, Juan C, Bettiol M, Gatti B, Yantorno O, Smania AM, Oliver A, Bosch A. Hypermutation in Burkholderia cepacia complex is mediated by DNA mismatch repair inactivation and is highly prevalent in cystic fibrosis chronic respiratory infection. Int J Med Microbiol 2014; 304:1182-91. [PMID: 25217078 DOI: 10.1016/j.ijmm.2014.08.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 08/15/2014] [Accepted: 08/18/2014] [Indexed: 11/25/2022] Open
Abstract
The Burkholderia cepacia complex (Bcc) represents an important group of pathogens involved in long-term lung infection in cystic fibrosis (CF) patients. A positive selection of hypermutators, linked to antimicrobial resistance development, has been previously reported for Pseudomonas aeruginosa in this chronic infection setting. Hypermutability, however, has not yet been systematically evaluated in Bcc species. A total of 125 well characterized Bcc isolates recovered from 48 CF patients, 10 non-CF patients and 15 environmental samples were analyzed. In order to determine the prevalence of mutators their spontaneous mutation rates to rifampicin resistance were determined. In addition, the genetic basis of the mutator phenotypes was investigated by sequencing the mutS and mutL genes, the main components of the mismatch repair system (MRS). The overall prevalence of hypermutators in the collection analyzed was 13.6%, with highest occurrence (40.7%) among the chronically infected CF patients, belonging mainly to B. cenocepacia, B. multivorans, B. cepacia, and B. contaminans -the most frequently recovered Bcc species from CF patients worldwide. Thirteen (76.5%) of the hypermutators were defective in mutS and/or mutL. Finally, searching for a possible association between antimicrobial resistance and hypermutability, the resistance-profiles to 17 antimicrobial agents was evaluated. High antimicrobial resistance rates were documented for all the Bcc species recovered from CF patients, but, except for ciprofloxacin, a significant association with hypermutation was not detected. In conclusion, in the present study we demonstrate for the first time that, MRS-deficient Bcc species mutators are highly prevalent and positively selected in CF chronic lung infections. Hypermutation therefore, might be playing a key role in increasing bacterial adaptability to the CF-airway environment, facilitating the persistence of chronic lung infections.
Collapse
Affiliation(s)
- Pablo Martina
- CINDEFI-CONICET-CCT La Plata, Centro de Biotecnología Aplicada, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 La Plata, Argentina
| | - Sofía Feliziani
- CIQUIBIC-CONICET, Centro de Investigaciones en Química Biológica de Córdoba, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
| | - Carlos Juan
- Servicio de Microbiología y Unidad de Investigación, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria de Palma (IdISPa), 07010 Palma de Mallorca, Spain
| | - Marisa Bettiol
- Sala de Microbiología, Hospital de Niños de La Plata "Sor María Ludovica", 1900 La Plata, Argentina
| | - Blanca Gatti
- Sala de Microbiología, Hospital de Niños de La Plata "Sor María Ludovica", 1900 La Plata, Argentina
| | - Osvaldo Yantorno
- CINDEFI-CONICET-CCT La Plata, Centro de Biotecnología Aplicada, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 La Plata, Argentina
| | - Andrea M Smania
- CIQUIBIC-CONICET, Centro de Investigaciones en Química Biológica de Córdoba, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
| | - Antonio Oliver
- Servicio de Microbiología y Unidad de Investigación, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria de Palma (IdISPa), 07010 Palma de Mallorca, Spain.
| | - Alejandra Bosch
- CINDEFI-CONICET-CCT La Plata, Centro de Biotecnología Aplicada, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 La Plata, Argentina.
| |
Collapse
|
131
|
Abstract
Bacteria Pseudomonas aeruginosa, being opportunistic pathogens, are the major cause of nosocomial infections and, in some cases, the primary cause of death. They are virtually untreatable with currently known antibiotics. Phage therapy is considered as one of the possible approaches to the treatment of P. aeruginosa infections. Difficulties in the implementation of phage therapy in medical practice are related, for example, to the insufficient number and diversity of virulent phages that are active against P. aeruginosa. Results of interaction of therapeutic phages with bacteria in different conditions and environments are studied insufficiently. A little is known about possible interactions of therapeutic phages with resident prophages and plasmids in clinical strains in the foci of infections. This chapter highlights the different approaches to solving these problems and possible ways to expand the diversity of therapeutic P. aeruginosa phages and organizational arrangements (as banks of phages) to ensure long-term use of phages in the treatment of P. aeruginosa infections.
Collapse
Affiliation(s)
- Victor N Krylov
- Mechnikov Research Institute for Vaccines & Sera, Russian Academy of Medical Sciences, Moscow, Russia.
| |
Collapse
|
132
|
Smith DJ, Badrick AC, Zakrzewski M, Krause L, Bell SC, Anderson GJ, Reid DW. Pyrosequencing reveals transient cystic fibrosis lung microbiome changes with intravenous antibiotics. Eur Respir J 2014; 44:922-30. [DOI: 10.1183/09031936.00203013] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Chronic airway infection in adults with cystic fibrosis (CF) is polymicrobial and the impact of intravenous antibiotics on the bacterial community composition is poorly understood. We employed culture-independent molecular techniques to explore the early effects of i.v. antibiotics on the CF airway microbiome.DNA was extracted from sputum samples collected from adult subjects with CF at three time-points (before starting treatment, and at day 3 and day 8–10 of i.v. antibiotics) during treatment of an infective pulmonary exacerbation. Microbial community profiles were derived through analysis of bacterial-derived 16S ribosomal RNA by pyrosequencing and changes over time were compared.59 sputum samples were collected during 24 pulmonary exacerbations from 23 subjects. Between treatment onset and day 3 there was a significant reduction in the relative abundance of Pseudomonas and increased microbial diversity. By day 8–10, bacterial community composition was similar to pre-treatment. Changes in community composition did not predict improvements in lung function.The relative abundance of Pseudomonas falls rapidly in subjects with CF receiving i.v. antibiotic treatment for a pulmonary exacerbation and is accompanied by an increase in overall microbial diversity. However, this effect is not maintained beyond the first week of treatment.
Collapse
|
133
|
McCarthy RR, Mooij MJ, Reen FJ, Lesouhaitier O, O'Gara F. A new regulator of pathogenicity (bvlR) is required for full virulence and tight microcolony formation in Pseudomonas aeruginosa. MICROBIOLOGY (READING, ENGLAND) 2014; 160:1488-1500. [PMID: 24829363 DOI: 10.1099/mic.0.075291-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
LysR-type transcriptional regulators (LTTRs) are the most common family of transcriptional regulators found in the opportunistic pathogen Pseudomonas aeruginosa. They are known to regulate a wide variety of virulence determinants and have emerged recently as positive global regulators of pathogenicity in a broad spectrum of important bacterial pathogens. However, in spite of their key role in modulating expression of key virulence determinants underpinning pathogenic traits associated with the process of infection, surprisingly few are found to be transcriptionally altered by contact with host cells. BvlR (PA14_26880) an LTTR of previously unknown function, has been shown to be induced in response to host cell contact, and was therefore investigated for its potential role in virulence. BvlR expression was found to play a pivotal role in the regulation of acute virulence determinants such as type III secretion system and exotoxin A production. BvlR also played a key role in P. aeruginosa pathogenicity within the Caenorhabditis elegans acute model of infection. Loss of BvlR led to an inability to form tight microcolonies, a key step in biofilm formation in the cystic fibrosis lung, although surface attachment was increased. Unusually for LTTRs, BvlR was shown to exert its influence through the transcriptional repression of many genes, including the virulence-associated cupA and alg genes. This highlights the importance of BvlR as a new virulence regulator in P. aeruginosa with a central role in modulating key events in the pathogen-host interactome.
Collapse
Affiliation(s)
- Ronan R McCarthy
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland
| | - Marlies J Mooij
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland
| | - F Jerry Reen
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland
| | - Olivier Lesouhaitier
- Laboratory of Microbiology Signals and Microenvironment LMSM EA4312, University of Rouen, 55 rue Saint Germain, 27000 Evreux, France
| | - Fergal O'Gara
- Curtin University, School of Biomedical Sciences, Perth, WA, Australia
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
134
|
Iebba V, Totino V, Santangelo F, Gagliardi A, Ciotoli L, Virga A, Ambrosi C, Pompili M, De Biase RV, Selan L, Artini M, Pantanella F, Mura F, Passariello C, Nicoletti M, Nencioni L, Trancassini M, Quattrucci S, Schippa S. Bdellovibrio bacteriovorus directly attacks Pseudomonas aeruginosa and Staphylococcus aureus Cystic fibrosis isolates. Front Microbiol 2014; 5:280. [PMID: 24926292 PMCID: PMC4046265 DOI: 10.3389/fmicb.2014.00280] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 05/22/2014] [Indexed: 01/05/2023] Open
Abstract
Bdellovibrio bacteriovorus is a predator bacterial species found in the environment and within the human gut, able to attack Gram-negative prey. Cystic fibrosis (CF) is a genetic disease which usually presents lung colonization by Pseudomonas aeruginosa or Staphylococcus aureus biofilms. Here, we investigated the predatory behavior of B. bacteriovorus against these two pathogenic species with: (1) broth culture; (2) "static" biofilms; (3) field emission scanning electron microscope (FESEM); (4) "flow" biofilms; (5) zymographic technique. We had the first evidence of B. bacteriovorus survival with a Gram-positive prey, revealing a direct cell-to-cell contact with S. aureus and a new "epibiotic" foraging strategy imaged with FESEM. Mean attaching time of HD100 to S. aureus cells was 185 s, while "static" and "flow" S. aureus biofilms were reduced by 74 (at 24 h) and 46% (at 20 h), respectively. Furthermore, zymograms showed a differential bacteriolytic activity exerted by the B. bacteriovorus lysates on P. aeruginosa and S. aureus. The dual foraging system against Gram-negative (periplasmic) and Gram-positive (epibiotic) prey could suggest the use of B. bacteriovorus as a "living antibiotic" in CF, even if further studies are required to simulate its in vivo predatory behavior.
Collapse
Affiliation(s)
- Valerio Iebba
- Microbiology Section, Department of Public Health and Infectious Diseases, "Sapienza" University Rome, Italy
| | - Valentina Totino
- Microbiology Section, Department of Public Health and Infectious Diseases, "Sapienza" University Rome, Italy
| | - Floriana Santangelo
- Microbiology Section, Department of Public Health and Infectious Diseases, "Sapienza" University Rome, Italy
| | - Antonella Gagliardi
- Microbiology Section, Department of Public Health and Infectious Diseases, "Sapienza" University Rome, Italy
| | - Luana Ciotoli
- Microbiology Section, Department of Public Health and Infectious Diseases, "Sapienza" University Rome, Italy
| | - Alessandra Virga
- Microbiology Section, Department of Public Health and Infectious Diseases, "Sapienza" University Rome, Italy
| | - Cecilia Ambrosi
- Microbiology Section, Department of Public Health and Infectious Diseases, "Sapienza" University Rome, Italy
| | - Monica Pompili
- Microbiology Section, Department of Public Health and Infectious Diseases, "Sapienza" University Rome, Italy
| | - Riccardo V De Biase
- Department of Pediatrics and Neuropsychiatry, "Sapienza" University Rome, Italy
| | - Laura Selan
- Microbiology Section, Department of Public Health and Infectious Diseases, "Sapienza" University Rome, Italy
| | - Marco Artini
- Microbiology Section, Department of Public Health and Infectious Diseases, "Sapienza" University Rome, Italy
| | - Fabrizio Pantanella
- Microbiology Section, Department of Public Health and Infectious Diseases, "Sapienza" University Rome, Italy
| | - Francesco Mura
- Sapienza Nanoscience and Nanotecnology Laboratories, Department of Fundamental and Applied Sciences for Engineering, "Sapienza" University Rome, Italy
| | - Claudio Passariello
- Microbiology Section, Department of Public Health and Infectious Diseases, "Sapienza" University Rome, Italy
| | - Mauro Nicoletti
- Section of Microbiology, Department of Biomedical Sciences, University G. D'Annunzio Chieti, Italy
| | - Lucia Nencioni
- Microbiology Section, Department of Public Health and Infectious Diseases, "Sapienza" University Rome, Italy
| | - Maria Trancassini
- Microbiology Section, Department of Public Health and Infectious Diseases, "Sapienza" University Rome, Italy
| | - Serena Quattrucci
- Department of Pediatrics and Neuropsychiatry, "Sapienza" University Rome, Italy
| | - Serena Schippa
- Microbiology Section, Department of Public Health and Infectious Diseases, "Sapienza" University Rome, Italy
| |
Collapse
|
135
|
Development of an ex vivo porcine lung model for studying growth, virulence, and signaling of Pseudomonas aeruginosa. Infect Immun 2014; 82:3312-23. [PMID: 24866798 PMCID: PMC4136229 DOI: 10.1128/iai.01554-14] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Research into chronic infection by bacterial pathogens, such as Pseudomonas aeruginosa, uses various in vitro and live host models. While these have increased our understanding of pathogen growth, virulence, and evolution, each model has certain limitations. In vitro models cannot recapitulate the complex spatial structure of host organs, while experiments on live hosts are limited in terms of sample size and infection duration for ethical reasons; live mammal models also require specialized facilities which are costly to run. To address this, we have developed an ex vivo pig lung (EVPL) model for quantifying Pseudomonas aeruginosa growth, quorum sensing (QS), virulence factor production, and tissue damage in an environment that mimics a chronically infected cystic fibrosis (CF) lung. In a first test of our model, we show that lasR mutants, which do not respond to 3-oxo-C12-homoserine lactone (HSL)-mediated QS, exhibit reduced virulence factor production in EVPL. We also show that lasR mutants grow as well as or better than a corresponding wild-type strain in EVPL. lasR mutants frequently and repeatedly arise during chronic CF lung infection, but the evolutionary forces governing their appearance and spread are not clear. Our data are not consistent with the hypothesis that lasR mutants act as social “cheats” in the lung; rather, our results support the hypothesis that lasR mutants are more adapted to the lung environment. More generally, this model will facilitate improved studies of microbial disease, especially studies of how cells of the same and different species interact in polymicrobial infections in a spatially structured environment.
Collapse
|
136
|
Kelly JJ, Minalt N, Culotti A, Pryor M, Packman A. Temporal variations in the abundance and composition of biofilm communities colonizing drinking water distribution pipes. PLoS One 2014; 9:e98542. [PMID: 24858562 PMCID: PMC4032344 DOI: 10.1371/journal.pone.0098542] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 05/05/2014] [Indexed: 11/18/2022] Open
Abstract
Pipes that transport drinking water through municipal drinking water distribution systems (DWDS) are challenging habitats for microorganisms. Distribution networks are dark, oligotrophic and contain disinfectants; yet microbes frequently form biofilms attached to interior surfaces of DWDS pipes. Relatively little is known about the species composition and ecology of these biofilms due to challenges associated with sample acquisition from actual DWDS. We report the analysis of biofilms from five pipe samples collected from the same region of a DWDS in Florida, USA, over an 18 month period between February 2011 and August 2012. The bacterial abundance and composition of biofilm communities within the pipes were analyzed by heterotrophic plate counts and tag pyrosequencing of 16S rRNA genes, respectively. Bacterial numbers varied significantly based on sampling date and were positively correlated with water temperature and the concentration of nitrate. However, there was no significant relationship between the concentration of disinfectant in the drinking water (monochloramine) and the abundance of bacteria within the biofilms. Pyrosequencing analysis identified a total of 677 operational taxonomic units (OTUs) (3% distance) within the biofilms but indicated that community diversity was low and varied between sampling dates. Biofilms were dominated by a few taxa, specifically Methylomonas, Acinetobacter, Mycobacterium, and Xanthomonadaceae, and the dominant taxa within the biofilms varied dramatically between sampling times. The drinking water characteristics most strongly correlated with bacterial community composition were concentrations of nitrate, ammonium, total chlorine and monochloramine, as well as alkalinity and hardness. Biofilms from the sampling date with the highest nitrate concentration were the most abundant and diverse and were dominated by Acinetobacter.
Collapse
Affiliation(s)
- John J. Kelly
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
- * E-mail:
| | - Nicole Minalt
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Alessandro Culotti
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois, United States of America
| | - Marsha Pryor
- Pinellas County Utilities Laboratory, Largo, Florida, United States of America
| | - Aaron Packman
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois, United States of America
| |
Collapse
|
137
|
Aspirated bile: a major host trigger modulating respiratory pathogen colonisation in cystic fibrosis patients. Eur J Clin Microbiol Infect Dis 2014; 33:1763-71. [PMID: 24816901 PMCID: PMC4182646 DOI: 10.1007/s10096-014-2133-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 04/21/2014] [Indexed: 10/30/2022]
Abstract
Chronic respiratory infections are a leading global cause of morbidity and mortality. However, the molecular triggers that cause respiratory pathogens to adopt persistent and often untreatable lifestyles during infection remain largely uncharacterised. Recently, bile aspiration caused by gastro-oesophageal reflux (GOR) has emerged as a significant complication associated with respiratory disease, and cystic fibrosis (CF) in particular. Based on our previous finding that the physiological concentrations of bile influence respiratory pathogens towards a chronic lifestyle in vitro, we investigated the impact of bile aspiration on the lung microbiome of respiratory patients. Sputum samples (n = 25) obtained from a cohort of paediatric CF patients were profiled for the presence of bile acids using high-resolution liquid chromatography-mass spectrometry (LC-MS). Pyrosequencing was performed on a set of ten DNA samples that were isolated from bile aspirating (n = 5) and non-bile aspirating (n = 5) patients. Both denaturing gradient gel electrophoresis (DGGE) and pyrosequencing revealed significantly reduced biodiversity and richness in the sputum samples from bile aspirating patients when compared with non-aspirating patients. Families and genera associated with the pervasive CF microbiome dominated aspirating patients, while bacteria associated with the healthy lung were most abundant in non-aspirating patients. Bile aspiration linked to GOR is emerging as a major host trigger of chronic bacterial infections. The markedly reduced biodiversity and increased colonisation by dominant proteobacterial CF-associated pathogens observed in the sputum of bile aspirating patients suggest that bile may play a major role in disease progression in CF and other respiratory diseases.
Collapse
|
138
|
Hutchison JB, Rodesney CA, Kaushik KS, Le HH, Hurwitz DA, Irie Y, Gordon VD. Single-cell control of initial spatial structure in biofilm development using laser trapping. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:4522-4530. [PMID: 24684606 DOI: 10.1021/la500128y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Biofilms are sessile communities of microbes that are spatially structured by an embedding matrix. Biofilm infections are notoriously intractable. This arises, in part, from changes in the bacterial phenotype that result from spatial structure. Understanding these interactions requires methods to control the spatial structure of biofilms. We present a method for growing biofilms from initiating cells whose positions are controlled with single-cell precision using laser trapping. The native growth, motility, and surface adhesion of positioned microbes are preserved, as we show for model organisms Pseudomonas aeruginosa and Staphylococcus aureus. We demonstrate that laser-trapping and placing bacteria on surfaces can reveal the effects of spatial structure on bacterial growth in early biofilm development.
Collapse
Affiliation(s)
- Jaime B Hutchison
- Center for Nonlinear Dynamics and Department of Physics and ‡School of Biological Sciences, The University of Texas at Austin , Austin, Texas 78712, United States
| | | | | | | | | | | | | |
Collapse
|
139
|
Adaptation of iron homeostasis pathways by a Pseudomonas aeruginosa pyoverdine mutant in the cystic fibrosis lung. J Bacteriol 2014; 196:2265-76. [PMID: 24727222 DOI: 10.1128/jb.01491-14] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Cystic fibrosis (CF) patients suffer from chronic bacterial lung infections, most notably by Pseudomonas aeruginosa, which persists for decades in the lungs and undergoes extensive evolution. P. aeruginosa requires iron for virulence and uses the fluorescent siderophore pyoverdine to scavenge and solubilize ferric iron during acute infections. Pyoverdine mutants accumulate in the lungs of some CF patients, however, suggesting that the heme and ferrous iron acquisition pathways of P. aeruginosa are more important in this environment. Here, we sought to determine how evolution of P. aeruginosa in the CF lung affects iron acquisition and regulatory pathways through the use of longitudinal CF isolates. These analyses demonstrated a significant reduction of siderophore production during the course of CF lung infection in nearly all strains tested. Mass spectrometry analysis of one of these strains showed that the later CF isolate has streamlined the metabolic flux of extracellular heme through the HemO heme oxygenase, resulting in more-efficient heme utilization. Moreover, gene expression analysis shows that iron regulation via the PrrF small RNAs (sRNAs) is enhanced in the later CF isolate. Finally, analysis of P. aeruginosa gene expression in the lungs of various CF patients demonstrates that both PrrF and HemO are consistently expressed in the CF lung environment. Combined, these results suggest that heme is a critical source of iron during prolonged infection of the CF lung and that changes in iron and heme regulatory pathways play a crucial role in adaptation of P. aeruginosa to this ever-changing host environment.
Collapse
|
140
|
Ward AC, Connolly P, Tucker NP. Pseudomonas aeruginosa can be detected in a polymicrobial competition model using impedance spectroscopy with a novel biosensor. PLoS One 2014; 9:e91732. [PMID: 24614411 PMCID: PMC3948879 DOI: 10.1371/journal.pone.0091732] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 02/14/2014] [Indexed: 11/19/2022] Open
Abstract
Electrochemical Impedance Spectroscopy (EIS) is a powerful technique that can be used to elicit information about an electrode interface. In this article, we highlight six principal processes by which the presence of microorganisms can affect impedance and show how one of these--the production of electroactive metabolites--changes the impedance signature of culture media containing Pseudomonas aeruginosa. EIS, was used in conjunction with a low cost screen printed carbon sensor to detect the presence of P. aeruginosa when grown in isolation or as part of a polymicrobial infection with Staphylococcus aureus. By comparing the electrode to a starting measurement, we were able to identify an impedance signature characteristic of P. aeruginosa. Furthermore, we are able to show that one of the changes in the impedance signature is due to pyocyanin and associated phenazine compounds. The findings of this study indicate that it might be possible to develop a low cost sensor for the detection of P. aeruginosa in important point of care diagnostic applications. In particular, we suggest that a development of the device described here could be used in a polymicrobial clinical sample such as sputum from a CF patient to detect P. aeruginosa.
Collapse
Affiliation(s)
- Andrew C. Ward
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Patricia Connolly
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, United Kingdom
- * E-mail:
| | - Nicholas P. Tucker
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
141
|
Baldan R, Cigana C, Testa F, Bianconi I, De Simone M, Pellin D, Di Serio C, Bragonzi A, Cirillo DM. Adaptation of Pseudomonas aeruginosa in Cystic Fibrosis airways influences virulence of Staphylococcus aureus in vitro and murine models of co-infection. PLoS One 2014; 9:e89614. [PMID: 24603807 PMCID: PMC3945726 DOI: 10.1371/journal.pone.0089614] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 01/23/2014] [Indexed: 12/18/2022] Open
Abstract
Cystic fibrosis (CF) airways disease represents an example of polymicrobial infection whereby different bacterial species can interact and influence each other. In CF patients Staphylococcus aureus is often the initial pathogen colonizing the lungs during childhood, while Pseudomonas aeruginosa is the predominant pathogen isolated in adolescents and adults. During chronic infection, P. aeruginosa undergoes adaptation to cope with antimicrobial therapy, host response and co-infecting pathogens. However, S. aureus and P. aeruginosa often co-exist in the same niche influencing the CF pathogenesis. The goal of this study was to investigate the reciprocal interaction of P. aeruginosa and S. aureus and understand the influence of P. aeruginosa adaptation to the CF lung in order to gain important insight on the interplay occurring between the two main pathogens of CF airways, which is still largely unknown. P. aeruginosa reference strains and eight lineages of clinical strains, including early and late clonal isolates from different patients with CF, were tested for growth inhibition of S. aureus. Next, P. aeruginosa/S. aureus competition was investigated in planktonic co-culture, biofilm, and mouse pneumonia model. P. aeruginosa reference and early strains, isolated at the onset of chronic infection, outcompeted S. aureus in vitro and in vivo models of co-infection. On the contrary, our results indicated a reduced capacity to outcompete S. aureus of P. aeruginosa patho-adaptive strains, isolated after several years of chronic infection and carrying several phenotypic changes temporally associated with CF lung adaptation. Our findings provide relevant information with respect to interspecies interaction and disease progression in CF.
Collapse
Affiliation(s)
- Rossella Baldan
- Emerging Bacterial Pathogens Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Cristina Cigana
- Infection and Cystic Fibrosis Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Testa
- Emerging Bacterial Pathogens Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Irene Bianconi
- Infection and Cystic Fibrosis Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Maura De Simone
- Infection and Cystic Fibrosis Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Danilo Pellin
- University Centre for Statistics in the Biomedical Sciences, Università Vita-Salute San Raffaele, Milan, Italy
| | - Clelia Di Serio
- University Centre for Statistics in the Biomedical Sciences, Università Vita-Salute San Raffaele, Milan, Italy
| | - Alessandra Bragonzi
- Infection and Cystic Fibrosis Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Daniela M. Cirillo
- Emerging Bacterial Pathogens Unit, San Raffaele Scientific Institute, Milan, Italy
- * E-mail:
| |
Collapse
|
142
|
Lithgow KV, Scott NE, Iwashkiw JA, Thomson ELS, Foster LJ, Feldman MF, Dennis JJ. A general protein O-glycosylation system within the Burkholderia cepacia complex is involved in motility and virulence. Mol Microbiol 2014; 92:116-37. [PMID: 24673753 DOI: 10.1111/mmi.12540] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2014] [Indexed: 01/25/2023]
Abstract
Bacteria of the Burkholderia cepacia complex (Bcc) are pathogens of humans, plants, and animals. Burkholderia cenocepacia is one of the most common Bcc species infecting cystic fibrosis (CF) patients and its carriage is associated with poor prognosis. In this study, we characterized a general O-linked protein glycosylation system in B. cenocepacia K56-2. The PglLBc O-oligosaccharyltransferase (O-OTase), encoded by the cloned gene bcal0960, was shown to be capable of transferring a heptasaccharide from the Campylobacter jejuni N-glycosylation system to a Neisseria meningitides-derived acceptor protein in an Escherichia coli background, indicating that the enzyme has relaxed specificities for both the sugar donor and protein acceptor. In B cenocepacia K56-2, PglLBc is responsible for the glycosylation of 23 proteins involved in diverse cellular processes. Mass spectrometry analysis revealed that these proteins are modified with a trisaccharide HexNAc-HexNAc-Hex, which is unrelated to the O-antigen biosynthetic process. The glycosylation sites that were identified existed within regions of low complexity, rich in serine, alanine, and proline. Disruption of bcal0960 abolished glycosylation and resulted in reduced swimming motility and attenuated virulence towards both plant and insect model organisms. This study demonstrates the first example of post-translational modification in Bcc with implications for pathogenesis.
Collapse
Affiliation(s)
- Karen V Lithgow
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2E9
| | | | | | | | | | | | | |
Collapse
|
143
|
Exploring the Anti-Burkholderia cepacia Complex Activity of Essential Oils: A Preliminary Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:573518. [PMID: 24701243 PMCID: PMC3950482 DOI: 10.1155/2014/573518] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 01/10/2014] [Indexed: 11/18/2022]
Abstract
In this work we have checked the ability of the essential oils extracted from six different medicinal plants (Eugenia caryophyllata, Origanum vulgare, Rosmarinus officinalis, Lavandula officinalis, Melaleuca alternifolia, and Thymus vulgaris) to inhibit the growth of 18 bacterial type strains belonging to the 18 known species of the Burkholderia cepacia complex (Bcc). These bacteria are opportunistic human pathogens that can cause severe infection in immunocompromised patients, especially those affected by cystic fibrosis (CF), and are often resistant to multiple antibiotics. The analysis of the aromatograms produced by the six oils revealed that, in spite of their different chemical composition, all of them were able to contrast the growth of Bcc members. However, three of them (i.e., Eugenia caryophyllata, Origanum vulgare, and Thymus vulgaris) were particularly active versus the Bcc strains, including those exhibiting a high degree or resistance to ciprofloxacin, one of the most used antibiotics to treat Bcc infections. These three oils are also active toward both environmental and clinical strains (isolated from CF patients), suggesting that they might be used in the future to fight B. cepacia complex infections.
Collapse
|
144
|
Peled O, Kalamaro V, Kerem E, Shoseyov D, Blau H, Efrati O, Block C. Contamination of hypertonic saline solutions in use by cystic fibrosis patients in Israel. J Cyst Fibros 2014; 13:550-6. [PMID: 24484849 DOI: 10.1016/j.jcf.2014.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/09/2014] [Accepted: 01/10/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND Treatment of cystic fibrosis (CF) patients with inhaled hypertonic saline (HS) solutions is safe, beneficial and reduces exacerbation rates. We studied contamination of solutions used by Israeli CF patients for prolonged periods. METHODS The study addressed whether daily opening of previously unopened solutions caused contamination, survival of 6 CF-associated bacteria in artificially inoculated solutions, in-use contamination of solutions and patterns of their use by patients. RESULTS Repeated opening did not contaminate solutions and survival of indicator bacteria was variable. Mycobacterium abscessus survived in 3% HS solution for 6 weeks and Burkholderia cenocepacia and Pseudomonas aeruginosa were longer. In 30/76 (39.5%) of used solutions 49 contaminants were found, none being common CF-associated pathogens. CONCLUSIONS Most CF-related bacteria survived to some degree in HS. Approximately 40% of solutions used by patients were contaminated by organisms of uncertain significance. Our findings highlight the potential risk posed by contamination of HS solutions and support recommendations to use sterile unit-dose formulations.
Collapse
Affiliation(s)
- Orit Peled
- Department of Pharmacy, Schneider Children's Medical Center, 14 Kaplan St., PO Box 559, Petah Tikva 49202, Israel
| | - Vardit Kalamaro
- Cystic Fibrosis Foundation of Israel, 79 Krinitzy St., Ramat-Gan 52423, Israel; Graub Cystic Fibrosis Center, Pulmonary Unit, Schneider Children's Medical Center, 14 Kaplan St., PO Box 559, Petah Tikva 49202, Israel; Edmond and Lili Safra Children's Hospital, Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan 52621, Israel
| | - Eitan Kerem
- Department of Pediatrics and Cystic Fibrosis Center, Hadassah Hebrew University Hospital, PO Box 24035, Mount Scopus, Jerusalem 91240, Israel
| | - David Shoseyov
- Department of Pediatrics and Cystic Fibrosis Center, Hadassah Hebrew University Hospital, PO Box 24035, Mount Scopus, Jerusalem 91240, Israel
| | - Hannah Blau
- Graub Cystic Fibrosis Center, Pulmonary Unit, Schneider Children's Medical Center, 14 Kaplan St., PO Box 559, Petah Tikva 49202, Israel; Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Ori Efrati
- Edmond and Lili Safra Children's Hospital, Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan 52621, Israel
| | - Colin Block
- Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, PO Box 12000, Ein Kerem, Jerusalem 91120, Israel.
| |
Collapse
|
145
|
Moreira AS, Coutinho CP, Azevedo P, Lito L, Melo-Cristino J, Sá-Correia I. Burkholderia dolosa phenotypic variation during the decline in lung function of a cystic fibrosis patient during 5.5 years of chronic colonization. J Med Microbiol 2014; 63:594-601. [PMID: 24469681 DOI: 10.1099/jmm.0.069849-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Although rarely isolated from cystic fibrosis (CF) patients, Burkholderia dolosa is associated with accelerated lung function decline. During 18 years of epidemiological surveillance in the major Portuguese CF centre in Lisbon, only one patient was infected with B. dolosa. Pulmonary deterioration, associated with the evolution of forced expiratory volume in 1 s, occurred during 5.5 years of colonization with this B. dolosa clone (with the new sequence type ST-668). Transient co-colonization with Burkholderia cenocepacia and other bacterial and fungal pathogens occurred, but B. dolosa prevailed until the patient's death. The systematic assessment of relevant phenotypes for the sequential clonal isolates examined in this retrospective study (14 of B. dolosa and four of B. cenocepacia) showed that they were variants, although in general no isolation time-dependent pattern of alteration was identified. However, the first B. dolosa isolate retrieved was more susceptible to gentamicin, imipenem and tobramycin, and exhibited a higher swarming motility compared with most of the isolates obtained during the later stages of disease progression and antimicrobial therapy.
Collapse
Affiliation(s)
- Ana Sílvia Moreira
- IBB - Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Carla P Coutinho
- IBB - Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Pilar Azevedo
- Consulta de Fibrose Quística, Unidade de Pneumologia, Hospital de Santa Maria, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Luís Lito
- Laboratório de Patologia Clínica, Hospital de Santa Maria, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - José Melo-Cristino
- Laboratório de Patologia Clínica, Hospital de Santa Maria, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Isabel Sá-Correia
- IBB - Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| |
Collapse
|
146
|
Interspecific small molecule interactions between clinical isolates of Pseudomonas aeruginosa and Staphylococcus aureus from adult cystic fibrosis patients. PLoS One 2014; 9:e86705. [PMID: 24466207 PMCID: PMC3900594 DOI: 10.1371/journal.pone.0086705] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 12/12/2013] [Indexed: 02/05/2023] Open
Abstract
Pseudomonas aeruginosa and Staphylococcus aureus are the most prevalent pathogens in airway infections of cystic fibrosis (CF) patients. We studied how these pathogens coexist and interact with each other. Clinical isolates of both species were retrieved from adult CF patients. Culture supernatants from 63 P. aeruginosa isolates triggered a wide range of biofilm-stimulatory activities when added to the culture of a control S. aureus strain. The extent of biofilm formation by S. aureus was positively correlated to the levels of the 2-alkyl-4-(1H)-quinolones (AQs) Pseudomonas Quinolone Signal (PQS) and 2-heptyl-4-hydroxy quinoline N-oxide (HQNO) produced by the P. aeruginosa isolates. Supernatants from P. aeruginosa isogenic mutants deficient in PQS and HQNO production stimulated significantly less biofilm formation by S. aureus than that seen with the parental strain PA14. When studying co-isolated pairs of P. aeruginosa and S. aureus retrieved from patients showing both pathogens, P. aeruginosa supernatants stimulated less biofilm production by the S. aureus counterparts compared to that observed using the control S. aureus strain. Accordingly, some P. aeruginosa isolates produced low levels of exoproducts and also some of the clinical S. aureus isolates were not stimulated by their co-isolates or by PA14 despite adequate production of HQNO. This suggests that colonization of the CF lungs promotes some type of strain selection, or that co-existence requires specific adaptations by either or both pathogens. Results provide insights on bacterial interactions in CF.
Collapse
|
147
|
Burrowes B, Harper DR, Anderson J, McConville M, Enright MC. Bacteriophage therapy: potential uses in the control of antibiotic-resistant pathogens. Expert Rev Anti Infect Ther 2014; 9:775-85. [DOI: 10.1586/eri.11.90] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
148
|
Tomaiuolo G, Rusciano G, Caserta S, Carciati A, Carnovale V, Abete P, Sasso A, Guido S. A new method to improve the clinical evaluation of cystic fibrosis patients by mucus viscoelastic properties. PLoS One 2014; 9:e82297. [PMID: 24404129 PMCID: PMC3880261 DOI: 10.1371/journal.pone.0082297] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 10/22/2013] [Indexed: 11/18/2022] Open
Abstract
In cystic fibrosis (CF) patients airways mucus shows an increased viscoelasticity due to the concentration of high molecular weight components. Such mucus thickening eventually leads to bacterial overgrowth and prevents mucus clearance. The altered rheological behavior of mucus results in chronic lung infection and inflammation, which causes most of the cases of morbidity and mortality, although the cystic fibrosis complications affect other organs as well. Here, we present a quantitative study on the correlation between cystic fibrosis mucus viscoelasticity and patients clinical status. In particular, a new diagnostic parameter based on the correlation between CF sputum viscoelastic properties and the severity of the disease, expressed in terms of FEV1 and bacterial colonization, was developed. By using principal component analysis, we show that the types of colonization and FEV1 classes are significantly correlated to the elastic modulus, and that the latter can be used for CF severity classification with a high predictive efficiency (88%). The data presented here show that the elastic modulus of airways mucus, given the high predictive efficiency, could be used as a new clinical parameter in the prognostic evaluation of cystic fibrosis.
Collapse
Affiliation(s)
- Giovanna Tomaiuolo
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, Napoli, Italy
- CEINGE-Advanced Biotechnologies, Napoli, Italy
- * E-mail:
| | - Giulia Rusciano
- Dipartimento di Fisica, Università di Napoli Federico II, Complesso Universitario M.S. Angelo, Napoli, Italy
| | - Sergio Caserta
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, Napoli, Italy
- CEINGE-Advanced Biotechnologies, Napoli, Italy
| | - Antonio Carciati
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, Napoli, Italy
| | - Vincenzo Carnovale
- Dipartimento di Scienze mediche Traslazionali - Unità di Fibrosi Cistica dell’adulto, Università di Napoli Federico II, Napoli, Italy
| | - Pasquale Abete
- Dipartimento di Scienze mediche Traslazionali - Unità di Fibrosi Cistica dell’adulto, Università di Napoli Federico II, Napoli, Italy
| | - Antonio Sasso
- Dipartimento di Fisica, Università di Napoli Federico II, Complesso Universitario M.S. Angelo, Napoli, Italy
| | - Stefano Guido
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, Napoli, Italy
- CEINGE-Advanced Biotechnologies, Napoli, Italy
| |
Collapse
|
149
|
O'Brien S, Rodrigues AMM, Buckling A. The evolution of bacterial mutation rates under simultaneous selection by interspecific and social parasitism. Proc Biol Sci 2013; 280:20131913. [PMID: 24197408 PMCID: PMC3826219 DOI: 10.1098/rspb.2013.1913] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 10/09/2013] [Indexed: 02/05/2023] Open
Abstract
Many bacterial populations harbour substantial numbers of hypermutable bacteria, in spite of hypermutation being associated with deleterious mutations. One reason for the persistence of hypermutators is the provision of novel mutations, enabling rapid adaptation to continually changing environments, for example coevolving virulent parasites. However, hypermutation also increases the rate at which intraspecific parasites (social cheats) are generated. Interspecific and intraspecific parasitism are therefore likely to impose conflicting selection pressure on mutation rate. Here, we combine theory and experiments to investigate how simultaneous selection from inter- and intraspecific parasitism affects the evolution of bacterial mutation rates in the plant-colonizing bacterium Pseudomonas fluorescens. Both our theoretical and experimental results suggest that phage presence increases and selection for public goods cooperation (the production of iron-scavenging siderophores) decreases selection for mutator bacteria. Moreover, phages imposed a much greater growth cost than social cheating, and when both selection pressures were imposed simultaneously, selection for cooperation did not affect mutation rate evolution. Given the ubiquity of infectious phages in the natural environment and clinical infections, our results suggest that phages are likely to be more important than social interactions in determining mutation rate evolution.
Collapse
Affiliation(s)
- Siobhán O'Brien
- Department of Biosciences, University of Exeter, Tremough, Penryn, Cornwall TR10 9EZ, UK
| | | | - Angus Buckling
- Department of Biosciences, University of Exeter, Tremough, Penryn, Cornwall TR10 9EZ, UK
| |
Collapse
|
150
|
Que YA, Hazan R, Strobel B, Maura D, He J, Kesarwani M, Panopoulos P, Tsurumi A, Giddey M, Wilhelmy J, Mindrinos MN, Rahme LG. A quorum sensing small volatile molecule promotes antibiotic tolerance in bacteria. PLoS One 2013; 8:e80140. [PMID: 24367477 PMCID: PMC3868577 DOI: 10.1371/journal.pone.0080140] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 09/30/2013] [Indexed: 01/10/2023] Open
Abstract
Bacteria can be refractory to antibiotics due to a sub-population of dormant cells, called persisters that are highly tolerant to antibiotic exposure. The low frequency and transience of the antibiotic tolerant “persister” trait has complicated elucidation of the mechanism that controls antibiotic tolerance. In this study, we show that 2’ Amino-acetophenone (2-AA), a poorly studied but diagnostically important small, volatile molecule produced by the recalcitrant gram-negative human pathogen Pseudomonas aeruginosa, promotes antibiotic tolerance in response to quorum-sensing (QS) signaling. Our results show that 2-AA mediated persister cell accumulation occurs via alteration of the expression of genes involved in the translational capacity of the cell, including almost all ribosomal protein genes and other translation-related factors. That 2-AA promotes persisters formation also in other emerging multi-drug resistant pathogens, including the non 2-AA producer Acinetobacter baumannii implies that 2-AA may play an important role in the ability of gram-negative bacteria to tolerate antibiotic treatments in polymicrobial infections. Given that the synthesis, excretion and uptake of QS small molecules is a common hallmark of prokaryotes, together with the fact that the translational machinery is highly conserved, we posit that modulation of the translational capacity of the cell via QS molecules, may be a general, widely distributed mechanism that promotes antibiotic tolerance among prokaryotes.
Collapse
Affiliation(s)
- Yok-Ai Que
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Shriners Hospitals for Children Boston, Boston, Massachusetts, United States of America
| | - Ronen Hazan
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Shriners Hospitals for Children Boston, Boston, Massachusetts, United States of America
- IYAR, The Israeli Institute for Advanced Research, Israel
- Institute of Dental Sciences and School of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Benjamin Strobel
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Shriners Hospitals for Children Boston, Boston, Massachusetts, United States of America
| | - Damien Maura
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Shriners Hospitals for Children Boston, Boston, Massachusetts, United States of America
| | - Jianxin He
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Shriners Hospitals for Children Boston, Boston, Massachusetts, United States of America
| | - Meenu Kesarwani
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Shriners Hospitals for Children Boston, Boston, Massachusetts, United States of America
| | - Panagiotis Panopoulos
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Shriners Hospitals for Children Boston, Boston, Massachusetts, United States of America
| | - Amy Tsurumi
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Shriners Hospitals for Children Boston, Boston, Massachusetts, United States of America
| | - Marlyse Giddey
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Julie Wilhelmy
- Stanford Genome Technology Center, Stanford University, Palo Alto, California, United States of America
| | - Michael N. Mindrinos
- Stanford Genome Technology Center, Stanford University, Palo Alto, California, United States of America
| | - Laurence G. Rahme
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Shriners Hospitals for Children Boston, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|