Pascual JI, Méndez J, Gómez-Herrero J, Baró AM, Garcia N, Landman U, Luedtke WD, Bogachek EN, Cheng HP. Properties of Metallic Nanowires: From Conductance Quantization to Localization.
Science 1995;
267:1793-5. [PMID:
17775806 DOI:
10.1126/science.267.5205.1793]
[Citation(s) in RCA: 98] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Material structures of reduced dimensions exhibit electrical and mechanical properties different from those in the bulk. Measurements of room-temperature electronic transport in pulled metallic nanowires are presented, demonstrating that the conductance characteristics depend on the length, lateral dimensions, state and degree of disorder, and elongation mechanism of the wire. Conductance during the elongation of short wires (length l approximately 50 angstroms) exhibits periodic quantization steps with characteristic dips, correlating with the order-disorder states of layers of atoms in the wire predicted by molecular dynamics simulations. The resistance R of wires as long as l approximately 400 angstroms exhibits localization characteristics with In R(l) approximately l(2).
Collapse