Zhao B, Song A, Haque R, Lei F, Weiler L, Xiong X, Wu Y, Croft M, Song J. Cooperation between molecular targets of costimulation in promoting T cell persistence and tumor regression.
THE JOURNAL OF IMMUNOLOGY 2009;
182:6744-52. [PMID:
19454669 DOI:
10.4049/jimmunol.0804387]
[Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Costimulation regulates multiple cellular processes of T cells inducing proliferation, expansion, and survival. The molecular targets of costimulation might then be useful to augment T cell activities. Two defined targets of costimulatory signals in primary T cells are the anti-apoptotic bcl-2 family molecule Bcl-x(L), and survivin, an inhibitor of apoptosis family member that might regulate both cell division and survival. However, the relative importance of, and relationship between, these molecules in primary T cells is not clear. To understand whether they have overlapping or cooperative functions, we used retrovirus-mediated transduction to introduce Bcl-x(L) and survivin separately, or together linked by a 2A picornavirus self-cleaving peptide, into Ag-responding CD8(+) T cells. We found that CD8(+) effector T cells expressing both Bcl-x(L) and survivin strongly expanded at an early stage and had a long-term survival advantage over cells transduced with either molecule alone. In vivo, with response to tumor-expressed Ag following adoptive T cell transfer, Ag-reactive CD8(+) T cells expressing both Bcl-x(L) and survivin displayed greatly enhanced tumor protective activity compared with CD8(+) T cells expressing either molecule introduced separately. These results indicate that Bcl-x(L) and survivin can critically contribute in a cooperative, nonredundant manner to augment the accumulation and persistence of CD8(+) T cells following encounter with Ag. The data provide new insights into why costimulatory signals might need to be sustained over time and suggest a potential novel approach to augment cellular immunotherapy for cancer.
Collapse