101
|
Huang J, Li R, Zhang X, Huang Y, Dang R, Lan X, Chen H, Lei C. Copy number veriation regions detection in Qinchuan cattle. Livest Sci 2017. [DOI: 10.1016/j.livsci.2017.08.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
102
|
Mesbah-Uddin M, Guldbrandtsen B, Iso-Touru T, Vilkki J, De Koning DJ, Boichard D, Lund MS, Sahana G. Genome-wide mapping of large deletions and their population-genetic properties in dairy cattle. DNA Res 2017; 25:49-59. [PMID: 28985340 PMCID: PMC5824824 DOI: 10.1093/dnares/dsx037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/18/2017] [Indexed: 01/10/2023] Open
Abstract
Large genomic deletions are potential candidate for loss-of-function, which could be lethal as homozygote. Analysing whole genome data of 175 cattle, we report 8,480 large deletions (199 bp–773 KB) with an overall false discovery rate of 8.8%; 82% of which are novel compared with deletions in the dbVar database. Breakpoint sequence analyses revealed that majority (24 of 29 tested) of the deletions contain microhomology/homology at breakpoint, and therefore, most likely generated by microhomology-mediated end joining. We observed higher differentiation among breeds for deletions in some genic-regions, such as ABCA12, TTC1, VWA3B, TSHR, DST/BPAG1, and CD1D. The genes overlapping deletions are on average evolutionarily less conserved compared with known mouse lethal genes (P-value = 2.3 × 10−6). We report 167 natural gene knockouts in cattle that are apparently nonessential as live homozygote individuals are observed. These genes are functionally enriched for immunoglobulin domains, olfactory receptors, and MHC classes (FDR = 2.06 × 10−22, 2.06 × 10−22, 7.01 × 10−6, respectively). We also demonstrate that deletions are enriched for health and fertility related quantitative trait loci (2-and 1.5-fold enrichment, Fisher’s P-value = 8.91 × 10−10 and 7.4 × 10−11, respectively). Finally, we identified and confirmed the breakpoint of a ∼525 KB deletion on Chr23:12,291,761-12,817,087 (overlapping BTBD9, GLO1 and DNAH8), causing stillbirth in Nordic Red Cattle.
Collapse
Affiliation(s)
- Md Mesbah-Uddin
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, 8830 Tjele, Denmark.,Animal Genetics and Integrative Biology, UMR 1313 GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Bernt Guldbrandtsen
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, 8830 Tjele, Denmark
| | - Terhi Iso-Touru
- Green Technology, Natural Resources Institute Finland, FI-31600 Jokioinen, Finland
| | - Johanna Vilkki
- Green Technology, Natural Resources Institute Finland, FI-31600 Jokioinen, Finland
| | - Dirk-Jan De Koning
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, SE-750?07 Uppsala, Sweden
| | - Didier Boichard
- Animal Genetics and Integrative Biology, UMR 1313 GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Mogens Sandø Lund
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, 8830 Tjele, Denmark
| | - Goutam Sahana
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, 8830 Tjele, Denmark
| |
Collapse
|
103
|
Whole-genome sequencing reveals mutational landscape underlying phenotypic differences between two widespread Chinese cattle breeds. PLoS One 2017; 12:e0183921. [PMID: 28841720 PMCID: PMC5571935 DOI: 10.1371/journal.pone.0183921] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 08/10/2017] [Indexed: 12/01/2022] Open
Abstract
Whole-genome sequencing provides a powerful tool to obtain more genetic variability that could produce a range of benefits for cattle breeding industry. Nanyang (Bos indicus) and Qinchuan (Bos taurus) are two important Chinese indigenous cattle breeds with distinct phenotypes. To identify the genetic characteristics responsible for variation in phenotypes between the two breeds, in the present study, we for the first time sequenced the genomes of four Nanyang and four Qinchuan cattle with 10 to 12 fold on average of 97.86% and 98.98% coverage of genomes, respectively. Comparison with the Bos_taurus_UMD_3.1 reference assembly yielded 9,010,096 SNPs for Nanyang, and 6,965,062 for Qinchuan cattle, 51% and 29% of which were novel SNPs, respectively. A total of 154,934 and 115,032 small indels (1 to 3 bp) were found in the Nanyang and Qinchuan genomes, respectively. The SNP and indel distribution revealed that Nanyang showed a genetically high diversity as compared to Qinchuan cattle. Furthermore, a total of 2,907 putative cases of copy number variation (CNV) were identified by aligning Nanyang to Qinchuan genome, 783 of which (27%) encompassed the coding regions of 495 functional genes. The gene ontology (GO) analysis revealed that many CNV genes were enriched in the immune system and environment adaptability. Among several CNV genes related to lipid transport and fat metabolism, Lepin receptor gene (LEPR) overlapping with CNV_1815 showed remarkably higher copy number in Qinchuan than Nanyang (log2 (ratio) = -2.34988; P value = 1.53E-102). Further qPCR and association analysis investigated that the copy number of the LEPR gene presented positive correlations with transcriptional expression and phenotypic traits, suggesting the LEPR CNV may contribute to the higher fat deposition in muscles of Qinchuan cattle. Our findings provide evidence that the distinct phenotypes of Nanyang and Qinchuan breeds may be due to the different genetic variations including SNPs, indels and CNV.
Collapse
|
104
|
Upadhyay M, da Silva VH, Megens HJ, Visker MHPW, Ajmone-Marsan P, Bâlteanu VA, Dunner S, Garcia JF, Ginja C, Kantanen J, Groenen MAM, Crooijmans RPMA. Distribution and Functionality of Copy Number Variation across European Cattle Populations. Front Genet 2017; 8:108. [PMID: 28878807 PMCID: PMC5572341 DOI: 10.3389/fgene.2017.00108] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 08/02/2017] [Indexed: 12/27/2022] Open
Abstract
Copy number variation (CNV), which is characterized by large-scale losses or gains of DNA fragments, contributes significantly to genetic and phenotypic variation. Assessing CNV across different European cattle populations might reveal genetic changes responsible for phenotypic differences, which have accumulated throughout the domestication history of cattle as consequences of evolutionary forces that act upon them. To explore pattern of CNVs across European cattle, we genotyped 149 individuals, that represent different European regions, using the Illumina Bovine HD Genotyping array. A total of 9,944 autosomal CNVs were identified in 149 samples using a Hidden Markov Model (HMM) as employed in PennCNV. Animals originating from several breeds of British Isles, and Balkan and Italian regions, on average, displayed higher abundance of CNV counts than Dutch or Alpine animals. A total of 923 CNV regions (CNVRs) were identified by aggregating CNVs overlapping in at least two animals. The hierarchical clustering of CNVRs indicated low differentiation and sharing of high-frequency CNVRs between European cattle populations. Various CNVRs identified in the present study overlapped with olfactory receptor genes and genes related to immune system. In addition, we also detected a CNV overlapping the Kit gene in English longhorn cattle which has previously been associated with color-sidedness. To conclude, we provide a comprehensive overview of CNV distribution in genome of European cattle. Our results indicate an important role of purifying selection and genomic drift in shaping CNV diversity that exists between different European cattle populations.
Collapse
Affiliation(s)
- Maulik Upadhyay
- Animal Breeding and Genomics, Wageningen University and ResearchWageningen, Netherlands.,Department of Animal Breeding and Genetics, Swedish University of Agricultural SciencesUppsala, Sweden
| | - Vinicus H da Silva
- Animal Breeding and Genomics, Wageningen University and ResearchWageningen, Netherlands.,Department of Animal Breeding and Genetics, Swedish University of Agricultural SciencesUppsala, Sweden
| | - Hendrik-Jan Megens
- Animal Breeding and Genomics, Wageningen University and ResearchWageningen, Netherlands
| | - Marleen H P W Visker
- Animal Breeding and Genomics, Wageningen University and ResearchWageningen, Netherlands
| | - Paolo Ajmone-Marsan
- Institute of Zootechnics and Nutrigenomics and Proteomics Research Center, Università Cattolica del Sacro CuorePiacenza, Italy
| | - Valentin A Bâlteanu
- Institute of Life Sciences, Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine of Cluj-NapocaCluj-Napoca, Romania
| | - Susana Dunner
- Department of Animal Production, Veterinary Faculty, Universidad Complutense de MadridMadrid, Spain
| | - Jose F Garcia
- Departamento de Apoio, Produção e Saúde Animal, Faculdade de Medicina Veterinária de Araçatuba, Universidade Estadual PaulistaAraçatuba, Brazil.,IAEA Collaborating Centre on Animal Genomics and BioinformaticsAraçatuba, Brazil
| | - Catarina Ginja
- Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO-InBIO), Universidade do PortoVairao, Portugal
| | - Juha Kantanen
- Green Technology, Natural Resources Institute FinlandJokioinen, Finland.,Department of Environmental and Biological Sciences, University of Eastern FinlandKuopio, Finland
| | - Martien A M Groenen
- Animal Breeding and Genomics, Wageningen University and ResearchWageningen, Netherlands
| | | |
Collapse
|
105
|
Genome-Wide SNP Signal Intensity Scanning Revealed Genes Differentiating Cows with Ovarian Pathologies from Healthy Cows. SENSORS 2017; 17:s17081920. [PMID: 28825658 PMCID: PMC5580201 DOI: 10.3390/s17081920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/04/2017] [Accepted: 07/06/2017] [Indexed: 01/09/2023]
Abstract
Hypoplasia and ovarian cysts are the most common ovarian pathologies in cattle. In this genome-wide study we analyzed the signal intensity of 648,315 Single Nucleotide Polymorphisms (SNPs) and identified 1338 genes differentiating cows with ovarian pathologies from healthy cows. The sample consisted of six cows presenting an ovarian pathology and six healthy cows. SNP signal intensities were measured with a genotyping process using the Axiom Genome-Wide BOS 1 SNPchip. Statistical tests for equality of variance and mean were applied to SNP intensities, and significance p-values were obtained. A Benjamini-Hochberg multiple testing correction reveled significant SNPs. Corresponding genes were identified using the Bovine Genome UMD 3.1 annotation. Principal Components Analysis (PCA) confirmed differentiation. An analysis of Copy Number Variations (CNVs), obtained from signal intensities, revealed no evidence of association between ovarian pathologies and CNVs. In addition, a haplotype frequency analysis showed no association with ovarian pathologies. Results show that SNP signal intensity, which captures not only information for base-pair genotypes elucidation, but the amount of fluorescence nucleotide synthetization produced in an enzymatic reaction, is a rich source of information that, by itself or in combination with base-pair genotypes, might be used to implement differentiation, prediction and diagnostic procedures, increasing the scope of applications for Genotyping Microarrays.
Collapse
|
106
|
Mielczarek M, Frąszczak M, Giannico R, Minozzi G, Williams JL, Wojdak-Maksymiec K, Szyda J. Analysis of copy number variations in Holstein-Friesian cow genomes based on whole-genome sequence data. J Dairy Sci 2017; 100:5515-5525. [DOI: 10.3168/jds.2016-11987] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 03/25/2017] [Indexed: 01/02/2023]
|
107
|
Association study and expression analysis of CYP4A11 gene copy number variation in Chinese cattle. Sci Rep 2017; 7:46599. [PMID: 28492277 PMCID: PMC5425913 DOI: 10.1038/srep46599] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 03/22/2017] [Indexed: 11/09/2022] Open
Abstract
The identification of copy number variations (CNVs) allow us to explore genomic polymorphisms. In recent years, significant progress in understanding CNVs has been made in studies of human and animals, however, association and expression studies of CNVs are still in the early stage. It was previously reported that the Cytochrome P-450 4A11 (CYP4A11) gene is located within a copy number variable region (CNVR) that encompasses quantitative trait loci (QTLs) for economic traits like meat quality and milk production. So, this study was performed to determine the presence of CYP4A11 CNV in six distinct cattle breeds, identify its relationship with growth, and explore the biological effects of gene expression. For three CYP4A11 CNV types, Normal was more frequent than Gain or Loss. Association analysis revealed a positive effect of CYP4A11 copy number on growth traits (P < 0.05). One-way analysis of variance (ANOVA) analysis revealed that more CYP4A11 copies increased the gene expression level. Moreover, overexpression of CYP4A11 in vitro revealed its effect on lipid deposit. The data provide evidence for the functional role of CYP4A11 CNV and provide the basis for future applications in cattle breeding.
Collapse
|
108
|
Revilla M, Puig-Oliveras A, Castelló A, Crespo-Piazuelo D, Paludo E, Fernández AI, Ballester M, Folch JM. A global analysis of CNVs in swine using whole genome sequence data and association analysis with fatty acid composition and growth traits. PLoS One 2017; 12:e0177014. [PMID: 28472114 PMCID: PMC5417718 DOI: 10.1371/journal.pone.0177014] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 04/20/2017] [Indexed: 11/30/2022] Open
Abstract
Copy number variations (CNVs) are important genetic variants complementary to SNPs, and can be considered as biomarkers for some economically important traits in domestic animals. In the present study, a genomic analysis of porcine CNVs based on next-generation sequencing data was carried out to identify CNVs segregating in an Iberian x Landrace backcross population and study their association with fatty acid composition and growth-related traits. A total of 1,279 CNVs, including duplications and deletions, were detected, ranging from 106 to 235 CNVs across samples, with an average of 183 CNVs per sample. Moreover, we detected 540 CNV regions (CNVRs) containing 245 genes. Functional annotation suggested that these genes possess a great variety of molecular functions and may play a role in production traits in commercial breeds. Some of the identified CNVRs contained relevant functional genes (e.g., CLCA4, CYP4X1, GPAT2, MOGAT2, PLA2G2A and PRKG1, among others). The variation in copy number of four of them (CLCA4, GPAT2, MOGAT2 and PRKG1) was validated in 150 BC1_LD (25% Iberian and 75% Landrace) animals by qPCR. Additionally, their contribution regarding backfat and intramuscular fatty acid composition and growth–related traits was analyzed. Statistically significant associations were obtained for CNVR112 (GPAT2) for the C18:2(n-6)/C18:3(n-3) ratio in backfat and carcass length, among others. Notably, GPATs are enzymes that catalyze the first step in the biosynthesis of both triglycerides and glycerophospholipids, suggesting that this CNVR may contribute to genetic variation in fatty acid composition and growth traits. These findings provide useful genomic information to facilitate the further identification of trait-related CNVRs affecting economically important traits in pigs.
Collapse
Affiliation(s)
- Manuel Revilla
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (CRAG), Consorci CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain
- * E-mail:
| | - Anna Puig-Oliveras
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (CRAG), Consorci CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain
| | - Anna Castelló
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (CRAG), Consorci CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain
| | - Daniel Crespo-Piazuelo
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (CRAG), Consorci CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain
| | - Ediane Paludo
- Department of Animal Science, Santa Catarina State University, Lages, Santa Catarina, Brazil
| | - Ana I. Fernández
- Departamento de Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Maria Ballester
- Departament de Genètica i Millora Animal, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Torre Marimon, Caldes de Montbui, Spain
| | - Josep M. Folch
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (CRAG), Consorci CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain
| |
Collapse
|
109
|
Gao Y, Jiang J, Yang S, Hou Y, Liu GE, Zhang S, Zhang Q, Sun D. CNV discovery for milk composition traits in dairy cattle using whole genome resequencing. BMC Genomics 2017; 18:265. [PMID: 28356085 PMCID: PMC5371188 DOI: 10.1186/s12864-017-3636-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 03/17/2017] [Indexed: 01/08/2023] Open
Abstract
Background Copy number variations (CNVs) are important and widely distributed in the genome. CNV detection opens a new avenue for exploring genes associated with complex traits in humans, animals and plants. Herein, we present a genome-wide assessment of CNVs that are potentially associated with milk composition traits in dairy cattle. Results In this study, CNVs were detected based on whole genome re-sequencing data of eight Holstein bulls from four half- and/or full-sib families, with extremely high and low estimated breeding values (EBVs) of milk protein percentage and fat percentage. The range of coverage depth per individual was 8.2–11.9×. Using CNVnator, we identified a total of 14,821 CNVs, including 5025 duplications and 9796 deletions. Among them, 487 differential CNV regions (CNVRs) comprising ~8.23 Mb of the cattle genome were observed between the high and low groups. Annotation of these differential CNVRs were performed based on the cattle genome reference assembly (UMD3.1) and totally 235 functional genes were found within the CNVRs. By Gene Ontology and KEGG pathway analyses, we found that genes were significantly enriched for specific biological functions related to protein and lipid metabolism, insulin/IGF pathway-protein kinase B signaling cascade, prolactin signaling pathway and AMPK signaling pathways. These genes included INS, IGF2, FOXO3, TH, SCD5, GALNT18, GALNT16, ART3, SNCA and WNT7A, implying their potential association with milk protein and fat traits. In addition, 95 CNVRs were overlapped with 75 known QTLs that are associated with milk protein and fat traits of dairy cattle (Cattle QTLdb). Conclusions In conclusion, based on NGS of 8 Holstein bulls with extremely high and low EBVs for milk PP and FP, we identified a total of 14,821 CNVs, 487 differential CNVRs between groups, and 10 genes, which were suggested as promising candidate genes for milk protein and fat traits. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3636-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yahui Gao
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jianping Jiang
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shaohua Yang
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yali Hou
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - George E Liu
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Beltsville, Md, 20705, USA
| | - Shengli Zhang
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Qin Zhang
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Dongxiao Sun
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
110
|
Dosage sensitivity is a major determinant of human copy number variant pathogenicity. Nat Commun 2017; 8:14366. [PMID: 28176757 PMCID: PMC5309798 DOI: 10.1038/ncomms14366] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 12/20/2016] [Indexed: 01/22/2023] Open
Abstract
Human copy number variants (CNVs) account for genome variation an order of magnitude larger than single-nucleotide polymorphisms. Although much of this variation has no phenotypic consequences, some variants have been associated with disease, in particular neurodevelopmental disorders. Pathogenic CNVs are typically very large and contain multiple genes, and understanding the cause of the pathogenicity remains a major challenge. Here we show that pathogenic CNVs are significantly enriched for genes involved in development and genes that have greater evolutionary copy number conservation across mammals, indicative of functional constraints. Conversely, genes found in benign CNV regions have more variable copy number. These evolutionary constraints are characteristic of genes in pathogenic CNVs and can only be explained by dosage sensitivity of those genes. These results implicate dosage sensitivity of individual genes as a common cause of CNV pathogenicity. These evolutionary metrics suggest a path to identifying disease genes in pathogenic CNVs. Copy number variants (CNVs) cause significant genomic variation in humans and may be benign or may cause disease. Here, the authors show that pathogenic CNVs are evolutionarily constrained compared with benign, pointing to dosage sensitivity as a potential cause of disease.
Collapse
|
111
|
Li BJ, Li HL, Meng Z, Zhang Y, Lin H, Yue GH, Xia JH. Copy Number Variations in Tilapia Genomes. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2017; 19:11-21. [PMID: 28168542 DOI: 10.1007/s10126-017-9733-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 12/23/2016] [Indexed: 06/06/2023]
Abstract
Discovering the nature and pattern of genome variation is fundamental in understanding phenotypic diversity among populations. Although several millions of single nucleotide polymorphisms (SNPs) have been discovered in tilapia, the genome-wide characterization of larger structural variants, such as copy number variation (CNV) regions has not been carried out yet. We conducted a genome-wide scan for CNVs in 47 individuals from three tilapia populations. Based on 254 Gb of high-quality paired-end sequencing reads, we identified 4642 distinct high-confidence CNVs. These CNVs account for 1.9% (12.411 Mb) of the used Nile tilapia reference genome. A total of 1100 predicted CNVs were found overlapping with exon regions of protein genes. Further association analysis based on linear model regression found 85 CNVs ranging between 300 and 27,000 base pairs significantly associated to population types (R 2 > 0.9 and P > 0.001). Our study sheds first insights on genome-wide CNVs in tilapia. These CNVs among and within tilapia populations may have functional effects on phenotypes and specific adaptation to particular environments.
Collapse
Affiliation(s)
- Bi Jun Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Hong Lian Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Zining Meng
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Yong Zhang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Gen Hua Yue
- Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore.
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore.
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| | - Jun Hong Xia
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
112
|
Chen L, Chamberlain AJ, Reich CM, Daetwyler HD, Hayes BJ. Detection and validation of structural variations in bovine whole-genome sequence data. Genet Sel Evol 2017; 49:13. [PMID: 28122487 PMCID: PMC5267451 DOI: 10.1186/s12711-017-0286-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/09/2017] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Several examples of structural variation (SV) affecting phenotypic traits have been reported in cattle. Currently the identification of SV from whole-genome sequence data (WGS) suffers from a high false positive rate. Our aim was to construct a high quality set of SV calls in cattle using WGS data. First, we tested two SV detection programs, Breakdancer and Pindel, and the overlap of these methods, on simulated sequence data to determine their precision and sensitivity. We then identified population SV from WGS of 252 Holstein and 64 Jersey bulls based on the overlapping calls from the two programs. In addition, we validated an overlapped SV set in 28 twice-sequenced Holstein individuals, and in another two validated sets (one for each breed) that were transmitted from sire to son. We also tested whether highly conserved gene sets across eukaryotes and recently expanded gene families in bovine were depleted and enriched, respectively, for SV. RESULTS In empirical WGS data, 17,518 SV covering 27.36 Mb were found in the Holstein population and 4285 SV covering 8.74 Mb in the Jersey population, of which 4.62 Mb of SV overlapped between Holsteins and Jerseys. A total of 11,534 candidate SV covering 5.64 Mb were validated in the 28 twice-sequenced individuals, while 3.49 and 0.67 Mb of SV were validated from Holstein and Jersey sire-son transmission, respectively. Only eight of 237 core eukaryotic genes had at least a 50-bp overlap with an SV from our validated sets, suggesting that conserved genes are depleted for SV (p < 0.05). In addition, we observed that recently expanded gene families were significantly more associated with SV than other genes. Long interspersed nuclear elements-1 were enriched for deletions when compared to the rest of the genome (p = 0.0035). CONCLUSIONS We reported SV from 252 Holstein and 64 Jersey individuals. A considerable proportion of Jersey population SV (53.5%) were also found in Holstein. In contrast, about 76.90% sire-son transmission validated SV were present in Jerseys and Holsteins. The enrichment of SV in expanding gene families suggests that SV can be a source of genetic variation for evolution.
Collapse
Affiliation(s)
- Long Chen
- AgriBio, Centre for AgriBioscience, Biosciences Research, Department of Economic Development, Jobs, Transport and Resources, Bundoora, VIC, Australia. .,School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia.
| | - Amanda J Chamberlain
- AgriBio, Centre for AgriBioscience, Biosciences Research, Department of Economic Development, Jobs, Transport and Resources, Bundoora, VIC, Australia
| | - Coralie M Reich
- AgriBio, Centre for AgriBioscience, Biosciences Research, Department of Economic Development, Jobs, Transport and Resources, Bundoora, VIC, Australia
| | - Hans D Daetwyler
- AgriBio, Centre for AgriBioscience, Biosciences Research, Department of Economic Development, Jobs, Transport and Resources, Bundoora, VIC, Australia.,School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | - Ben J Hayes
- AgriBio, Centre for AgriBioscience, Biosciences Research, Department of Economic Development, Jobs, Transport and Resources, Bundoora, VIC, Australia.,School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
113
|
Copy number variation of bovine MAPK10 modulates the transcriptional activity and affects growth traits. Livest Sci 2016. [DOI: 10.1016/j.livsci.2016.09.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
114
|
Keel BN, Lindholm-Perry AK, Snelling WM. Evolutionary and Functional Features of Copy Number Variation in the Cattle Genome. Front Genet 2016; 7:207. [PMID: 27920798 PMCID: PMC5118444 DOI: 10.3389/fgene.2016.00207] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/08/2016] [Indexed: 01/18/2023] Open
Abstract
Genomic structural variations are an important source of genetic diversity. Copy number variations (CNVs), gains and losses of large regions of genomic sequence between individuals of a species, have been associated with a wide variety of phenotypic traits. However, in cattle, as well as many other species, relatively little is understood about CNV, including frequency of CNVs in the genome, sizes, and locations, chromosomal properties, and evolutionary processes acting to shape CNV. In this work, we focused on copy number variation in the bovine genome, with the aim to detect CNVs in Bos taurus coding sequence and explore potential evolutionary mechanisms shaping these CNV. We identified and characterized CNV regions by utilizing exome sequence from 175 influential sires used in the Germplasm Evaluation project, representing 10 breeds. We examined various evolutionary and functional aspects of these CNVs, including selective constraint on CNV-overlapped genes, centrality of CNV genes in protein-protein interaction networks, and tissue-specific expression of CNV genes. Patterns of CNV in the Bos taurus genome reveal that reduced functional constraint and mutational bias may play a prominent role in shaping this type of structural variation.
Collapse
Affiliation(s)
- Brittney N Keel
- Agricultural Research Service (USDA), Meat Animal Research Center Clay Center, NE, USA
| | | | - Warren M Snelling
- Agricultural Research Service (USDA), Meat Animal Research Center Clay Center, NE, USA
| |
Collapse
|
115
|
Cardone MF, D'Addabbo P, Alkan C, Bergamini C, Catacchio CR, Anaclerio F, Chiatante G, Marra A, Giannuzzi G, Perniola R, Ventura M, Antonacci D. Inter-varietal structural variation in grapevine genomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:648-661. [PMID: 27419916 DOI: 10.1111/tpj.13274] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 07/12/2016] [Accepted: 07/13/2016] [Indexed: 05/10/2023]
Abstract
Grapevine (Vitis vinifera L.) is one of the world's most important crop plants, which is of large economic value for fruit and wine production. There is much interest in identifying genomic variations and their functional effects on inter-varietal, phenotypic differences. Using an approach developed for the analysis of human and mammalian genomes, which combines high-throughput sequencing, array comparative genomic hybridization, fluorescent in situ hybridization and quantitative PCR, we created an inter-varietal atlas of structural variations and single nucleotide variants (SNVs) for the grapevine genome analyzing four economically and genetically relevant table grapevine varieties. We found 4.8 million SNVs and detected 8% of the grapevine genome to be affected by genomic variations. We identified more than 700 copy number variation (CNV) regions and more than 2000 genes subjected to CNV as potential candidates for phenotypic differences between varieties.
Collapse
Affiliation(s)
- Maria Francesca Cardone
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA)-Unità di ricerca per l'uva da tavola e la vitivinicoltura in ambiente mediterraneo, Research Unit for viticulture and enology in Southern Italy, Turi (BA), Italy
| | - Pietro D'Addabbo
- Dipartimento di Biologia, Università degli Studi di Bari 'Aldo Moro', Bari, Italy
| | - Can Alkan
- Department of Computer Engineering, Bilkent University, Ankara, TR-06800, Turkey
| | - Carlo Bergamini
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA)-Unità di ricerca per l'uva da tavola e la vitivinicoltura in ambiente mediterraneo, Research Unit for viticulture and enology in Southern Italy, Turi (BA), Italy
| | | | - Fabio Anaclerio
- Dipartimento di Biologia, Università degli Studi di Bari 'Aldo Moro', Bari, Italy
| | - Giorgia Chiatante
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA)-Unità di ricerca per l'uva da tavola e la vitivinicoltura in ambiente mediterraneo, Research Unit for viticulture and enology in Southern Italy, Turi (BA), Italy
- Dipartimento di Biologia, Università degli Studi di Bari 'Aldo Moro', Bari, Italy
| | - Annamaria Marra
- Dipartimento di Biologia, Università degli Studi di Bari 'Aldo Moro', Bari, Italy
| | - Giuliana Giannuzzi
- Dipartimento di Biologia, Università degli Studi di Bari 'Aldo Moro', Bari, Italy
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Rocco Perniola
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA)-Unità di ricerca per l'uva da tavola e la vitivinicoltura in ambiente mediterraneo, Research Unit for viticulture and enology in Southern Italy, Turi (BA), Italy
| | - Mario Ventura
- Dipartimento di Biologia, Università degli Studi di Bari 'Aldo Moro', Bari, Italy
| | - Donato Antonacci
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA)-Unità di ricerca per l'uva da tavola e la vitivinicoltura in ambiente mediterraneo, Research Unit for viticulture and enology in Southern Italy, Turi (BA), Italy
| |
Collapse
|
116
|
Keel BN, Keele JW, Snelling WM. Genome-wide copy number variation in the bovine genome detected using low coverage sequence of popular beef breeds,. Anim Genet 2016; 48:141-150. [DOI: 10.1111/age.12519] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2016] [Indexed: 12/19/2022]
Affiliation(s)
- B. N. Keel
- USDA; ARS; U.S. Meat Animal Research Center; Clay Center NE 68933 USA
| | - J. W. Keele
- USDA; ARS; U.S. Meat Animal Research Center; Clay Center NE 68933 USA
| | - W. M. Snelling
- USDA; ARS; U.S. Meat Animal Research Center; Clay Center NE 68933 USA
| |
Collapse
|
117
|
Zhang X, Han H, Zhang T, Sun T, Xi Y, Chen N, Huang Y, Dang R, Lan X, Chen H, Lei C. HSFY and ZNF280BY show copy number variations within 17 water buffalo populations. Anim Genet 2016; 48:221-224. [PMID: 27739082 DOI: 10.1111/age.12514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2016] [Indexed: 02/02/2023]
Abstract
Recent transcriptomic analysis of the bovine Y chromosome revealed abundant presence of multi-copy protein coding gene families on the male-specific region of the Y chromosome (MSY). Copy number variations (CNVs) of several MSY genes are closely related to semen quality and male reproduction in cattle. However, the CNVs of MSY genes in water buffalo are largely unknown. Therefore, this study aimed to investigate the CNVs of HSFY and ZNF280BY of 298 buffaloes from 17 populations distributed in China, Vietnam and Laos using quantitative PCR. Our results revealed that the median copy numbers of the HSFY and ZNF280BY genes were 47 (ranging from 20 to 145) and 269 (ranging from 73 to 974) respectively. In conclusion, this study indicated that HSFY and ZNF280BY showed abundant CNVs within swamp buffalo populations.
Collapse
Affiliation(s)
- X Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - H Han
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - T Zhang
- Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China
| | - T Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Y Xi
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - N Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Y Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - R Dang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - X Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - H Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - C Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
118
|
Ben Sassi N, González-Recio Ó, de Paz-del Río R, Rodríguez-Ramilo ST, Fernández AI. Associated effects of copy number variants on economically important traits in Spanish Holstein dairy cattle. J Dairy Sci 2016; 99:6371-6380. [DOI: 10.3168/jds.2015-10487] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 04/15/2016] [Indexed: 11/19/2022]
|
119
|
Comparative analyses across cattle genders and breeds reveal the pitfalls caused by false positive and lineage-differential copy number variations. Sci Rep 2016; 6:29219. [PMID: 27381368 PMCID: PMC4933914 DOI: 10.1038/srep29219] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 06/14/2016] [Indexed: 12/31/2022] Open
Abstract
We compared CNV region (CNVR) results derived from 1,682 Nellore cattle with equivalent results derived from our previous analysis of Bovine HapMap samples. By comparing CNV segment frequencies between different genders and groups, we identified 9 frequent, false positive CNVRs with a total length of 0.8 Mbp that were likely caused by assembly errors. Although there was a paucity of lineage specific events, we did find one 54 kb deletion on chr5 significantly enriched in Nellore cattle. A few highly frequent CNVRs present in both datasets were detected within genomic regions containing olfactory receptor, ATP-binding cassette, and major histocompatibility complex genes. We further evaluated their impacts on downstream bioinformatics and CNV association analyses. Our results revealed pitfalls caused by false positive and lineage-differential copy number variations and will increase the accuracy of future CNV studies in both taurine and indicine cattle.
Collapse
|
120
|
da Silva VH, Regitano LCDA, Geistlinger L, Pértille F, Giachetto PF, Brassaloti RA, Morosini NS, Zimmer R, Coutinho LL. Genome-Wide Detection of CNVs and Their Association with Meat Tenderness in Nelore Cattle. PLoS One 2016; 11:e0157711. [PMID: 27348523 PMCID: PMC4922624 DOI: 10.1371/journal.pone.0157711] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 06/03/2016] [Indexed: 12/20/2022] Open
Abstract
Brazil is one of the largest beef producers and exporters in the world with the Nelore breed representing the vast majority of Brazilian cattle (Bos taurus indicus). Despite the great adaptability of the Nelore breed to tropical climate, meat tenderness (MT) remains to be improved. Several factors including genetic composition can influence MT. In this article, we report a genome-wide analysis of copy number variation (CNV) inferred from Illumina® High Density SNP-chip data for a Nelore population of 723 males. We detected >2,600 CNV regions (CNVRs) representing ≈6.5% of the genome. Comparing our results with previous studies revealed an overlap in ≈1400 CNVRs (>50%). A total of 1,155 CNVRs (43.6%) overlapped 2,750 genes. They were enriched for processes involving guanosine triphosphate (GTP), previously reported to influence skeletal muscle physiology and morphology. Nelore CNVRs also overlapped QTLs for MT reported in other breeds (8.9%, 236 CNVRs) and from a previous study with this population (4.1%, 109 CNVRs). Two CNVRs were also proximal to glutathione metabolism genes that were previously associated with MT. Genome-wide association study of CN state with estimated breeding values derived from meat shear force identified 6 regions, including a region on BTA3 that contains genes of the cAMP and cGMP pathway. Ten CNVRs that overlapped regions associated with MT were successfully validated by qPCR. Our results represent the first comprehensive CNV study in Bos taurus indicus cattle and identify regions in which copy number changes are potentially of importance for the MT phenotype.
Collapse
Affiliation(s)
- Vinicius Henrique da Silva
- Animal Biotechnology Laboratory, Animal Science Department, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, Brazil
- * E-mail: (LLC); (VHS)
| | | | - Ludwig Geistlinger
- Institute of Bioinformatics, Department of Informatics, Ludwig-Maximilians-Universität München (LMU), Amalienstrasse 17, 80333, München, Germany
| | - Fábio Pértille
- Animal Biotechnology Laboratory, Animal Science Department, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, Brazil
| | | | - Ricardo Augusto Brassaloti
- Animal Biotechnology Laboratory, Animal Science Department, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, Brazil
| | - Natália Silva Morosini
- Animal Biotechnology Laboratory, Animal Science Department, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, Brazil
| | - Ralf Zimmer
- Institute of Bioinformatics, Department of Informatics, Ludwig-Maximilians-Universität München (LMU), Amalienstrasse 17, 80333, München, Germany
| | - Luiz Lehmann Coutinho
- Animal Biotechnology Laboratory, Animal Science Department, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, Brazil
- * E-mail: (LLC); (VHS)
| |
Collapse
|
121
|
da Silva JM, Giachetto PF, da Silva LO, Cintra LC, Paiva SR, Yamagishi MEB, Caetano AR. Genome-wide copy number variation (CNV) detection in Nelore cattle reveals highly frequent variants in genome regions harboring QTLs affecting production traits. BMC Genomics 2016; 17:454. [PMID: 27297173 PMCID: PMC4907077 DOI: 10.1186/s12864-016-2752-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 05/19/2016] [Indexed: 11/10/2022] Open
Abstract
Background Copy number variations (CNVs) have been shown to account for substantial portions of observed genomic variation and have been associated with qualitative and quantitative traits and the onset of disease in a number of species. Information from high-resolution studies to detect, characterize and estimate population-specific variant frequencies will facilitate the incorporation of CNVs in genomic studies to identify genes affecting traits of importance. Results Genome-wide CNVs were detected in high-density single nucleotide polymorphism (SNP) genotyping data from 1,717 Nelore (Bos indicus) cattle, and in NGS data from eight key ancestral bulls. A total of 68,007 and 12,786 distinct CNVs were observed, respectively. Cross-comparisons of results obtained for the eight resequenced animals revealed that 92 % of the CNVs were observed in both datasets, while 62 % of all detected CNVs were observed to overlap with previously validated cattle copy number variant regions (CNVRs). Observed CNVs were used for obtaining breed-specific CNV frequencies and identification of CNVRs, which were subsequently used for gene annotation. A total of 688 of the detected CNVRs were observed to overlap with 286 non-redundant QTLs associated with important production traits in cattle. All of 34 CNVs previously reported to be associated with milk production traits in Holsteins were also observed in Nelore cattle. Comparisons of estimated frequencies of these CNVs in the two breeds revealed 14, 13, 6 and 14 regions in high (>20 %), low (<20 %) and divergent (NEL > HOL, NEL < HOL) frequencies, respectively. Conclusions Obtained results significantly enriched the bovine CNV map and enabled the identification of variants that are potentially associated with traits under selection in Nelore cattle, particularly in genome regions harboring QTLs affecting production traits. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2752-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joaquim Manoel da Silva
- Faculdade de Ciências Agrárias, Biológicas e Sociais Aplicadas, Universidade do Estado de Mato Grosso (UNEMAT), Av. Prof Dr. Renato Figueiro Varella, CEP 78.690-000, Nova Xavantina, Mato Grosso, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular-Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Poliana Fernanda Giachetto
- Embrapa Informática Agropecuária - Laboratório Multiusuário de Bioinformática (LMB), Campinas, São Paulo, Brazil
| | | | - Leandro Carrijo Cintra
- Embrapa Informática Agropecuária - Laboratório Multiusuário de Bioinformática (LMB), Campinas, São Paulo, Brazil
| | - Samuel Rezende Paiva
- Embrapa - Secretaria de Relações Internacionais, Brasília, Distrito Federal, Brazil.,Embrapa Recursos Genéticos e Biotecnologia, Brasília, Distrito Federal, Brazil.,CNPq Fellow, ᅟ, ᅟ
| | | | | |
Collapse
|
122
|
Jenkins GM, Goddard ME, Black MA, Brauning R, Auvray B, Dodds KG, Kijas JW, Cockett N, McEwan JC. Copy number variants in the sheep genome detected using multiple approaches. BMC Genomics 2016; 17:441. [PMID: 27277319 PMCID: PMC4898393 DOI: 10.1186/s12864-016-2754-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 05/19/2016] [Indexed: 02/07/2023] Open
Abstract
Background Copy number variants (CNVs) are a type of polymorphism found to underlie phenotypic variation, both in humans and livestock. Most surveys of CNV in livestock have been conducted in the cattle genome, and often utilise only a single approach for the detection of copy number differences. Here we performed a study of CNV in sheep, using multiple methods to identify and characterise copy number changes. Comprehensive information from small pedigrees (trios) was collected using multiple platforms (array CGH, SNP chip and whole genome sequence data), with these data then analysed via multiple approaches to identify and verify CNVs. Results In total, 3,488 autosomal CNV regions (CNVRs) were identified in this study, which substantially builds on an initial survey of the sheep genome that identified 135 CNVRs. The average length of the identified CNVRs was 19 kb (range of 1 kb to 3.6 Mb), with shorter CNVRs being more frequent than longer CNVRs. The total length of all CNVRs was 67.6Mbps, which equates to 2.7 % of the sheep autosomes. For individuals this value ranged from 0.24 to 0.55 %, and the majority of CNVRs were identified in single animals. Rather than being uniformly distributed throughout the genome, CNVRs tended to be clustered. Application of three independent approaches for CNVR detection facilitated a comparison of validation rates. CNVs identified on the Roche-NimbleGen 2.1M CGH array generally had low validation rates with lower density arrays, while whole genome sequence data had the highest validation rate (>60 %). Conclusions This study represents the first comprehensive survey of the distribution, prevalence and characteristics of CNVR in sheep. Multiple approaches were used to detect CNV regions and it appears that the best method for verifying CNVR on a large scale involves using a combination of detection methodologies. The characteristics of the 3,488 autosomal CNV regions identified in this study are comparable to other CNV regions reported in the literature and provide a valuable and sizeable addition to the small subset of published sheep CNVs. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2754-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gemma M Jenkins
- AbacusBio Limited, 442 Moray Place, PO Box 5585, Dunedin, 9058, New Zealand.
| | - Michael E Goddard
- Victorian Department of Economic Development, Jobs, Transport and Resources, Bundoora, VIC, 3083, Australia
| | - Michael A Black
- Department of Biochemistry, University of Otago, 710 Cumberland St, Dunedin, 9054, New Zealand
| | - Rudiger Brauning
- AgResearch, Invermay Agricultural Centre, PB 50034, Mosgiel, 9053, New Zealand
| | - Benoit Auvray
- Department of Biochemistry, University of Otago, 710 Cumberland St, Dunedin, 9054, New Zealand
| | - Ken G Dodds
- AgResearch, Invermay Agricultural Centre, PB 50034, Mosgiel, 9053, New Zealand
| | - James W Kijas
- CSIRO Animal, Food and Health Sciences, Queensland Bioscience Precinct, 306 Carmody Road, St Lucia, QLD 4067, Australia
| | - Noelle Cockett
- Utah State University, 1435 Old Main Hill, Logan, UT, 84322-1435-1435, USA
| | - John C McEwan
- AgResearch, Invermay Agricultural Centre, PB 50034, Mosgiel, 9053, New Zealand
| |
Collapse
|
123
|
Zhou Y, Utsunomiya YT, Xu L, Hay EHA, Bickhart DM, Alexandre PA, Rosen BD, Schroeder SG, Carvalheiro R, de Rezende Neves HH, Sonstegard TS, Van Tassell CP, Ferraz JBS, Fukumasu H, Garcia JF, Liu GE. Genome-wide CNV analysis reveals variants associated with growth traits in Bos indicus. BMC Genomics 2016; 17:419. [PMID: 27245577 PMCID: PMC4888316 DOI: 10.1186/s12864-016-2461-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 02/11/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Apart from single nucleotide polymorphism (SNP), copy number variation (CNV) is another important type of genetic variation, which may affect growth traits and play key roles for the production of beef cattle. To date, no genome-wide association study (GWAS) for CNV and body traits in beef cattle has been reported, so the present study aimed to investigate this type of association in one of the most important cattle subspecies: Bos indicus (Nellore breed). RESULTS We have used intensity data from over 700,000 SNP probes across the bovine genome to detect common CNVs in a sample of 2230 Nellore cattle, and performed GWAS between the detected CNVs and nine growth traits. After filtering for frequency and length, a total of 231 CNVs ranging from 894 bp to 4,855,088 bp were kept and tested as predictors for each growth trait using linear regression analysis with principal components correction. There were 49 significant associations identified among 17 CNVs and seven body traits after false discovery rate correction (P < 0.05). Among the 17 CNVs, three were significant or marginally significant for all the traits. We have compared the locations of associated CNVs with quantitative trait locus and the RefGene database, and found two sets of 9 CNVs overlapping with either known QTLs or genes, respectively. The gene overlapping with CNV100, KCNJ12, is a functional candidate for muscle development and plays critical roles in muscling traits. CONCLUSION This study presents the first CNV-based GWAS of growth traits using high density SNP microarray data in cattle. We detected 17 CNVs significantly associated with seven growth traits and one of them (CNV100) may be involved in growth traits through KCNJ12.
Collapse
Affiliation(s)
- Yang Zhou
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Room 111, BARC-East, Beltsville, Maryland, 20705, USA.,College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Agricultural Molecular Biology, Yangling, Shaanxi, 712100, China
| | - Yuri T Utsunomiya
- Departamento de Medicina Veterinária Preventiva e Reprodução Animal, Faculdade de Ciências Agrárias e Veterinárias, UNESP - Univ Estadual Paulista, Jaboticabal, São Paulo, 14884-900, Brazil
| | - Lingyang Xu
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Room 111, BARC-East, Beltsville, Maryland, 20705, USA.,Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - El Hamidi Abdel Hay
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Room 111, BARC-East, Beltsville, Maryland, 20705, USA
| | - Derek M Bickhart
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Room 111, BARC-East, Beltsville, Maryland, 20705, USA
| | - Pamela Almeida Alexandre
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, 13635, Brazil
| | - Benjamin D Rosen
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Room 111, BARC-East, Beltsville, Maryland, 20705, USA
| | - Steven G Schroeder
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Room 111, BARC-East, Beltsville, Maryland, 20705, USA
| | - Roberto Carvalheiro
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, UNESP - Univ Estadual Paulista, Jaboticabal, São Paulo, 14884-900, Brazil
| | - Haroldo Henrique de Rezende Neves
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, UNESP - Univ Estadual Paulista, Jaboticabal, São Paulo, 14884-900, Brazil
| | - Tad S Sonstegard
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Room 111, BARC-East, Beltsville, Maryland, 20705, USA.,Present address: Recombinetics, Inc., St Paul, MN, 55104, USA
| | - Curtis P Van Tassell
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Room 111, BARC-East, Beltsville, Maryland, 20705, USA
| | - José Bento Sterman Ferraz
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, 13635, Brazil
| | - Heidge Fukumasu
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, 13635, Brazil
| | - Jose Fernando Garcia
- Departamento de Medicina Veterinária Preventiva e Reprodução Animal, Faculdade de Ciências Agrárias e Veterinárias, UNESP - Univ Estadual Paulista, Jaboticabal, São Paulo, 14884-900, Brazil. .,Departamento de Apoio, Produção e Saúde Animal, Faculdade de Medicina Veterinária de Araçatuba, UNESP - Univ Estadual Paulista, Araçatuba, São Paulo, 16050-680, Brazil. .,International Atomic Energy Agency (IAEA) Collaborating Centre on Animal Genomics and Bioinformatics, Araçatuba, SP, Brazil.
| | - George E Liu
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Room 111, BARC-East, Beltsville, Maryland, 20705, USA.
| |
Collapse
|
124
|
Abstract
NKG2D ligands (NKG2DLs) are a group of stress-inducible major histocompatibility complex (MHC) class I-like molecules that act as a danger signal alerting the immune system to the presence of abnormal cells. In mammals, two families of NKG2DL genes have been identified: the MIC gene family encoded in the MHC region and the ULBP gene family encoded outside the MHC region in most species. Some mammals have a third family of NKG2DL-like class I genes which we named MILL (MHC class I-like located near the leukocyte receptor complex). Despite the fact that MILL genes are more closely related to MIC genes than ULBP genes are to MIC genes, MILL molecules do not function as NKG2DLs, and their function remains unknown. With the progress of mammalian genome projects, information on the MIC, ULBP, and MILL gene families became available in many mammalian species. Here, we summarize such information and discuss the origin and evolution of the NKG2DL gene family from the viewpoint of host-pathogen coevolution.
Collapse
Affiliation(s)
- Masanori Kasahara
- Department of Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yoichi Sutoh
- Emory Vaccine Center and Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| |
Collapse
|
125
|
Zhang X, Wang K, Wang L, Yang Y, Ni Z, Xie X, Shao X, Han J, Wan D, Qiu Q. Genome-wide patterns of copy number variation in the Chinese yak genome. BMC Genomics 2016; 17:379. [PMID: 27206476 PMCID: PMC4875690 DOI: 10.1186/s12864-016-2702-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/06/2016] [Indexed: 12/02/2022] Open
Abstract
Background Copy number variation (CNV) represents an important source of genetic divergence that can produce drastic phenotypic differences and may therefore be subject to selection during domestication and environmental adaptation. To investigate the evolutionary dynamics of CNV in the yak genome, we used a read depth approach to detect CNV based on genome resequencing data from 14 wild and 65 domestic yaks and determined CNV regions related to domestication and adaptations to high-altitude. Results We identified 2,634 CNV regions (CNVRs) comprising a total of 153 megabases (5.7 % of the yak genome) and 3,879 overlapping annotated genes. Comparison between domestic and wild yak populations identified 121 potentially selected CNVRs, harboring genes related to neuronal development, reproduction, nutrition and energy metabolism. In addition, we found 85 CNVRs that are significantly different between domestic yak living in high- and low-altitude areas, including three genes related to hypoxia response and six related to immune defense. This analysis shows that genic CNVs may play an important role in phenotypic changes during yak domestication and adaptation to life at high-altitude. Conclusions We present the first refined CNV map for yak along with comprehensive genomic analysis of yak CNV. Our results provide new insights into the genetic basis of yak domestication and adaptation to living in a high-altitude environment, as well as a valuable genetic resource that will facilitate future CNV association studies of important traits in yak and other bovid species. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2702-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiao Zhang
- State Key Laboratory of Grassland Agroecosystem, College of Life Science, Lanzhou University, Lanzhou, 730000, China
| | - Kun Wang
- State Key Laboratory of Grassland Agroecosystem, College of Life Science, Lanzhou University, Lanzhou, 730000, China
| | - Lizhong Wang
- State Key Laboratory of Grassland Agroecosystem, College of Life Science, Lanzhou University, Lanzhou, 730000, China
| | - Yongzhi Yang
- State Key Laboratory of Grassland Agroecosystem, College of Life Science, Lanzhou University, Lanzhou, 730000, China
| | - Zhengqiang Ni
- State Key Laboratory of Grassland Agroecosystem, College of Life Science, Lanzhou University, Lanzhou, 730000, China
| | - Xiuyue Xie
- State Key Laboratory of Grassland Agroecosystem, College of Life Science, Lanzhou University, Lanzhou, 730000, China
| | - Xuemin Shao
- State Key Laboratory of Grassland Agroecosystem, College of Life Science, Lanzhou University, Lanzhou, 730000, China
| | - Jin Han
- State Key Laboratory of Grassland Agroecosystem, College of Life Science, Lanzhou University, Lanzhou, 730000, China
| | - Dongshi Wan
- State Key Laboratory of Grassland Agroecosystem, College of Life Science, Lanzhou University, Lanzhou, 730000, China.
| | - Qiang Qiu
- State Key Laboratory of Grassland Agroecosystem, College of Life Science, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
126
|
Bickhart DM, Xu L, Hutchison JL, Cole JB, Null DJ, Schroeder SG, Song J, Garcia JF, Sonstegard TS, Van Tassell CP, Schnabel RD, Taylor JF, Lewin HA, Liu GE. Diversity and population-genetic properties of copy number variations and multicopy genes in cattle. DNA Res 2016; 23:253-62. [PMID: 27085184 PMCID: PMC4909312 DOI: 10.1093/dnares/dsw013] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/29/2016] [Indexed: 11/14/2022] Open
Abstract
The diversity and population genetics of copy number variation (CNV) in domesticated animals are not well understood. In this study, we analysed 75 genomes of major taurine and indicine cattle breeds (including Angus, Brahman, Gir, Holstein, Jersey, Limousin, Nelore, and Romagnola), sequenced to 11-fold coverage to identify 1,853 non-redundant CNV regions. Supported by high validation rates in array comparative genomic hybridization (CGH) and qPCR experiments, these CNV regions accounted for 3.1% (87.5 Mb) of the cattle reference genome, representing a significant increase over previous estimates of the area of the genome that is copy number variable (∼2%). Further population genetics and evolutionary genomics analyses based on these CNVs revealed the population structures of the cattle taurine and indicine breeds and uncovered potential diversely selected CNVs near important functional genes, including AOX1, ASZ1, GAT, GLYAT, and KRTAP9-1. Additionally, 121 CNV gene regions were found to be either breed specific or differentially variable across breeds, such as RICTOR in dairy breeds and PNPLA3 in beef breeds. In contrast, clusters of the PRP and PAG genes were found to be duplicated in all sequenced animals, suggesting that subfunctionalization, neofunctionalization, or overdominance play roles in diversifying those fertility-related genes. These CNV results provide a new glimpse into the diverse selection histories of cattle breeds and a basis for correlating structural variation with complex traits in the future.
Collapse
Affiliation(s)
- Derek M Bickhart
- USDA-ARS, Animal Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
| | - Lingyang Xu
- USDA-ARS, Animal Genomics and Improvement Laboratory, Beltsville, MD 20705, USA Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Jana L Hutchison
- USDA-ARS, Animal Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
| | - John B Cole
- USDA-ARS, Animal Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
| | - Daniel J Null
- USDA-ARS, Animal Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
| | - Steven G Schroeder
- USDA-ARS, Animal Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
| | - Jiuzhou Song
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | | | - Tad S Sonstegard
- USDA-ARS, Animal Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
| | | | - Robert D Schnabel
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA Informatics Institute, University of Missouri, Columbia, MO, USA
| | - Jeremy F Taylor
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Harris A Lewin
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| | - George E Liu
- USDA-ARS, Animal Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
| |
Collapse
|
127
|
Randhawa IAS, Khatkar MS, Thomson PC, Raadsma HW. A Meta-Assembly of Selection Signatures in Cattle. PLoS One 2016; 11:e0153013. [PMID: 27045296 PMCID: PMC4821596 DOI: 10.1371/journal.pone.0153013] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 03/22/2016] [Indexed: 12/31/2022] Open
Abstract
Since domestication, significant genetic improvement has been achieved for many traits of commercial importance in cattle, including adaptation, appearance and production. In response to such intense selection pressures, the bovine genome has undergone changes at the underlying regions of functional genetic variants, which are termed “selection signatures”. This article reviews 64 recent (2009–2015) investigations testing genomic diversity for departure from neutrality in worldwide cattle populations. In particular, we constructed a meta-assembly of 16,158 selection signatures for individual breeds and their archetype groups (European, African, Zebu and composite) from 56 genome-wide scans representing 70,743 animals of 90 pure and crossbred cattle breeds. Meta-selection-scores (MSS) were computed by combining published results at every given locus, within a sliding window span. MSS were adjusted for common samples across studies and were weighted for significance thresholds across and within studies. Published selection signatures show extensive coverage across the bovine genome, however, the meta-assembly provides a consensus profile of 263 genomic regions of which 141 were unique (113 were breed-specific) and 122 were shared across cattle archetypes. The most prominent peaks of MSS represent regions under selection across multiple populations and harboured genes of known major effects (coat color, polledness and muscle hypertrophy) and genes known to influence polygenic traits (stature, adaptation, feed efficiency, immunity, behaviour, reproduction, beef and dairy production). As the first meta-assembly of selection signatures, it offers novel insights about the hotspots of selective sweeps in the bovine genome, and this method could equally be applied to other species.
Collapse
Affiliation(s)
- Imtiaz A. S. Randhawa
- Reprogen - Animal Bioscience Group, Faculty of Veterinary Science, The University of Sydney, 425 Werombi Road, Camden, 2570, NSW, Australia
- * E-mail:
| | - Mehar S. Khatkar
- Reprogen - Animal Bioscience Group, Faculty of Veterinary Science, The University of Sydney, 425 Werombi Road, Camden, 2570, NSW, Australia
| | - Peter C. Thomson
- Reprogen - Animal Bioscience Group, Faculty of Veterinary Science, The University of Sydney, 425 Werombi Road, Camden, 2570, NSW, Australia
| | - Herman W. Raadsma
- Reprogen - Animal Bioscience Group, Faculty of Veterinary Science, The University of Sydney, 425 Werombi Road, Camden, 2570, NSW, Australia
| |
Collapse
|
128
|
Long Y, Su Y, Ai H, Zhang Z, Yang B, Ruan G, Xiao S, Liao X, Ren J, Huang L, Ding N. A genome-wide association study of copy number variations with umbilical hernia in swine. Anim Genet 2016; 47:298-305. [PMID: 27028052 DOI: 10.1111/age.12402] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2015] [Indexed: 02/06/2023]
Abstract
Umbilical hernia (UH) is one of the most common congenital defects in pigs, leading to considerable economic loss and serious animal welfare problems. To test whether copy number variations (CNVs) contribute to pig UH, we performed a case-control genome-wide CNV association study on 905 pigs from the Duroc, Landrace and Yorkshire breeds using the Porcine SNP60 BeadChip and penncnv algorithm. We first constructed a genomic map comprising 6193 CNVs that pertain to 737 CNV regions. Then, we identified eight CNVs significantly associated with the risk for UH in the three pig breeds. Six of seven significantly associated CNVs were validated using quantitative real-time PCR. Notably, a rare CNV (CNV14:13030843-13059455) encompassing the NUGGC gene was strongly associated with UH (permutation-corrected P = 0.0015) in Duroc pigs. This CNV occurred exclusively in seven Duroc UH-affected individuals. SNPs surrounding the CNV did not show association signals, indicating that rare CNVs may play an important role in complex pig diseases such as UH. The NUGGC gene has been implicated in human omphalocele and inguinal hernia. Our finding supports that CNVs, including the NUGGC CNV, contribute to the pathogenesis of pig UH.
Collapse
Affiliation(s)
- Yi Long
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Ying Su
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Huashui Ai
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zhiyan Zhang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Bin Yang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Guorong Ruan
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China.,Fujian Vocational College of Agriculture, Fuzhou, 360119, China
| | - Shijun Xiao
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xinjun Liao
- College of Life Science of Jinggangshan University, Jian, 343009, China
| | - Jun Ren
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Lusheng Huang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Nengshui Ding
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| |
Collapse
|
129
|
Bai Z, Chen J, Liao Y, Wang M, Liu R, Ge S, Wing RA, Chen M. The impact and origin of copy number variations in the Oryza species. BMC Genomics 2016; 17:261. [PMID: 27025496 PMCID: PMC4812662 DOI: 10.1186/s12864-016-2589-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 03/15/2016] [Indexed: 02/16/2023] Open
Abstract
Background Copy number variation (CNV), a complex genomic rearrangement, has been extensively studied in humans and other organisms. In plants, CNVs of several genes were found to be responsible for various important traits; however, the cause and consequence of CNVs remains largely unknown. Recently released next-generation sequencing (NGS) data provide an opportunity for a genome-wide study of CNVs in rice. Results Here, by an NGS-based approach, we generated a CNV map comprising 9,196 deletions compared to the reference genome ‘Nipponbare’. Using Oryza glaberrima as the outgroup, 80 % of the CNV events turned out to be insertions in Nipponbare. There were 2,806 annotated genes affected by these CNV events. We experimentally validated 28 functional CNV genes including OsMADS56, BPH14, OsDCL2b and OsMADS30, implying that CNVs might have contributed to phenotypic variations in rice. Most CNV genes were found to be located in non-co-linear positions by comparison to O. glaberrima. One of the origins of these non-co-linear genes was genomic duplications caused by transposon activity or double-strand break repair. Comprehensive analysis of mutation mechanisms suggested an abundance of CNVs formed by non-homologous end-joining and mobile element insertion. Conclusions This study showed the impact and origin of copy number variations in rice on a genomic scale. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2589-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zetao Bai
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jinfeng Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi Liao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Meijiao Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Rong Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Song Ge
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Rod A Wing
- Arizona Genomics Institute, School of Plant Science, University of Arizona, Tucson, AZ, 85721, USA
| | - Mingsheng Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
130
|
Xu L, Hou Y, Bickhart DM, Zhou Y, Hay EHA, Song J, Sonstegard TS, Van Tassell CP, Liu GE. Population-genetic properties of differentiated copy number variations in cattle. Sci Rep 2016; 6:23161. [PMID: 27005566 PMCID: PMC4804293 DOI: 10.1038/srep23161] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 02/25/2016] [Indexed: 01/24/2023] Open
Abstract
While single nucleotide polymorphism (SNP) is typically the variant of choice for population genetics, copy number variation (CNV) which comprises insertion, deletion and duplication of genomic sequence, is an informative type of genetic variation. CNVs have been shown to be both common in mammals and important for understanding the relationship between genotype and phenotype. However, CNV differentiation, selection and its population genetic properties are not well understood across diverse populations. We performed a population genetics survey based on CNVs derived from the BovineHD SNP array data of eight distinct cattle breeds. We generated high resolution results that show geographical patterns of variations and genome-wide admixture proportions within and among breeds. Similar to the previous SNP-based studies, our CNV-based results displayed a strong correlation of population structure and geographical location. By conducting three pairwise comparisons among European taurine, African taurine, and indicine groups, we further identified 78 unique CNV regions that were highly differentiated, some of which might be due to selection. These CNV regions overlapped with genes involved in traits related to parasite resistance, immunity response, body size, fertility, and milk production. Our results characterize CNV diversity among cattle populations and provide a list of lineage-differentiated CNVs.
Collapse
Affiliation(s)
- Lingyang Xu
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, Maryland 20705, USA.,Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland 20742, USA
| | - Yali Hou
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Derek M Bickhart
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, Maryland 20705, USA
| | - Yang Zhou
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, Maryland 20705, USA.,College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Agricultural Molecular Biology, Yangling, Shaanxi, 712100, China
| | - El Hamidi Abdel Hay
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, Maryland 20705, USA
| | - Jiuzhou Song
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland 20742, USA
| | - Tad S Sonstegard
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, Maryland 20705, USA
| | - Curtis P Van Tassell
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, Maryland 20705, USA
| | - George E Liu
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, Maryland 20705, USA
| |
Collapse
|
131
|
de Almeida Santana MH, Junior GAO, Cesar ASM, Freua MC, da Costa Gomes R, da Luz E Silva S, Leme PR, Fukumasu H, Carvalho ME, Ventura RV, Coutinho LL, Kadarmideen HN, Ferraz JBS. Copy number variations and genome-wide associations reveal putative genes and metabolic pathways involved with the feed conversion ratio in beef cattle. J Appl Genet 2016; 57:495-504. [PMID: 27001052 DOI: 10.1007/s13353-016-0344-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/20/2016] [Accepted: 03/02/2016] [Indexed: 10/22/2022]
Abstract
The use of genome-wide association results combined with other genomic approaches may uncover genes and metabolic pathways related to complex traits. In this study, the phenotypic and genotypic data of 1475 Nellore (Bos indicus) cattle and 941,033 single nucleotide polymorphisms (SNPs) were used for genome-wide association study (GWAS) and copy number variations (CNVs) analysis in order to identify candidate genes and putative pathways involved with the feed conversion ratio (FCR). The GWAS was based on the Bayes B approach analyzing genomic windows with multiple regression models to estimate the proportion of genetic variance explained by each window. The CNVs were detected with PennCNV software using the log R ratio and B allele frequency data. CNV regions (CNVRs) were identified with CNVRuler and a linear regression was used to associate CNVRs and the FCR. Functional annotation of associated genomic regions was performed with the Database for Annotation, Visualization and Integrated Discovery (DAVID) and the metabolic pathways were obtained from the Kyoto Encyclopedia of Genes and Genomes (KEGG). We showed five genomic windows distributed over chromosomes 4, 6, 7, 8, and 24 that explain 12 % of the total genetic variance for FCR, and detected 12 CNVRs (chromosomes 1, 5, 7, 10, and 12) significantly associated [false discovery rate (FDR) < 0.05] with the FCR. Significant genomic regions (GWAS and CNV) harbor candidate genes involved in pathways related to energetic, lipid, and protein metabolism. The metabolic pathways found in this study are related to processes directly connected to feed efficiency in beef cattle. It was observed that, even though different genomic regions and genes were found between the two approaches (GWAS and CNV), the metabolic processes covered were related to each other. Therefore, a combination of the approaches complement each other and lead to a better understanding of the FCR.
Collapse
Affiliation(s)
- Miguel Henrique de Almeida Santana
- Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 7, 1870, Frederiksberg, Denmark.,Faculdade de Zootecnia e Engenharia de Alimentos, University of São Paulo, Duque de Caxias Norte, 225, 13635-900, Pirassununga, Brazil
| | | | | | - Mateus Castelani Freua
- Faculdade de Zootecnia e Engenharia de Alimentos, University of São Paulo, Duque de Caxias Norte, 225, 13635-900, Pirassununga, Brazil
| | - Rodrigo da Costa Gomes
- Empresa Brasileira de Pesquisa Agropecuária, CNPGC/EMBRAPA, BR 262 km 4, 79002-970, Campo Grande, Brazil
| | - Saulo da Luz E Silva
- Faculdade de Zootecnia e Engenharia de Alimentos, University of São Paulo, Duque de Caxias Norte, 225, 13635-900, Pirassununga, Brazil
| | - Paulo Roberto Leme
- Faculdade de Zootecnia e Engenharia de Alimentos, University of São Paulo, Duque de Caxias Norte, 225, 13635-900, Pirassununga, Brazil
| | - Heidge Fukumasu
- Faculdade de Zootecnia e Engenharia de Alimentos, University of São Paulo, Duque de Caxias Norte, 225, 13635-900, Pirassununga, Brazil
| | - Minos Esperândio Carvalho
- Faculdade de Zootecnia e Engenharia de Alimentos, University of São Paulo, Duque de Caxias Norte, 225, 13635-900, Pirassununga, Brazil
| | - Ricardo Vieira Ventura
- Faculdade de Zootecnia e Engenharia de Alimentos, University of São Paulo, Duque de Caxias Norte, 225, 13635-900, Pirassununga, Brazil.,University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| | - Luiz Lehmann Coutinho
- Escola Superior de Agricultura Luiz de Queiroz, University of São Paulo, 13418-900, Piracicaba, Brazil
| | - Haja N Kadarmideen
- Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 7, 1870, Frederiksberg, Denmark
| | - José Bento Sterman Ferraz
- Faculdade de Zootecnia e Engenharia de Alimentos, University of São Paulo, Duque de Caxias Norte, 225, 13635-900, Pirassununga, Brazil
| |
Collapse
|
132
|
Lal SV, Mukherjee A, Brahma B, Gohain M, Patra MC, Saini SK, Mishra P, Ahlawat S, Upadhyaya RC, Datta TK, De S. Comparison of Copy Number of HSF Genes in Two Buffalo Genomes. Anim Biotechnol 2016; 27:141-7. [DOI: 10.1080/10495398.2015.1135807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Shardul Vikram Lal
- Krishi Vigyan Kendra, ICAR-CIARI, Nimbudera, Andaman and Nicobar Islands
| | - Ayan Mukherjee
- Animal Genomics Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, Haryana, India
| | - Biswajit Brahma
- Animal Genomics Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, Haryana, India
| | - Moloya Gohain
- Animal Genomics Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, Haryana, India
| | - Mahesh Chandra Patra
- Animal Genomics Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, Haryana, India
| | - Sushil Kumar Saini
- Animal Genomics Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, Haryana, India
| | - Purushottam Mishra
- Animal Genomics Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, Haryana, India
| | - Sonika Ahlawat
- Animal Genomics Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, Haryana, India
| | - Ramesh C. Upadhyaya
- Animal Genomics Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, Haryana, India
| | - Tirtha K. Datta
- Animal Genomics Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, Haryana, India
| | - Sachinandan De
- Animal Genomics Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
133
|
Bagnato A, Strillacci MG, Pellegrino L, Schiavini F, Frigo E, Rossoni A, Fontanesi L, Maltecca C, Prinsen RT, Dolezal MA. Identification and Validation of Copy Number Variants in Italian Brown Swiss Dairy Cattle Using Illumina Bovine SNP50 Beadchip®. ITALIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.4081/ijas.2015.3900] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Alessandro Bagnato
- Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare, University of Milan, Italy
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, University of Bologna, Italy
| | - Maria G. Strillacci
- Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare, University of Milan, Italy
| | - Laura Pellegrino
- Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare, University of Milan, Italy
| | - Fausta Schiavini
- Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare, University of Milan, Italy
| | - Erika Frigo
- Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare, University of Milan, Italy
| | - Attilio Rossoni
- Associazione Nazionale Allevatori Razza Bruna, Bussolengo (VR), Italy
| | - Luca Fontanesi
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, University of Bologna, Italy
| | - Christian Maltecca
- Department of Animal Science, North Carolina State University, Raleigh, NC, USA
| | - Raphaelle T.M.M. Prinsen
- Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare, University of Milan, Italy
| | - Marlies A. Dolezal
- Institut für Populationsgenetik Veterinärmedizinische, University of Wien, Austria
| |
Collapse
|
134
|
Xie J, Li R, Li S, Ran X, Wang J, Jiang J, Zhao P. Identification of Copy Number Variations in Xiang and Kele Pigs. PLoS One 2016; 11:e0148565. [PMID: 26840413 PMCID: PMC4740446 DOI: 10.1371/journal.pone.0148565] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 01/19/2016] [Indexed: 12/24/2022] Open
Abstract
Xiang and Kele pigs are two well-known local Chinese pig breeds that possess rich genetic resources and have enormous economic and scientific value. We performed a comprehensive genomic analysis of the copy number variations (CNVs) in these breeds. CNVs are one of the most important forms of genomic variation and have profound effects on phenotypic variation. In this study, PorcineSNP60 genotyping data from 98 Xiang pigs and 22 Kele pigs were used to identify CNVs. In total, 172 candidate CNV regions (CNVRs) were identified, ranging from 3.19 kb to 8175.26 kb and covering 80.41 Mb of the pig genome. Approximately 56.40% (97/172) of the CNVRs overlapped with those identified in seven previous studies, and 43.60% (75/172) of the identified CNVRs were novel. Of the identified CNVRs, 82 (47 gain, 33 loss, and two gain-loss events that covered 4.58 Mb of the pig genome) were found only in a Xiang population with a large litter size. In contrast, 13 CNVRs (8 gain and 5 loss events) were unique to a Xiang population with small litter sizes, and 30 CNVRs (14 loss and 16 gain events) were unique to Kele pigs. The CNVRs span approximately 660 annotated Sus scrofa genes that are significantly enriched for specific biological functions, such as sensory perception, cognition, reproduction, ATP biosynthetic processes, and neurological processes. Many CNVR-associated genes, particularly the genes involved in reproductive traits, differed between the Xiang populations with large and small litter sizes, and these genes warrant further investigation due to their importance in determining the reproductive performance of Xiang pigs. Our results provide meaningful information about genomic variation, which may be useful in future assessments of the associations between CNVs and important phenotypes in Xiang and Kele pigs to ultimately help protect these rare breeds.
Collapse
Affiliation(s)
- Jian Xie
- Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang, China
| | - Rongrong Li
- Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang, China
| | - Sheng Li
- Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang, China
| | - Xueqin Ran
- College of animal Science, Guizhou University, Guiyang, China
- * E-mail: (XQR); (JFW)
| | - Jiafu Wang
- Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang, China
- * E-mail: (XQR); (JFW)
| | - Jicai Jiang
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Pengju Zhao
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
135
|
Zhou LS, Li J, Yang J, Liu CL, Xie XH, He YN, Liu XX, Xin WS, Zhang WC, Ren J, Ma JW, Huang LS. Genome-wide mapping of copy number variations in commercial hybrid pigs using a high-density SNP genotyping array. RUSS J GENET+ 2016. [DOI: 10.1134/s1022795415120145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
136
|
Sasaki S, Watanabe T, Nishimura S, Sugimoto Y. Genome-wide identification of copy number variation using high-density single-nucleotide polymorphism array in Japanese Black cattle. BMC Genet 2016; 17:26. [PMID: 26809925 PMCID: PMC4727303 DOI: 10.1186/s12863-016-0335-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 01/14/2016] [Indexed: 12/12/2022] Open
Abstract
Background Copy number variation (CNV) is an important source of genetic variability associated with phenotypic variation and disease susceptibility. Comprehensive genome-wide CNV maps provide valuable information for genetic and functional studies. To identify CNV in Japanese Black cattle, we performed a genome-wide autosomal screen using genomic data from 1,481 animals analyzed with the Illumina Bovine High-Density (HD) BeadChip Array (735,293 single-nucleotide polymorphisms (SNPs) with an average marker interval of 3.4 kb on the autosomes). Results We identified a total of 861 CNV regions (CNVRs) across all autosomes, which covered 43.65 Mb of the UMD3.1 genome assembly and corresponded to 1.74 % of the 29 bovine autosomes. Overall, 35 % of the CNVRs were present at a frequency of > 1 % in 1,481 animals. The estimated lengths of CNVRs ranged from 1.1 kb to 1.4 Mb, with an average of 50.7 kb. The average number of CNVR events per animal was 35. Comparisons with previously reported cattle CNV showed that 72 % of the CNVR calls detected in this study were within or overlapped with known CNVRs. Experimentally, three CNVRs were validated using quantitative PCR, and one CNVR was validated using PCR with flanking primers for the deleted region. Out of the 861 CNVRs, 390 contained 717 Ensembl-annotated genes significantly enriched for stimulus response, cellular defense response, and immune response in the Gene Ontology (GO) database. To associate genes contained in CNVRs with phenotypes, we converted 560 bovine Ensembl gene IDs to their 438 orthologous associated mouse gene IDs, and 195 of these mouse orthologous genes were categorized into 1,627 phenotypes in the Mouse Genome Informatics (MGI) database. Conclusions We identified 861 CNVRs in 1,481 Japanese Black cattle using the Illumina BovineHD BeadChip Array. The genes contained in CNVRs were characterized using GO analysis and the mouse orthologous genes were characterized using the MGI database. The comprehensive genome-wide CNVRs map will facilitate identification of genetic variation and disease-susceptibility alleles in Japanese Black cattle. Electronic supplementary material The online version of this article (doi:10.1186/s12863-016-0335-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shinji Sasaki
- National Livestock Breeding Center, Odakura, Nishigo, Fukushima, 961-8511, Japan.
| | - Toshio Watanabe
- National Livestock Breeding Center, Odakura, Nishigo, Fukushima, 961-8511, Japan.
| | - Shota Nishimura
- Shirakawa Institute of Animal Genetics, Japan Livestock Technology Association, Odakura, Nishigo, Fukushima, 961-8061, Japan.
| | - Yoshikazu Sugimoto
- Shirakawa Institute of Animal Genetics, Japan Livestock Technology Association, Odakura, Nishigo, Fukushima, 961-8061, Japan.
| |
Collapse
|
137
|
Abstract
NK-lysin is an antimicrobial peptide and effector protein in the host innate immune system. It is coded by a single gene in humans and most other mammalian species. In this study, we provide evidence for the existence of four NK-lysin genes in a repetitive region on cattle chromosome 11. The NK2A, NK2B, and NK2C genes are tandemly arrayed as three copies in ∼30-35-kb segments, located 41.8 kb upstream of NK1. All four genes are functional, albeit with differential tissue expression. NK1, NK2A, and NK2B exhibited the highest expression in intestine Peyer's patch, whereas NK2C was expressed almost exclusively in lung. The four peptide products were synthesized ex vivo, and their antimicrobial effects against both Gram-positive and Gram-negative bacteria were confirmed with a bacteria-killing assay. Transmission electron microcopy indicated that bovine NK-lysins exhibited their antimicrobial activities by lytic action in the cell membranes. In summary, the single NK-lysin gene in other mammals has expanded to a four-member gene family by tandem duplications in cattle; all four genes are transcribed, and the synthetic peptides corresponding to the core regions are biologically active and likely contribute to innate immunity in ruminants.
Collapse
|
138
|
Wang MD, Dzama K, Rees DJG, Muchadeyi FC. Tropically adapted cattle of Africa: perspectives on potential role of copy number variations. Anim Genet 2015; 47:154-64. [DOI: 10.1111/age.12391] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2015] [Indexed: 12/12/2022]
Affiliation(s)
- M. D. Wang
- Department of Animal Sciences; University of Stellenbosch; Private Bag X1 Matieland 7602 South Africa
- Biotechnology Platform; Agricultural Research Council; Private Bag X5 Onderstepoort 0110 South Africa
| | - K. Dzama
- Department of Animal Sciences; University of Stellenbosch; Private Bag X1 Matieland 7602 South Africa
| | - D. J. G. Rees
- Biotechnology Platform; Agricultural Research Council; Private Bag X5 Onderstepoort 0110 South Africa
| | - F. C. Muchadeyi
- Biotechnology Platform; Agricultural Research Council; Private Bag X5 Onderstepoort 0110 South Africa
| |
Collapse
|
139
|
Shi T, Xu Y, Yang M, Huang Y, Lan X, Lei C, Qi X, Yang X, Chen H. Copy number variations atLEPRgene locus associated with gene expression and phenotypic traits in Chinese cattle. Anim Sci J 2015; 87:336-43. [DOI: 10.1111/asj.12531] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 07/11/2015] [Accepted: 07/29/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Tao Shi
- College of Animal Science and Technology, Shaanxi Key Laboratory of Molecular Biology for Agriculture; Northwest A&F University; Yangling China
| | - Yao Xu
- College of Animal Science and Technology, Shaanxi Key Laboratory of Molecular Biology for Agriculture; Northwest A&F University; Yangling China
| | - Mingjuan Yang
- College of Animal Science and Technology, Shaanxi Key Laboratory of Molecular Biology for Agriculture; Northwest A&F University; Yangling China
| | - Yongzhen Huang
- College of Animal Science and Technology, Shaanxi Key Laboratory of Molecular Biology for Agriculture; Northwest A&F University; Yangling China
| | - Xianyong Lan
- College of Animal Science and Technology, Shaanxi Key Laboratory of Molecular Biology for Agriculture; Northwest A&F University; Yangling China
| | - Chuzhao Lei
- College of Animal Science and Technology, Shaanxi Key Laboratory of Molecular Biology for Agriculture; Northwest A&F University; Yangling China
| | - Xinglei Qi
- Biyang Bureau of Animal Husbandry of Biyang County; Biyang Henan China
| | - Xiaoming Yang
- Institute of Animal Husbandry and Veterinary; Shanxi Academy of Agricultural Sciences; Taiyuan Shanxi China
| | - Hong Chen
- College of Animal Science and Technology, Shaanxi Key Laboratory of Molecular Biology for Agriculture; Northwest A&F University; Yangling China
| |
Collapse
|
140
|
Wang MD, Dzama K, Hefer CA, Muchadeyi FC. Genomic population structure and prevalence of copy number variations in South African Nguni cattle. BMC Genomics 2015; 16:894. [PMID: 26531252 PMCID: PMC4632335 DOI: 10.1186/s12864-015-2122-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 10/22/2015] [Indexed: 12/21/2022] Open
Abstract
Background Copy number variations (CNVs) are modifications in DNA structure comprising of deletions, duplications, insertions and complex multi-site variants. Although CNVs are proven to be involved in a variety of phenotypic discrepancies, the full extent and consequence of CNVs is yet to be understood. To date, no such genomic characterization has been performed in indigenous South African Nguni cattle. Nguni cattle are recognized for their ability to sustain harsh environmental conditions while exhibiting enhanced resistance to disease and parasites and are thought to comprise of up to nine different ecotypes. Methods Illumina BovineSNP50 Beadchip data was utilized to investigate genomic population structure and the prevalence of CNVs in 492 South African Nguni cattle. PLINK, ADMIXTURE, R, gPLINK and Haploview software was utilized for quality control, population structure and haplotype block determination. PennCNV hidden Markov model identified CNVs and genes contained within and 10 Mb downstream from reported CNVs. PANTHER and Ensembl databases were subsequently utilized for gene annotation analyses. Results Population structure analyses on Nguni cattle revealed 5 sub-populations with a possible sub-structure evident at K equal to 8. Four hundred and thirty three CNVs that formed 334 CNVRs ranging from 30 kb to 1 Mb in size are reported. Only 231 of the 492 animals demonstrated CNVRs. Two hundred and eighty nine genes were observed within CNVRs identified. Of these 149, 28, 44, 2 and 14 genes were unique to sub-populations A, B, C, D and E respectively. Gene ontology analyses demonstrated a number of pathways to be represented by respective genes, including immune response, response to abiotic stress and biological regulation processess. Conclusions CNVs may explain part of the phenotypic diversity and the enhanced adaptation evident in Nguni cattle. Genes involved in a number of cellular components, biological processes and molecular functions are reported within CNVRs identified. The significance of such CNVRs and the possible effect thereof needs to be ascertained and may hold interesting insight into the functional and adaptive consequence of CNVs in cattle. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2122-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Magretha Diane Wang
- Department of Animal Sciences, University of Stellenbosch, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa. .,Biotechnology Platform, Agricultural Research Council, Private Bag X5, Onderstepoort, 0110, South Africa.
| | - Kennedy Dzama
- Department of Animal Sciences, University of Stellenbosch, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa.
| | - Charles A Hefer
- Biotechnology Platform, Agricultural Research Council, Private Bag X5, Onderstepoort, 0110, South Africa.
| | - Farai C Muchadeyi
- Biotechnology Platform, Agricultural Research Council, Private Bag X5, Onderstepoort, 0110, South Africa.
| |
Collapse
|
141
|
Astessiano AL, Meikle A, Fajardo M, Gil J, Mattiauda DA, Chilibroste P, Carriquiry M. Metabolic and endocrine profiles and hepatic gene expression of Holstein cows fed total mixed ration or pasture with different grazing strategies during early lactation. Acta Vet Scand 2015; 57:70. [PMID: 26475473 PMCID: PMC4609040 DOI: 10.1186/s13028-015-0163-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 10/05/2015] [Indexed: 12/19/2022] Open
Abstract
Background In dairy mixed production systems, maximizing pasture intake and total mixed ration (TMR) supplementation are management tools used to increase dry matter and energy intake in early lactation. The objective was to evaluate metabolic and endocrine profiles and hepatic gene expression of Holstein cows fed either TMR ad libitum (without grazing) or diets combining TMR (50 % ad libitum DM intake) and pasture with different grazing strategies (6 h in one grazing session or 9 h in two grazing sessions) in early lactation. Pluriparous cows were grouped by calving date, blocked within group by body weight and body condition score (BCS) and randomly assigned to one of three feeding strategies from calving (day 0) to 60 days postpartum: control cows fed TMR ad libitum (G0; confined cows fed 100 % TMR without access to pasture), pasture grazing with 6 h of access in one session supplemented with 50 % TMR (G1), and 9 h of access in two sessions supplemented with 50 % TMR (G2). Results Net energy (NE), but not metabolizable protein (MP), demands for maintenance and/or milk increased in G2 when compared with G1 and G0 cows, respectively. However, NE and MP balances were lower in G1 and G2 than G0 cows. Cow BCS at +55 days was greater in G0 than G2 cows and probability of cows cycling during the first month was greater in G0 and G1 than G2 cows. During the postpartum period, non-esterified fatty acids were greater in G1 than G2 and G0 and β-hydroxybutyrate was greater in G1 and G2 than G0 cows. Plasma insulin was greater and insulin-like growth factor (IGF)-I tended to be greater in G0 than G2 cows, leptin was greater in G2 and G0 and adiponectin were greater in G2 cows. Hepatic expression of growth hormonereceptor-1A and IGF1 mRNA decreased while IGF binding proteins 1,2,4,5 and 6 (IGFBP) mRNA as well as mRNA expression of insulin, leptin (LEPRb) and adiponectin-2 receptors increased from pre to postpartum in all cows. However, only hepatic IGFBP6 and LEPRb mRNA were greater in G2 than G0 and G1 cows, respectively. Conclusion Metabolic-endocrine profiles of cows with different feeding strategies in early lactation reflected not only changes in milk energy output and energy balance but also in walking and grazing activity. Concentrations of insulin and IGF-I were increased in G0 cows whereas plasma adiponectin and both, insulin and leptin sensitivity were improved G2 cows. Increased NE demands in G2 cows when compared to G1 and G0 cows, implied a metabolic stress that impacted negatively on reproductive function. Electronic supplementary material The online version of this article (doi:10.1186/s13028-015-0163-6) contains supplementary material, which is available to authorized users.
Collapse
|
142
|
Boussaha M, Esquerré D, Barbieri J, Djari A, Pinton A, Letaief R, Salin G, Escudié F, Roulet A, Fritz S, Samson F, Grohs C, Bernard M, Klopp C, Boichard D, Rocha D. Genome-Wide Study of Structural Variants in Bovine Holstein, Montbéliarde and Normande Dairy Breeds. PLoS One 2015; 10:e0135931. [PMID: 26317361 PMCID: PMC4552564 DOI: 10.1371/journal.pone.0135931] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 07/28/2015] [Indexed: 11/26/2022] Open
Abstract
High-throughput sequencing technologies have offered in recent years new opportunities to study genome variations. These studies have mostly focused on single nucleotide polymorphisms, small insertions or deletions and on copy number variants. Other structural variants, such as large insertions or deletions, tandem duplications, translocations, and inversions are less well-studied, despite that some have an important impact on phenotypes. In the present study, we performed a large-scale survey of structural variants in cattle. We report the identification of 6,426 putative structural variants in cattle extracted from whole-genome sequence data of 62 bulls representing the three major French dairy breeds. These genomic variants affect DNA segments greater than 50 base pairs and correspond to deletions, inversions and tandem duplications. Out of these, we identified a total of 547 deletions and 410 tandem duplications which could potentially code for CNVs. Experimental validation was carried out on 331 structural variants using a novel high-throughput genotyping method. Out of these, 255 structural variants (77%) generated good quality genotypes and 191 (75%) of them were validated. Gene content analyses in structural variant regions revealed 941 large deletions removing completely one or several genes, including 10 single-copy genes. In addition, some of the structural variants are located within quantitative trait loci for dairy traits. This study is a pan-genome assessment of genomic variations in cattle and may provide a new glimpse into the bovine genome architecture. Our results may also help to study the effects of structural variants on gene expression and consequently their effect on certain phenotypes of interest.
Collapse
Affiliation(s)
- Mekki Boussaha
- INRA, UMR1313, Génétique Animale et Biologie Intégrative, Domaine de Vilvert, Jouy-en-Josas, France
- AgroParisTech, UMR1313, Génétique Animale et Biologie Intégrative, Domaine de Vilvert, Jouy-en-Josas, France
- * E-mail:
| | - Diane Esquerré
- INRA, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENSAT, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENVT, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Toulouse, France
| | - Johanna Barbieri
- INRA, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENSAT, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENVT, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Toulouse, France
| | - Anis Djari
- INRA, SIGENAE, UR 875, INRA Auzeville, BP 52627, Castanet-Tolosan, France
| | - Alain Pinton
- INRA, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENSAT, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENVT, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Toulouse, France
| | - Rabia Letaief
- INRA, UMR1313, Génétique Animale et Biologie Intégrative, Domaine de Vilvert, Jouy-en-Josas, France
- AgroParisTech, UMR1313, Génétique Animale et Biologie Intégrative, Domaine de Vilvert, Jouy-en-Josas, France
| | - Gérald Salin
- INRA, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENSAT, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENVT, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Toulouse, France
| | - Frédéric Escudié
- INRA, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENSAT, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENVT, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Toulouse, France
| | - Alain Roulet
- INRA, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENSAT, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENVT, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Toulouse, France
| | - Sébastien Fritz
- INRA, UMR1313, Génétique Animale et Biologie Intégrative, Domaine de Vilvert, Jouy-en-Josas, France
- AgroParisTech, UMR1313, Génétique Animale et Biologie Intégrative, Domaine de Vilvert, Jouy-en-Josas, France
- Union Nationale des Coopératives Agricoles d’Elevage et d’Insémination Animale, Paris, France
| | - Franck Samson
- INRA, UR1077, Mathématique Informatique et Génome, Domaine de Vilvert, Jouy-en-Josas, France
| | - Cécile Grohs
- INRA, UMR1313, Génétique Animale et Biologie Intégrative, Domaine de Vilvert, Jouy-en-Josas, France
- AgroParisTech, UMR1313, Génétique Animale et Biologie Intégrative, Domaine de Vilvert, Jouy-en-Josas, France
| | - Maria Bernard
- INRA, SIGENAE, UR 875, INRA Auzeville, BP 52627, Castanet-Tolosan, France
| | - Christophe Klopp
- INRA, SIGENAE, UR 875, INRA Auzeville, BP 52627, Castanet-Tolosan, France
| | - Didier Boichard
- INRA, UMR1313, Génétique Animale et Biologie Intégrative, Domaine de Vilvert, Jouy-en-Josas, France
- AgroParisTech, UMR1313, Génétique Animale et Biologie Intégrative, Domaine de Vilvert, Jouy-en-Josas, France
| | - Dominique Rocha
- INRA, UMR1313, Génétique Animale et Biologie Intégrative, Domaine de Vilvert, Jouy-en-Josas, France
- AgroParisTech, UMR1313, Génétique Animale et Biologie Intégrative, Domaine de Vilvert, Jouy-en-Josas, France
| |
Collapse
|
143
|
da Silva JM, Giachetto PF, da Silva LOC, Cintra LC, Paiva SR, Caetano AR, Yamagishi MEB. Genomic Variants Revealed by Invariably Missing Genotypes in Nelore Cattle. PLoS One 2015; 10:e0136035. [PMID: 26305794 PMCID: PMC4549312 DOI: 10.1371/journal.pone.0136035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 07/29/2015] [Indexed: 12/18/2022] Open
Abstract
High density genotyping panels have been used in a wide range of applications. From population genetics to genome-wide association studies, this technology still offers the lowest cost and the most consistent solution for generating SNP data. However, in spite of the application, part of the generated data is always discarded from final datasets based on quality control criteria used to remove unreliable markers. Some discarded data consists of markers that failed to generate genotypes, labeled as missing genotypes. A subset of missing genotypes that occur in the whole population under study may be caused by technical issues but can also be explained by the presence of genomic variations that are in the vicinity of the assayed SNP and that prevent genotyping probes from annealing. The latter case may contain relevant information because these missing genotypes might be used to identify population-specific genomic variants. In order to assess which case is more prevalent, we used Illumina HD Bovine chip genotypes from 1,709 Nelore (Bos indicus) samples. We found 3,200 missing genotypes among the whole population. NGS re-sequencing data from 8 sires were used to verify the presence of genomic variations within their flanking regions in 81.56% of these missing genotypes. Furthermore, we discovered 3,300 novel SNPs/Indels, 31% of which are located in genes that may affect traits of importance for the genetic improvement of cattle production.
Collapse
Affiliation(s)
- Joaquim Manoel da Silva
- Faculdade de Ciências Agrárias, Biológicas e Sociais Aplicadas, Universidade do Estado de Mato Grosso (UNEMAT), Nova Xavantina, Mato Grosso, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular–Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
- * E-mail:
| | - Poliana Fernanda Giachetto
- Laboratório Multiusuário de Bioinformática (LMB)—Embrapa Informática Agropecuária, Campinas, São Paulo, Brazil
| | | | - Leandro Carrijo Cintra
- Laboratório Multiusuário de Bioinformática (LMB)—Embrapa Informática Agropecuária, Campinas, São Paulo, Brazil
| | - Samuel Rezende Paiva
- Embrapa–Secretaria de Relações Internacionais, Brasília, Distrito Federal, Brazil
| | | | | |
Collapse
|
144
|
Zhang L, Jia S, Plath M, Huang Y, Li C, Lei C, Zhao X, Chen H. Impact of Parental Bos taurus and Bos indicus Origins on Copy Number Variation in Traditional Chinese Cattle Breeds. Genome Biol Evol 2015; 7:2352-61. [PMID: 26260653 PMCID: PMC4558867 DOI: 10.1093/gbe/evv151] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Copy number variation (CNV) is an important component of genomic structural variation and plays a role not only in evolutionary diversification but also in domestication. Chinese cattle were derived from Bos taurus and Bos indicus, and several breeds presumably are of hybrid origin, but the evolution of CNV regions (CNVRs) has not yet been examined in this context. Here, we of CNVRs, mtDNA D-loop sequence variation, and Y-chromosomal single nucleotide polymorphisms to assess the impact of maternal and paternal B. taurus and B. indicus origins on the distribution of CNVRs in 24 Chinese domesticated bulls. We discovered 470 genome-wide CNVRs, only 72 of which were shared by all three Y-lineages (B. taurus: Y1, Y2; B. indicus: Y3), whereas 265 were shared by inferred taurine or indicine paternal lineages, and 228 when considering their maternal taurine or indicine origins. Phylogenetic analysis uncovered eight taurine/indicine hybrids, and principal component analysis on CNVs corroborated genomic exchange during hybridization. The distribution patterns of CNVRs tended to be lineage-specific, and correlation analysis revealed significant positive or negative co-occurrences of CNVRs across lineages. Our study suggests that CNVs in Chinese cattle partly result from selective breeding during domestication, but also from hybridization and introgression.
Collapse
Affiliation(s)
- Liangzhi Zhang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, China Key laboratory of adaptation and evolution of plateau biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences
| | - Shangang Jia
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, China
| | - Martin Plath
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, China
| | - Yongzhen Huang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, China
| | - Congjun Li
- United States Department of Agriculture-Agricultural Research Service, Bovine Functional Genomics Laboratory, Beltsville, Maryland
| | - Chuzhao Lei
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, China
| | - Xin Zhao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, China
| | - Hong Chen
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, China
| |
Collapse
|
145
|
Wu Y, Fan H, Jing S, Xia J, Chen Y, Zhang L, Gao X, Li J, Gao H, Ren H. A genome-wide scan for copy number variations using high-density single nucleotide polymorphism array in Simmental cattle. Anim Genet 2015; 46:289-98. [PMID: 25917301 DOI: 10.1111/age.12288] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2015] [Indexed: 12/14/2022]
Abstract
Copy number variations (CNVs) have recently been identified as promising sources of genetic variation, complementary to single nucleotide polymorphisms (SNPs). As a result, detection of CNVs has attracted a great deal of attention. In this study, we performed genome-wide CNV detection using Illumina Bovine HD BeadChip (770k) data on 792 Simmental cattle. A total of 263 CNV regions (CNVRs) were identified, which included 137 losses, 102 gains and 24 regions classified as both loss and gain, covering 35.48 Mb (1.41%) of the bovine genome. The length of these CNVRs ranged from 10.18 kb to 1.76 Mb, with an average length of 134.78 kb and a median length of 61.95 kb. In 136 of these regions, a total of 313 genes were identified related to biological functions such as transmembrane activity and olfactory transduction activity. To validate the results, we performed quantitative PCR to detect nine randomly selected CNVRs and successfully confirmed seven (77.6%) of them. Our results present a map of cattle CNVs derived from high-density SNP data, which expands the current CNV map of the cattle genome and provides useful information for investigation of genomic structural variation in cattle.
Collapse
Affiliation(s)
- Yang Wu
- Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Wiedmann RT, Nonneman DJ, Rohrer GA. Genome-Wide Copy Number Variations Using SNP Genotyping in a Mixed Breed Swine Population. PLoS One 2015; 10:e0133529. [PMID: 26172260 PMCID: PMC4501702 DOI: 10.1371/journal.pone.0133529] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 06/27/2015] [Indexed: 12/12/2022] Open
Abstract
Copy number variations (CNVs) are increasingly understood to affect phenotypic variation. This study uses SNP genotyping of trios of mixed breed swine to add to the catalog of known genotypic variation in an important agricultural animal. PorcineSNP60 BeadChip genotypes were collected from 1802 pigs that combined to form 1621 trios. These trios were from the crosses of 50 boars with 525 sows producing 1621 piglets. The pigs were part of a population that was a mix of ¼ Duroc, ½ Landrace and ¼ Yorkshire breeds. Merging the overlapping CNVs that were observed in two or more individuals to form CNV regions (CNVRs) yielded 502 CNVRs across the autosomes. The CNVRs intersected genes, as defined by RefSeq, 84% of the time – 420 out of 502. The results of this study are compared and contrasted to other swine studies using similar and different methods of detecting CNVR. While progress is being made in this field, more work needs to be done to improve consistency and confidence in CNVR results.
Collapse
Affiliation(s)
- Ralph T. Wiedmann
- United States Department of Agriculture, Agricultural Research Service, United States Meat Animal Research Center, Clay Center, Nebraska, United States of America
| | - Dan J. Nonneman
- United States Department of Agriculture, Agricultural Research Service, United States Meat Animal Research Center, Clay Center, Nebraska, United States of America
| | - Gary A. Rohrer
- United States Department of Agriculture, Agricultural Research Service, United States Meat Animal Research Center, Clay Center, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
147
|
Wang H, Wang C, Yang K, Liu J, Zhang Y, Wang Y, Xu X, Michal JJ, Jiang Z, Liu B. Genome Wide Distributions and Functional Characterization of Copy Number Variations between Chinese and Western Pigs. PLoS One 2015; 10:e0131522. [PMID: 26154170 PMCID: PMC4496047 DOI: 10.1371/journal.pone.0131522] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 06/03/2015] [Indexed: 01/02/2023] Open
Abstract
Copy number variations (CNVs) refer to large insertions, deletions and duplications in the genomic structure ranging from one thousand to several million bases in size. Since the development of next generation sequencing technology, several methods have been well built for detection of copy number variations with high credibility and accuracy. Evidence has shown that CNV occurring in gene region could lead to phenotypic changes due to the alteration in gene structure and dosage. However, it still remains unexplored whether CNVs underlie the phenotypic differences between Chinese and Western domestic pigs. Based on the read-depth methods, we investigated copy number variations using 49 individuals derived from both Chinese and Western pig breeds. A total of 3,131 copy number variation regions (CNVRs) were identified with an average size of 13.4 Kb in all individuals during domestication, harboring 1,363 genes. Among them, 129 and 147 CNVRs were Chinese and Western pig specific, respectively. Gene functional enrichments revealed that these CNVRs contribute to strong disease resistance and high prolificacy in Chinese domestic pigs, but strong muscle tissue development in Western domestic pigs. This finding is strongly consistent with the morphologic characteristics of Chinese and Western pigs, indicating that these group-specific CNVRs might have been preserved by artificial selection for the favored phenotypes during independent domestication of Chinese and Western pigs. In this study, we built high-resolution CNV maps in several domestic pig breeds and discovered the group specific CNVs by comparing Chinese and Western pigs, which could provide new insight into genomic variations during pigs’ independent domestication, and facilitate further functional studies of CNV-associated genes.
Collapse
Affiliation(s)
- Hongyang Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, PR China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, PR China
| | - Chao Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, PR China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, PR China
| | - Kui Yang
- Modern Educational & Technology Centre of Huazhong Agricultural University, Wuhan, PR China
| | - Jing Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, PR China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, PR China
| | - Yu Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, PR China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, PR China
| | - Yanan Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, PR China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, PR China
| | - Xuewen Xu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, PR China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, PR China
| | - Jennifer J. Michal
- Department of Animal Sciences, Washington State University, Pullman, WA, United States of America
| | - Zhihua Jiang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, PR China
- Department of Animal Sciences, Washington State University, Pullman, WA, United States of America
| | - Bang Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, PR China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, PR China
- * E-mail:
| |
Collapse
|
148
|
Radke DW, Lee C. Adaptive potential of genomic structural variation in human and mammalian evolution. Brief Funct Genomics 2015; 14:358-68. [PMID: 26003631 DOI: 10.1093/bfgp/elv019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Because phenotypic innovations must be genetically heritable for biological evolution to proceed, it is natural to consider new mutation events as well as standing genetic variation as sources for their birth. Previous research has identified a number of single-nucleotide polymorphisms that underlie a subset of adaptive traits in organisms. However, another well-known class of variation, genomic structural variation, could have even greater potential to produce adaptive phenotypes, due to the variety of possible types of alterations (deletions, insertions, duplications, among others) at different genomic positions and with variable lengths. It is from these dramatic genomic alterations, and selection on their phenotypic consequences, that adaptations leading to biological diversification could be derived. In this review, using studies in humans and other mammals, we highlight examples of how phenotypic variation from structural variants might become adaptive in populations and potentially enable biological diversification. Phenotypic change arising from structural variants will be described according to their immediate effect on organismal metabolic processes, immunological response and physical features. Study of population dynamics of segregating structural variation can therefore provide a window into understanding current and historical biological diversification.
Collapse
|
149
|
Improved Detection and Characterization of Copy Number Variations Among Diverse Pig Breeds by Array CGH. G3-GENES GENOMES GENETICS 2015; 5:1253-61. [PMID: 25908567 PMCID: PMC4478553 DOI: 10.1534/g3.115.018473] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
As a major component of genomic variation, copy number variations (CNVs) are considered as promising markers for some phenotypic and economically important traits in domestic animals. Using a custom-designed 1M array CGH (aCGH), we performed CNV discovery in 12 pig samples from one Asian wild boar population, six Chinese indigenous breeds, and two European commercial breeds. In total, we identified 758 CNV regions (CNVRs), covering 47.43 Mb of the pig genome sequence. Of the total porcine genes, 1295 genes were completely or partially overlapped with the identified CNVRs, which enriched in the terms related to sensory perception of the environment, neurodevelopmental processes, response to external stimuli, and immunity. Further probing the potential functions of these genes, we also found a suite of genes related important traits, which make them a promising resource for exploring the genetic basis of phenotype differences among diverse pig breeds. Compared with previous relevant studies, the current study highlights that different platforms can complement each other, and the combined implementation of different platforms is beneficial to achieve the most comprehensive CNV calls. CNVs detected in diverse populations herein are essentially complementary to the CNV map in the pig genome, which would be helpful for understanding the pig genome variants and investigating the associations between various phenotypes and CNVs.
Collapse
|
150
|
Paudel Y, Madsen O, Megens HJ, Frantz LAF, Bosse M, Crooijmans RPMA, Groenen MAM. Copy number variation in the speciation of pigs: a possible prominent role for olfactory receptors. BMC Genomics 2015; 16:330. [PMID: 25896665 PMCID: PMC4413995 DOI: 10.1186/s12864-015-1449-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 03/09/2015] [Indexed: 12/02/2022] Open
Abstract
Background Unraveling the genetic mechanisms associated with reduced gene flow between genetically differentiated populations is key to understand speciation. Different types of structural variations (SVs) have been found as a source of genetic diversity in a wide range of species. Previous studies provided detailed knowledge on the potential evolutionary role of SVs, especially copy number variations (CNVs), between well diverged species of e.g. primates. However, our understanding of their significance during ongoing speciation processes is limited due to the lack of CNV data from closely related species. The genus Sus (pig and its close relatives) which started to diverge ~4 Mya presents an excellent model for studying the role of CNVs during ongoing speciation. Results In this study, we identified 1408 CNV regions (CNVRs) across the genus Sus. These CNVRs encompass 624 genes and were found to evolve ~2.5 times faster than single nucleotide polymorphisms (SNPs). The majority of these copy number variable genes are olfactory receptors (ORs) known to play a prominent role in food foraging and mate recognition in Sus. Phylogenetic analyses, including novel Bayesian analysis, based on CNVRs that overlap ORs retain the well-accepted topology of the genus Sus whereas CNVRs overlapping genes other than ORs show evidence for random drift and/or admixture. Conclusion We hypothesize that inter-specific variation in copy number of ORs provided the means for rapid adaptation to different environments during the diversification of the genus Sus in the Pliocene. Furthermore, these regions might have acted as barriers preventing massive gene flow between these species during the multiple hybridization events that took place later in the Pleistocene suggesting a possible prominent role of ORs in the ongoing Sus speciation. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1449-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yogesh Paudel
- Animal Breeding and Genomics Centre, Wageningen University, 6700 AH, Wageningen, The Netherlands. .,Current address: Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070, Basel, Switzerland.
| | - Ole Madsen
- Animal Breeding and Genomics Centre, Wageningen University, 6700 AH, Wageningen, The Netherlands.
| | - Hendrik-Jan Megens
- Animal Breeding and Genomics Centre, Wageningen University, 6700 AH, Wageningen, The Netherlands.
| | - Laurent A F Frantz
- Animal Breeding and Genomics Centre, Wageningen University, 6700 AH, Wageningen, The Netherlands.
| | - Mirte Bosse
- Animal Breeding and Genomics Centre, Wageningen University, 6700 AH, Wageningen, The Netherlands.
| | - Richard P M A Crooijmans
- Animal Breeding and Genomics Centre, Wageningen University, 6700 AH, Wageningen, The Netherlands.
| | - Martien A M Groenen
- Animal Breeding and Genomics Centre, Wageningen University, 6700 AH, Wageningen, The Netherlands.
| |
Collapse
|