101
|
Sevilla FJ, Rodríguez RF, Gomez-Solano JR. Generalized Ornstein-Uhlenbeck model for active motion. Phys Rev E 2019; 100:032123. [PMID: 31640041 DOI: 10.1103/physreve.100.032123] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Indexed: 06/10/2023]
Abstract
We investigate a one-dimensional model of active motion, which takes into account the effects of persistent self-propulsion through a memory function in a dissipative-like term of the generalized Langevin equation for particle swimming velocity. The proposed model is a generalization of the active Ornstein-Uhlenbeck model introduced by G. Szamel [Phys. Rev. E 90, 012111 (2014)10.1103/PhysRevE.90.012111]. We focus on two different kinds of memory which arise in many natural systems: an exponential decay and a power law, supplemented with additive colored noise. We provide analytical expressions for the velocity autocorrelation function and the mean-squared displacement, which are in excellent agreement with numerical simulations. For both models, damped oscillatory solutions emerge due to the competition between the memory of the system and the persistence of velocity fluctuations. In particular, for a power-law model with fractional Brownian noise, we show that long-time active subdiffusion occurs with increasing long-term memory.
Collapse
Affiliation(s)
- Francisco J Sevilla
- Departamento de Sistemas Complejos, Instituto de Física, Universidad Nacional Autónoma de México, Apdo. Postal 20-364, 01000, Ciudad de México, México
| | - Rosalío F Rodríguez
- Departamento de Sistemas Complejos, Instituto de Física, Universidad Nacional Autónoma de México, Apdo. Postal 20-364, 01000, Ciudad de México, México
- FENOMEC, Universidad Nacional Autónoma de México, Apdo. Postal 20-726, 01000, Ciudad de México, México
| | - Juan Ruben Gomez-Solano
- Departamento de Sistemas Complejos, Instituto de Física, Universidad Nacional Autónoma de México, Apdo. Postal 20-364, 01000, Ciudad de México, México
| |
Collapse
|
102
|
Sarracino A, Vulpiani A. On the fluctuation-dissipation relation in non-equilibrium and non-Hamiltonian systems. CHAOS (WOODBURY, N.Y.) 2019; 29:083132. [PMID: 31472486 DOI: 10.1063/1.5110262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/08/2019] [Indexed: 06/10/2023]
Abstract
We review generalized fluctuation-dissipation relations, which are valid under general conditions even in "nonstandard systems," e.g., out of equilibrium and/or without a Hamiltonian structure. The response functions can be expressed in terms of suitable correlation functions computed in the unperturbed dynamics. In these relations, typically, one has nontrivial contributions due to the form of the stationary probability distribution; such terms take into account the interaction among the relevant degrees of freedom in the system. We illustrate the general formalism with some examples in nonstandard cases, including driven granular media, systems with a multiscale structure, active matter, and systems showing anomalous diffusion.
Collapse
Affiliation(s)
- A Sarracino
- Dipartimento di Ingegneria, Università della Campania "L. Vanvitelli," via Roma 29, 81031 Aversa (CE), Italy
| | - A Vulpiani
- Dipartimento di Fisica, Università Sapienza-p.le A. Moro 2, 00185 Roma, Italy
| |
Collapse
|
103
|
Löwen H. Active particles in noninertial frames: How to self-propel on a carousel. Phys Rev E 2019; 99:062608. [PMID: 31330628 DOI: 10.1103/physreve.99.062608] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Indexed: 06/10/2023]
Abstract
Typically the motion of self-propelled active particles is described in a quiescent environment establishing an inertial frame of reference. Here we assume that friction, self-propulsion, and fluctuations occur relative to a noninertial frame and thereby the active Brownian motion model is generalized to noninertial frames. First, analytical solutions are presented for the overdamped case, both for linear swimmers and for circle swimmers. For a frame rotating with constant angular velocity ("carousel"), the resulting noise-free trajectories in the static laboratory frame are trochoids if these are circles in the rotating frame. For systems governed by inertia, such as vibrated granulates or active complex plasmas, centrifugal and Coriolis forces become relevant. For both linear and circling self-propulsion, these forces lead to out-spiraling trajectories which for long times approach a spira mirabilis. This implies that a self-propelled particle will typically leave a rotating carousel. A navigation strategy is proposed to avoid this expulsion, by adjusting the self-propulsion direction at will. For a particle, initially quiescent in the rotating frame, it is shown that this strategy only works if the initial distance to the rotation center is smaller than a critical radius R_{c} which scales with the self-propulsion velocity. Possible experiments to verify the theoretical predictions are discussed.
Collapse
Affiliation(s)
- Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| |
Collapse
|
104
|
Berthier L, Flenner E, Szamel G. Glassy dynamics in dense systems of active particles. J Chem Phys 2019; 150:200901. [DOI: 10.1063/1.5093240] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Ludovic Berthier
- Laboratoire Charles Coulomb, UMR 5221 CNRS, Université Montpellier, Montpellier, France
| | - Elijah Flenner
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Grzegorz Szamel
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
105
|
Wittmann R, Smallenburg F, Brader JM. Pressure, surface tension, and curvature in active systems: A touch of equilibrium. J Chem Phys 2019; 150:174908. [DOI: 10.1063/1.5086390] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- René Wittmann
- Department of Physics, University of Fribourg, CH-1700 Fribourg, Switzerland
- Institut für Theoretische Physik II, Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - Frank Smallenburg
- Institut für Theoretische Physik II, Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
- Laboratoire de Physique des Solides, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay, Orsay, France
| | - Joseph M. Brader
- Department of Physics, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|
106
|
Caprini L, Cecconi F, Marini Bettolo Marconi U. Transport of active particles in an open-wedge channel. J Chem Phys 2019; 150:144903. [DOI: 10.1063/1.5090104] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Lorenzo Caprini
- Gran Sasso Science Institute (GSSI), Via F.Crispi 7, I-67100 L’Aquila, Italy
| | - Fabio Cecconi
- Istituto dei Sistemi Complessi (CNR), Via Taurini 19, I-00185 Roma, Italy
| | | |
Collapse
|
107
|
Szamel G. Mode-coupling theory for the steady-state dynamics of active Brownian particles. J Chem Phys 2019; 150:124901. [PMID: 30927902 DOI: 10.1063/1.5085752] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We present a theory for the steady-state dynamics of a two-dimensional system of spherically symmetric active Brownian particles. The derivation of the theory consists of two steps. First, we integrate out the self-propulsions and obtain a many-particle evolution equation for the probability distribution of the particles' positions. Second, we use the projection operator technique and a mode-coupling-like factorization approximation to derive an equation of motion for the density correlation function. The nonequilibrium character of the active system manifests itself through the presence of a steady-state correlation function that quantifies spatial correlations of microscopic steady-state currents of the particles. This function determines the dependence of the short-time dynamics on the activity. It also enters into the expression for the memory matrix and thus influences the long-time glassy dynamics.
Collapse
Affiliation(s)
- Grzegorz Szamel
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
108
|
Caprini L, Marini Bettolo Marconi U. Active chiral particles under confinement: surface currents and bulk accumulation phenomena. SOFT MATTER 2019; 15:2627-2637. [PMID: 30810571 DOI: 10.1039/c8sm02492h] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this work, we study the stationary behavior of an assembly of independent chiral active particles under confinement by employing an extension of the active Ornstein-Uhlenbeck model. The chirality modeled by means of an effective torque term leads to a drastic reduction in the accumulation near the walls with respect to the case without handedness and to the appearance of currents parallel to the container walls accompanied by a large accumulation of particles in the inner region. In the case of two-dimensional chiral particles confined by harmonic walls, we determine the analytic form of the distribution of positions and velocities in two different situations: a rotationally invariant confining potential and an infinite channel with parabolic walls. Both these models display currents and chirality induced inner accumulation. These phenomena are further investigated by means of a more realistic description of a channel, where the wall and bulk regions are clearly separated. The corresponding current and density profiles are obtained by numerical simulations. At variance with the harmonic models, the third model shows a progressive emptying of the wall regions and the simultaneous enhancement of the bulk population. We explain such a phenomenon in terms of the combined effect of wall repulsive forces and chiral motion and provide a semiquantitative description of the current profile in terms of effective viscosity of the chiral gas.
Collapse
Affiliation(s)
- Lorenzo Caprini
- Gran Sasso Science Institute (GSSI), Via. F. Crispi 7, 67100 L'Aquila, Italy
| | | |
Collapse
|
109
|
Chaki S, Chakrabarti R. Enhanced diffusion, swelling, and slow reconfiguration of a single chain in non-Gaussian active bath. J Chem Phys 2019; 150:094902. [DOI: 10.1063/1.5086152] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Subhasish Chaki
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Rajarshi Chakrabarti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
110
|
Caprini L, Marini Bettolo Marconi U, Puglisi A. Activity induced delocalization and freezing in self-propelled systems. Sci Rep 2019; 9:1386. [PMID: 30718579 PMCID: PMC6361910 DOI: 10.1038/s41598-018-36824-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/23/2018] [Indexed: 11/08/2022] Open
Abstract
We study a system of interacting active particles, propelled by colored noises, characterized by an activity time τ, and confined by a single-well anharmonic potential. We assume pair-wise repulsive forces among particles, modelling the steric interactions among microswimmers. This system has been experimentally studied in the case of a dilute suspension of Janus particles confined through acoustic traps. We observe that already in the dilute regime - when inter-particle interactions are negligible - increasing the persistent time, τ, pushes the particles away from the potential minimum, until a saturation distance is reached. We compute the phase diagram (activity versus interaction length), showing that the interaction does not suppress this delocalization phenomenon but induces a liquid- or solid-like structure in the densest regions. Interestingly a reentrant behavior is observed: a first increase of τ from small values acts as an effective warming, favouring fluidization; at higher values, when the delocalization occurs, a further increase of τ induces freezing inside the densest regions. An approximate analytical scheme gives fair predictions for the density profiles in the weakly interacting case. The analysis of non-equilibrium heat fluxes reveals that in the region of largest particle concentration equilibrium is restored in several aspects.
Collapse
Affiliation(s)
- Lorenzo Caprini
- Gran Sasso Science Institute (GSSI), Via. F. Crispi 7, 67100, L'Aquila, Italy.
| | | | - Andrea Puglisi
- Istituto dei Sistemi Complessi - CNR and Dipartimento di Fisica, Università di Roma Sapienza, P.le Aldo Moro 2, 00185, Rome, Italy
| |
Collapse
|
111
|
Caprini L, Marini Bettolo Marconi U, Puglisi A, Vulpiani A. Active escape dynamics: The effect of persistence on barrier crossing. J Chem Phys 2019; 150:024902. [DOI: 10.1063/1.5080537] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Lorenzo Caprini
- Gran Sasso Science Institute (GSSI), Via. F. Crispi 7, 67100 L’Aquila, Italy
| | - Umberto Marini Bettolo Marconi
- Scuola di Scienze e Tecnologie, Università di Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy and INFN, Perugia, Italy
| | - Andrea Puglisi
- CNR-ISC, Consiglio Nazionale delle Ricerche, Dipartimento di Fisica, Università La Sapienza, P.le A. Moro 2, 00185 Rome, Italy
| | - Angelo Vulpiani
- Dipartimento di Fisica, Università di Roma Sapienza, I-00185 Rome, Italy
| |
Collapse
|
112
|
Ehrich J, Kahlen M. Approximating microswimmer dynamics by active Brownian motion: Energetics and efficiency. Phys Rev E 2019; 99:012118. [PMID: 30780203 DOI: 10.1103/physreve.99.012118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Indexed: 06/09/2023]
Abstract
We consider the dynamics of a microswimmer and show that they can be approximated by active Brownian motion. The swimmer is modeled by coupled overdamped Langevin equations with periodic driving. We compare the energy dissipation of the real swimmer to that of the active Brownian motion model, finding that the latter can massively underestimate the complete dissipation. This discrepancy is related to the inability to infer the full dissipation from partial observation of the complete system. We introduce an efficiency that measures how much of the dissipated energy is spent on forward propulsion.
Collapse
Affiliation(s)
- Jannik Ehrich
- Universität Oldenburg, Institut für Physik, 26111 Oldenburg, Germany
| | - Marcel Kahlen
- Universität Oldenburg, Institut für Physik, 26111 Oldenburg, Germany
| |
Collapse
|
113
|
Sevilla FJ, Arzola AV, Cital EP. Stationary superstatistics distributions of trapped run-and-tumble particles. Phys Rev E 2019; 99:012145. [PMID: 30780275 DOI: 10.1103/physreve.99.012145] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Indexed: 06/09/2023]
Abstract
We present an analysis of the stationary distributions of run-and-tumble particles trapped in external potentials in terms of a thermophoretic potential that emerges when trapped active motion is mapped to trapped passive Brownian motion in a fictitious inhomogeneous thermal bath. We elaborate on the meaning of the non-Boltzmann-Gibbs stationary distributions that emerge as a consequence of the persistent motion of active particles. These stationary distributions are interpreted as a class of distributions in nonequilibrium statistical mechanics known as superstatistics. Our analysis provides an original insight on the link between the intrinsic nonequilibrium nature of active motion and the well-known concept of local equilibrium used in nonequilibrium statistical mechanics and contributes to the understanding of the validity of the concept of effective temperature. Particular cases of interest, regarding specific trapping potentials used in other theoretical or experimental studies, are discussed. We point out as an unprecedented effect, the emergence of new modes of the stationary distribution as a consequence of the coupling of persistent motion in a trapping potential that varies highly enough with position.
Collapse
Affiliation(s)
- Francisco J Sevilla
- Instituto de Física, Universidad Nacional Autónoma de México, Apdo. Postal 20-364, 01000 Ciudad de México, Mexico
| | - Alejandro V Arzola
- Instituto de Física, Universidad Nacional Autónoma de México, Apdo. Postal 20-364, 01000 Ciudad de México, Mexico
| | - Enrique Puga Cital
- Instituto de Física, Universidad Nacional Autónoma de México, Apdo. Postal 20-364, 01000 Ciudad de México, Mexico
| |
Collapse
|
114
|
Grosberg AY, Joanny JF. Dissipation in a System Driven by Two Different Thermostats. POLYMER SCIENCE SERIES C 2018. [DOI: 10.1134/s1811238218020108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
115
|
Caprini L, Marini Bettolo Marconi U. Active particles under confinement and effective force generation among surfaces. SOFT MATTER 2018; 14:9044-9054. [PMID: 30387799 DOI: 10.1039/c8sm01840e] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We consider the effect of geometric confinement on the steady-state properties of a one-dimensional active suspension subject to thermal noise. The random active force is modeled by an Ornstein-Uhlenbeck process and the system is studied both numerically, by integrating the Langevin governing equations, and analytically by solving the associated Fokker-Planck equation under suitable approximations. The comparison between the two approaches displays a fairly good agreement and in particular, we show that the Fokker-Planck approach can predict the structure of the system both in the wall region and in the bulk-like region where the surface forces are negligible. The simultaneous presence of thermal noise and active forces determines the formation of a layer, extending from the walls towards the bulk, where the system exhibits polar order. We relate the presence of such ordering to the mechanical pressure exerted on the container's walls and show how it depends on the separation of the boundaries and determines a Casimir-like attractive force mediated by the active suspension.
Collapse
Affiliation(s)
- Lorenzo Caprini
- Gran Sasso Science Institute (GSSI), Via. F. Crispi 7, 67100 L'Aquila, Italy
| | | |
Collapse
|
116
|
Rodenburg J, Paliwal S, de Jager M, Bolhuis PG, Dijkstra M, van Roij R. Ratchet-induced variations in bulk states of an active ideal gas. J Chem Phys 2018; 149:174910. [DOI: 10.1063/1.5048698] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Jeroen Rodenburg
- Institute for Theoretical Physics, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| | - Siddharth Paliwal
- Soft Condensed Matter Group, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Marjolein de Jager
- Institute for Theoretical Physics, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| | - Peter G. Bolhuis
- Van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| | - Marjolein Dijkstra
- Soft Condensed Matter Group, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - René van Roij
- Institute for Theoretical Physics, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| |
Collapse
|
117
|
Petrelli I, Digregorio P, Cugliandolo LF, Gonnella G, Suma A. Active dumbbells: Dynamics and morphology in the coexisting region. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2018; 41:128. [PMID: 30353425 DOI: 10.1140/epje/i2018-11739-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/05/2018] [Indexed: 06/08/2023]
Abstract
With the help of molecular dynamics simulations we study an ensemble of active dumbbells in purely repulsive interaction. We derive the phase diagram in the density-activity plane and we characterise the various phases with liquid, hexatic and solid character. The analysis of the structural and dynamical properties, such as enstrophy, mean-square displacement, polarisation, and correlation functions, shows the continuous character of liquid and hexatic phases in the coexisting region when the activity is increased starting from the passive limit.
Collapse
Affiliation(s)
- Isabella Petrelli
- Dipartimento di Fisica, Università degli Studi di Bari and INFN, Sezione di Bari, via Amendola 173, I-70126, Bari, Italy
| | - Pasquale Digregorio
- Dipartimento di Fisica, Università degli Studi di Bari and INFN, Sezione di Bari, via Amendola 173, I-70126, Bari, Italy
| | - Leticia F Cugliandolo
- Sorbonne Université, Laboratoire de Physique Théorique et Hautes Energies, CNRS UMR 7589, 4 Place Jussieu, 75252, Paris Cedex 05, France
| | - Giuseppe Gonnella
- Dipartimento di Fisica, Università degli Studi di Bari and INFN, Sezione di Bari, via Amendola 173, I-70126, Bari, Italy
| | - Antonio Suma
- SISSA - Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, 34136, Trieste, Italy.
- Institute for Computational Molecular Science, College of Science and Technology, Temple University, 19122, Philadelphia, PA, USA.
| |
Collapse
|
118
|
Shankar S, Marchetti MC. Hidden entropy production and work fluctuations in an ideal active gas. Phys Rev E 2018; 98:020604. [PMID: 30253539 DOI: 10.1103/physreve.98.020604] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Indexed: 11/07/2022]
Abstract
Collections of self-propelled particles that move persistently by continuously consuming free energy are a paradigmatic example of active matter. In these systems, unlike Brownian "hot colloids," the breakdown of detailed balance yields a continuous production of entropy at steady state, even for an ideal active gas. We quantify the irreversibility for a noninteracting active particle in two dimensions by treating both conjugated and time-reversed dynamics. By starting with underdamped dynamics, we identify a hidden rate of entropy production required to maintain persistence and prevent the rapidly relaxing momenta from thermalizing, even in the limit of very large friction. Additionally, comparing two popular models of self-propulsion with identical dissipation on average, we find that the fluctuations and large deviations in work done are markedly different, providing thermodynamic insight into the varying extents to which macroscopically similar active matter systems may depart from equilibrium.
Collapse
Affiliation(s)
- Suraj Shankar
- Physics Department and Syracuse Soft and Living Matter Program, Syracuse University, Syracuse, New York 13244, USA.,and Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA
| | - M Cristina Marchetti
- Physics Department and Syracuse Soft and Living Matter Program, Syracuse University, Syracuse, New York 13244, USA.,and Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
119
|
Lima EO, Pereira PCN, Löwen H, Apolinario SWS. Complex structures generated by competing interactions in harmonically confined colloidal suspensions. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:325101. [PMID: 29974867 DOI: 10.1088/1361-648x/aad14f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We investigate the structural properties of colloidal particle systems interacting via an isotropic pair potential and confined by a three-dimensional harmonic potential. The interaction potential has a repulsive-attractive-repulsive profile that varies with the interparticle distance (also known as a 'mermaid' potential). We performed Langevin dynamics simulations to find the equilibrium configurations of the system. We show that particles can self-assemble in complex structural patterns, such as compact disks, fringed disks, rods, spherical clusters with superficial entrances among others. Also, for particular values of the parameters of the interaction potential, we could identify that some configurations were formed by quasi two-dimensional (2D) structures which are stable for 2D systems.
Collapse
Affiliation(s)
- E O Lima
- Departamento de Física, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
| | | | | | | |
Collapse
|
120
|
Abstract
We consider the thermal and athermal overdamped motion of particles in one-dimensional geometries where discrete internal degrees of freedom (spin) are coupled with the translational motion. Adding a driving velocity that depends on the time-dependent spin constitutes the simplest model of active particles (run-and-tumble processes) where the violation of the equipartition principle and of the Sutherland-Einstein relation can be studied in detail even when there is generalized reversibility. We give an example (with four spin values) where the irreversibility of the translational motion manifests itself only in higher-order (than two) time correlations. We derive a generalized telegraph equation as the Smoluchowski equation for the spatial density for an arbitrary number of spin values. We also investigate the Arrhenius exponential law for run-and-tumble particles; due to their activity the slope of the potential becomes important in contrast to the passive diffusion case and activity enhances the escape from a potential well (if that slope is high enough). Finally, in the absence of a driving velocity, the presence of internal currents such as in the chemistry of molecular motors may be transmitted to the translational motion and the internal activity is crucial for the direction of the emerging spatial current.
Collapse
|
121
|
Debnath T, Ghosh PK. Activated barrier crossing dynamics of a Janus particle carrying cargo. Phys Chem Chem Phys 2018; 20:25069-25077. [DOI: 10.1039/c8cp04419h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We numerically study the escape kinetics of a self-propelled Janus particle, carrying a cargo, from a meta-stable state.
Collapse
Affiliation(s)
- Tanwi Debnath
- Department of Chemistry, University of Calcutta
- Kolkata 700009
- India
| | | |
Collapse
|
122
|
Wittmann R, Brader JM, Sharma A, Marconi UMB. Effective equilibrium states in mixtures of active particles driven by colored noise. Phys Rev E 2018; 97:012601. [PMID: 29448463 DOI: 10.1103/physreve.97.012601] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Indexed: 06/08/2023]
Abstract
We consider the steady-state behavior of pairs of active particles having different persistence times and diffusivities. To this purpose we employ the active Ornstein-Uhlenbeck model, where the particles are driven by colored noises with exponential correlation functions whose intensities and correlation times vary from species to species. By extending Fox's theory to many components, we derive by functional calculus an approximate Fokker-Planck equation for the configurational distribution function of the system. After illustrating the predicted distribution in the solvable case of two particles interacting via a harmonic potential, we consider systems of particles repelling through inverse power-law potentials. We compare the analytic predictions to computer simulations for such soft-repulsive interactions in one dimension and show that at linear order in the persistence times the theory is satisfactory. This work provides the toolbox to qualitatively describe many-body phenomena, such as demixing and depletion, by means of effective pair potentials.
Collapse
Affiliation(s)
- René Wittmann
- Department of Physics, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - J M Brader
- Department of Physics, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - A Sharma
- Leibniz-Institut für Polymerforschung Dresden, D-01069 Dresden, Germany
| | - U Marini Bettolo Marconi
- Scuola di Scienze e Tecnologie, Università di Camerino, Via Madonna delle Carceri, I-62032, Camerino, INFN Perugia, Italy
| |
Collapse
|
123
|
Sandford C, Grosberg AY. Memory effects in active particles with exponentially correlated propulsion. Phys Rev E 2018; 97:012602. [PMID: 29448418 DOI: 10.1103/physreve.97.012602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Indexed: 06/08/2023]
Abstract
The Ornstein-Uhlenbeck particle (OUP) model imagines a microscopic swimmer propelled by an active force which is correlated with itself on a finite time scale. Here we investigate the influence of external potentials on an ideal suspension of OUPs, in both one and two spatial dimensions, with particular attention paid to the pressure exerted on "confining walls." We employ a mathematical connection between the local density of OUPs and the statistics of their propulsion force to demonstrate the existence of an equation of state in one dimension. In higher dimensions we show that active particles generate a nonconservative force field in the surrounding medium. A simplified far-from-equilibrium model is proposed to account for OUP behavior in the vicinity of potentials. Building on this, we interpret simulations of OUPs in more complicated situations involving asymmetrical and spatially curved potentials, and characterize the resulting inhomogeneous stresses in terms of competing active length scales.
Collapse
Affiliation(s)
- Cato Sandford
- Department of Physics and Center for Soft Matter Research, New York University, 726 Broadway, New York, New York 10003, USA
| | - Alexander Y Grosberg
- Department of Physics and Center for Soft Matter Research, New York University, 726 Broadway, New York, New York 10003, USA
| |
Collapse
|
124
|
Mandal D, Klymko K, DeWeese MR. Entropy Production and Fluctuation Theorems for Active Matter. PHYSICAL REVIEW LETTERS 2017; 119:258001. [PMID: 29303303 DOI: 10.1103/physrevlett.119.258001] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Indexed: 05/18/2023]
Abstract
Active biological systems reside far from equilibrium, dissipating heat even in their steady state, thus requiring an extension of conventional equilibrium thermodynamics and statistical mechanics. In this Letter, we have extended the emerging framework of stochastic thermodynamics to active matter. In particular, for the active Ornstein-Uhlenbeck model, we have provided consistent definitions of thermodynamic quantities such as work, energy, heat, entropy, and entropy production at the level of single, stochastic trajectories and derived related fluctuation relations. We have developed a generalization of the Clausius inequality, which is valid even in the presence of the non-Hamiltonian dynamics underlying active matter systems. We have illustrated our results with explicit numerical studies.
Collapse
Affiliation(s)
- Dibyendu Mandal
- Department of Physics, University of California, Berkeley, California 94720, USA
| | - Katherine Klymko
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Michael R DeWeese
- Department of Physics, University of California, Berkeley, California 94720, USA
- Redwood Center for Theoretical Neuroscience and Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, USA
| |
Collapse
|
125
|
Liluashvili A, Ónody J, Voigtmann T. Mode-coupling theory for active Brownian particles. Phys Rev E 2017; 96:062608. [PMID: 29347410 DOI: 10.1103/physreve.96.062608] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Indexed: 06/07/2023]
Abstract
We present a mode-coupling theory (MCT) for the slow dynamics of two-dimensional spherical active Brownian particles (ABPs). The ABPs are characterized by a self-propulsion velocity v_{0} and by their translational and rotational diffusion coefficients D_{t} and D_{r}, respectively. Based on the integration-through-transients formalism, the theory requires as input only the equilibrium static structure factors of the passive system (where v_{0}=0). It predicts a nontrivial idealized-glass-transition diagram in the three-dimensional parameter space of density, self-propulsion velocity, and rotational diffusivity that arise because at high densities, the persistence length of active swimming ℓ_{p}=v_{0}/D_{r} interferes with the interaction length ℓ_{c} set by the caging of particles. While the low-density dynamics of ABPs is characterized by a single Péclet number Pe=v_{0}^{2}/D_{r}D_{t}, close to the glass transition the dynamics is found to depend on Pe and ℓ_{p} separately. At fixed density, increasing the self-propulsion velocity causes structural relaxation to speed up, while decreasing the persistence length slows down the relaxation. The active-MCT glass is a nonergodic state that is qualitatively different from the passive glass. In it, correlations of initial density fluctuations never fully decay, but also an infinite memory of initial orientational fluctuations is retained in the positions.
Collapse
Affiliation(s)
- Alexander Liluashvili
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt, 51170 Köln, Germany
| | - Jonathan Ónody
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt, 51170 Köln, Germany
| | - Thomas Voigtmann
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt, 51170 Köln, Germany
- Department of Physics, Heinrich-Heine Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
126
|
Levis D, Codina J, Pagonabarraga I. Active Brownian equation of state: metastability and phase coexistence. SOFT MATTER 2017; 13:8113-8119. [PMID: 29105717 DOI: 10.1039/c7sm01504f] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
As a result of the competition between self-propulsion and excluded volume interactions, purely repulsive self-propelled spherical particles undergo a motility-induced phase separation (MIPS). We carry out a systematic computational study, considering several interaction potentials, systems confined by hard walls or with periodic boundary conditions, and different initial conditions. This approach allows us to identify that, despite its non-equilibrium nature, the equations of state of Active Brownian Particles (ABP) across MIPS verify the characteristic properties of first-order liquid-gas phase transitions, meaning, equality of pressure of the coexisting phases once a nucleation barrier has been overcome and, in the opposite case, hysteresis around the transition as long as the system remains in the metastable region. Our results show that the equations of state of ABPs account for their phase behaviour, providing a firm basis to describe MIPS as an equilibrium-like phase transition.
Collapse
Affiliation(s)
- Demian Levis
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, E08028 Barcelona, Spain.
| | | | | |
Collapse
|
127
|
Sandford C, Grosberg AY, Joanny JF. Pressure and flow of exponentially self-correlated active particles. Phys Rev E 2017; 96:052605. [PMID: 29347649 DOI: 10.1103/physreve.96.052605] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Indexed: 06/07/2023]
Abstract
Microscopic swimming particles, which dissipate energy to execute persistent directed motion, are a classic example of a nonequilibrium system. We investigate the noninteracting Ornstein-Uhlenbeck Particle (OUP), which is propelled through a viscous medium by a force which is correlated over a finite time. We obtain an exact expression for the steady-state phase-space density of a single OUP confined by a quadratic potential, and use the result to explore more complex geometries, both through analytical approximations and numerical simulations. In a "Casimir"-style setup involving two narrowly spaced walls, we describe a particle-trapping phenomenon, which leads to a repulsive effective interaction between the walls, while in a two-dimensional annulus geometry, we observe net stresses which resemble the Laplace pressure.
Collapse
Affiliation(s)
- Cato Sandford
- Center for Soft Matter Research and Department of Physics, New York University, 726 Broadway, New York, New York 10003, USA
| | - Alexander Y Grosberg
- Center for Soft Matter Research and Department of Physics, New York University, 726 Broadway, New York, New York 10003, USA
| | - Jean-François Joanny
- Physico-Chimie Curie UMR 168, Institut Curie, PSL Research University, 26 rue d'Ulm, 75248 Paris Cedex 05, France
- ESPCI-ParisTech, 10 rue Vauquelin 75005 Paris, France
| |
Collapse
|
128
|
Nandi SK, Gov NS. Nonequilibrium mode-coupling theory for dense active systems of self-propelled particles. SOFT MATTER 2017; 13:7609-7616. [PMID: 29028064 DOI: 10.1039/c7sm01648d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The physics of active systems of self-propelled particles, in the regime of a dense liquid state, is an open puzzle of great current interest, both for statistical physics and because such systems appear in many biological contexts. We develop a nonequilibrium mode-coupling theory (MCT) for such systems, where activity is included as a colored noise with the particles having a self-propulsion force f0 and a persistence time τp. Using the extended MCT and a generalized fluctuation-dissipation theorem, we calculate the effective temperature Teff of the active fluid. The nonequilibrium nature of the systems is manifested through a time-dependent Teff that approaches a constant in the long-time limit, which depends on the activity parameters f0 and τp. We find, phenomenologically, that this long-time limit is captured by the potential energy of a single, trapped active particle (STAP). Through a scaling analysis close to the MCT glass transition point, we show that τα, the α-relaxation time, behaves as τα ∼ f0-2γ, where γ = 1.74 is the MCT exponent for the passive system. τα may increase or decrease as a function of τp depending on the type of active force correlations, but the behavior is always governed by the same value of the exponent γ. Comparison with the numerical solution of the nonequilibrium MCT and simulation results give excellent agreement with scaling analysis.
Collapse
Affiliation(s)
- Saroj Kumar Nandi
- Department of Materials and Interfaces, The Weizmann Institute of Science, P.O. Box 26, 234 Herzl Street, Rehovot 7610001, Israel.
| | | |
Collapse
|
129
|
Marini Bettolo Marconi U, Maggi C, Paoluzzi M. Pressure in an exactly solvable model of active fluid. J Chem Phys 2017; 147:024903. [DOI: 10.1063/1.4991731] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - Claudio Maggi
- NANOTEC-CNR, Institute of Nanotechnology, Soft and Living Matter Laboratory, Piazzale A. Moro 2, I-00185 Roma, Italy
| | - Matteo Paoluzzi
- Department of Physics, Syracuse University, Syracuse, New York 13244, USA
| |
Collapse
|
130
|
Clausius Relation for Active Particles: What Can We Learn from Fluctuations. ENTROPY 2017. [DOI: 10.3390/e19070356] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
131
|
Feng M, Hou Z. Mode coupling theory for nonequilibrium glassy dynamics of thermal self-propelled particles. SOFT MATTER 2017; 13:4464-4481. [PMID: 28580481 DOI: 10.1039/c7sm00852j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We present a mode coupling theory study for the relaxation and glassy dynamics of a system of strongly interacting self-propelled particles, wherein the self-propulsion force is described by Ornstein-Uhlenbeck colored noise and thermal noises are included. Our starting point is an effective Smoluchowski equation governing the distribution function of particle positions, from which we derive a memory function equation for the time dependence of density fluctuations in nonequilibrium steady states. With the basic assumption of the absence of macroscopic currents and standard mode coupling approximation, we can obtain expressions for the irreducible memory function and other relevant dynamic terms, wherein the nonequilibrium character of the active system is manifested through an averaged diffusion coefficient D[combining macron] and a nontrivial structural function S2(q) with q being the magnitude of wave vector q. D[combining macron] and S2(q) enter the frequency term and the vertex term for the memory function, and thus influence both the short time and the long time dynamics of the system. With these equations obtained, we study the glassy dynamics of this thermal self-propelled particle system by investigating the Debye-Waller factor fq and relaxation time τα as functions of the persistence time τp of self-propulsion, the single particle effective temperature Teff as well as the number density ρ. Consequently, we find the critical density ρc for given τp shifts to larger values with increasing magnitude of propulsion force or effective temperature, in good accordance with previously reported simulation work. In addition, the theory facilitates us to study the critical effective temperature T for fixed ρ as well as its dependence on τp. We find that T increases with τp and in the limit τp → 0, it approaches the value for a simple passive Brownian system as expected. Our theory also well recovers the results for passive systems and can be easily extended to more complex systems such as active-passive mixtures.
Collapse
Affiliation(s)
- Mengkai Feng
- Department of Chemical Physics & Hefei National Laboratory for Physical Sciences at Microscales, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | | |
Collapse
|
132
|
Merlitz H, Wu C, Sommer JU. Directional transport of colloids inside a bath of self-propelling walkers. SOFT MATTER 2017; 13:3726-3733. [PMID: 28462970 DOI: 10.1039/c7sm00613f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We present a setup in which passive colloids inside a solvent are moved to the boundaries of the container. The directional transport is facilitated by self-propelling microparticles ("walkers") with an activity gradient, which reduces their propulsion in the vicinity of bounding walls. An attractive interaction leads to the adsorption of walkers onto the colloid-surfaces in regions of low walker activity. It is shown that the activity gradient generates a free energy gradient which in turn acts as a driving force on the passive colloids. We carry out molecular dynamics simulations and present approaches to a theoretical description of the involved processes. Although the simulation data are not reproduced on a fully quantitative level, their qualitative features are covered by the model. The effect described here may be applied to facilitate a directional transport of drugs or to eliminate pollutants.
Collapse
Affiliation(s)
- Holger Merlitz
- Leibniz-Institut für Polymerforschung Dresden, 01069 Dresden, Germany.
| | | | | |
Collapse
|
133
|
Wulfert R, Oechsle M, Speck T, Seifert U. Driven Brownian particle as a paradigm for a nonequilibrium heat bath: Effective temperature and cyclic work extraction. Phys Rev E 2017; 95:050103. [PMID: 28618536 DOI: 10.1103/physreve.95.050103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Indexed: 06/07/2023]
Abstract
We apply the concept of a frequency-dependent effective temperature based on the fluctuation-dissipation ratio to a driven Brownian particle in a nonequilibrium steady state. Using this system as a thermostat for a weakly coupled harmonic oscillator, the oscillator thermalizes according to a canonical distribution at the respective effective temperature across the entire frequency spectrum. By turning the oscillator from a passive thermometer into a heat engine, we realize the cyclic extraction of work from a single thermal reservoir, which is feasible only due to its nonequilibrium nature.
Collapse
Affiliation(s)
- R Wulfert
- II. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart, Germany
| | - M Oechsle
- II. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart, Germany
| | - T Speck
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128 Mainz, Germany
| | - U Seifert
- II. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart, Germany
| |
Collapse
|
134
|
Ding H, Jiang H, Hou Z. Study of dynamic heterogeneity of an active particle system. Phys Rev E 2017; 95:052608. [PMID: 28618538 DOI: 10.1103/physreve.95.052608] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Indexed: 06/07/2023]
Abstract
We have studied spatial and temporal dynamic heterogeneity (DH) in a system of hard-sphere particles, subjected to active forces with constant amplitude and random direction determined by rotational diffusion with correlation time τ. We have used a variety of observables to characterize the DH behavior, including the deviation from standard Stokes-Einstein (SE) relation, a non-Gaussian parameter α_{2}(Δt) for the distribution of particle displacement within a certain time interval Δt, a four-point susceptibility χ_{4}(Δt,ΔL) for the correlation in dynamics between any two points in space separated by distance ΔL within some time window Δt, and a vector spatial-temporal correlation function S_{vec}(R,Δt) for vector displacements within time interval Δt of particle pairs originally separated by R. By mapping the particle motion into a continuous-time random walk with constant jump length, we can obtain the average waiting time 〈t_{x}〉∝D_{s}^{-1} and persistence time 〈t_{p}〉∝η, with D_{s} the self-diffusion coefficient and η the shear viscosity, such that the observable λ=〈t_{p}〉/〈t_{x}〉∝D_{s}η can be calculated as a function of the control parameter τ to show how it deviates from its SE value λ_{0}. Interestingly, we find λ/λ_{0} shows a nonmonotonic behavior for large volume fraction φ_{a}, wherein λ/λ_{0} undergoes a minimum at a certain intermediate value of τ, indicating that both small and large particle activity may lead to strong DH. Such a reentrance phenomenon is further demonstrated in terms of the non-Gaussian parameters α_{2}, four-point susceptibility χ_{4}, and vector spatiotemporal correlation functions S_{vec}, respectively. Detail analysis shows that it is the competition between the dual roles of particle activity, namely, activity-induced higher effective temperature and activity-induced clustering, that leads to such nontrivial nonmonotonic behaviors. In addition, we find that DH may also show a maximum level at an intermediate value of φ_{a} if τ is large enough, implying that a more crowded system may be less heterogeneous than a less crowded one for a system with high particle activity.
Collapse
Affiliation(s)
- Huai Ding
- Department of Chemical Physics and Hefei National Laboratory for Physical Sciences at Microscales, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Huijun Jiang
- Department of Chemical Physics and Hefei National Laboratory for Physical Sciences at Microscales, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhonghuai Hou
- Department of Chemical Physics and Hefei National Laboratory for Physical Sciences at Microscales, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
135
|
|
136
|
Hasnain J, Menzl G, Jungblut S, Dellago C. Crystallization and flow in active patch systems. SOFT MATTER 2017; 13:930-936. [PMID: 28094380 DOI: 10.1039/c6sm01898j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Based upon recent experiments in which Janus particles are made into active swimmers by illuminating them with laser light, we explore the effect of applying a light pattern on the sample, thereby creating activity inducing zones or active patches. We simulate a system of interacting Brownian diffusers that become active swimmers when moving inside an active patch and analyze the structure and dynamics of the ensuing stationary state. We find that, in some respects, the effect of spatially inhomogeneous activity is qualitatively similar to a temperature gradient. For asymmetric patches, however, this analogy breaks down because the ensuing stationary state is specific to partial active motion.
Collapse
Affiliation(s)
- Jaffar Hasnain
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
| | | | | | | |
Collapse
|
137
|
Jahanshahi S, Löwen H, Ten Hagen B. Brownian motion of a circle swimmer in a harmonic trap. Phys Rev E 2017; 95:022606. [PMID: 28297979 DOI: 10.1103/physreve.95.022606] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Indexed: 06/06/2023]
Abstract
We study the dynamics of a Brownian circle swimmer with a time-dependent self-propulsion velocity in an external temporally varying harmonic potential. For several situations, the noise-free swimming paths, the noise-averaged mean trajectories, and the mean-square displacements are calculated analytically or by computer simulation. Based on our results, we discuss optimal swimming strategies in order to explore a maximum spatial range around the trap center. In particular, we find a resonance situation for the maximum escape distance as a function of the various frequencies in the system. Moreover, the influence of the Brownian noise is analyzed by comparing noise-free trajectories at zero temperature with the corresponding noise-averaged trajectories at finite temperature. The latter reveal various complex self-similar spiral or rosette-like patterns. Our predictions can be tested in experiments on artificial and biological microswimmers under dynamical external confinement.
Collapse
Affiliation(s)
- Soudeh Jahanshahi
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - Borge Ten Hagen
- Physics of Fluids Group, Faculty of Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands
| |
Collapse
|
138
|
Sharma A, Wittmann R, Brader JM. Escape rate of active particles in the effective equilibrium approach. Phys Rev E 2017; 95:012115. [PMID: 28208481 DOI: 10.1103/physreve.95.012115] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Indexed: 06/06/2023]
Abstract
The escape rate of a Brownian particle over a potential barrier is accurately described by the Kramers theory. A quantitative theory explicitly taking the activity of Brownian particles into account has been lacking due to the inherently out-of-equilibrium nature of these particles. Using an effective equilibrium approach [Farage et al., Phys. Rev. E 91, 042310 (2015)PLEEE81539-375510.1103/PhysRevE.91.042310] we study the escape rate of active particles over a potential barrier and compare our analytical results with data from direct numerical simulation of the colored noise Langevin equation. The effective equilibrium approach generates an effective potential that, when used as input to Kramers rate theory, provides results in excellent agreement with the simulation data.
Collapse
Affiliation(s)
- A Sharma
- Department of Physics, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - R Wittmann
- Department of Physics, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - J M Brader
- Department of Physics, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|
139
|
Paoluzzi M, Maggi C, Marini Bettolo Marconi U, Gnan N. Critical phenomena in active matter. Phys Rev E 2016; 94:052602. [PMID: 27967125 DOI: 10.1103/physreve.94.052602] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Indexed: 06/06/2023]
Abstract
We investigate the effect of self-propulsion on a mean-field order-disorder transition. Starting from a φ^{4} scalar field theory subject to an exponentially correlated noise, we exploit the unified colored-noise approximation to map the nonequilibrium active dynamics onto an effective equilibrium one. This allows us to follow the evolution of the second-order critical point as a function of the noise parameters: the correlation time τ and the noise strength D. Our results suggest that the universality class of the model remains unchanged. We also estimate the effect of Gaussian fluctuations on the mean-field approximation finding an Ornstein-Zernike-like expression for the static structure factor at long wavelengths. Finally, to assess the validity of our predictions, we compare the mean-field theoretical results with numerical simulations of active Lennard-Jones particles in two and three dimensions, finding good qualitative agreement at small τ values.
Collapse
Affiliation(s)
- M Paoluzzi
- Department of Physics, Syracuse University, Syracuse, New York 13244, USA
| | - C Maggi
- NANOTEC-CNR, Institute of Nanotechnology, Soft and Living Matter Laboratory, Piazzale A. Moro 2, I-00185, Roma, Italy
| | - U Marini Bettolo Marconi
- Scuola di Scienze e Tecnologie, Università di Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy and INFN, Sezione di Perugia, Via A. Pascoli, 06123 Perugia, Italy
| | - N Gnan
- CNR, ISC, UOS Sapienza, Piazzale Aldo Moro 2, 00185 Roma, Italy
| |
Collapse
|
140
|
Flenner E, Szamel G, Berthier L. The nonequilibrium glassy dynamics of self-propelled particles. SOFT MATTER 2016; 12:7136-7149. [PMID: 27499055 DOI: 10.1039/c6sm01322h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We study the glassy dynamics taking place in dense assemblies of athermal active particles that are driven solely by a nonequilibrium self-propulsion mechanism. Active forces are modeled as an Ornstein-Uhlenbeck stochastic process, characterized by a persistence time and an effective temperature, and particles interact via a Lennard-Jones potential that yields well-studied glassy behavior in the Brownian limit, which is obtained as the persistence time vanishes. By increasing the persistence time, the system departs more strongly from thermal equilibrium and we provide a comprehensive numerical analysis of the structure and dynamics of the resulting active fluid. Finite persistence times profoundly affect the static structure of the fluid and give rise to nonequilibrium velocity correlations that are absent in thermal systems. Despite these nonequilibrium features, for any value of the persistence time we observe a nonequilibrium glass transition as the effective temperature is decreased. Surprisingly, increasing departure from thermal equilibrium is found to promote (rather than suppress) the glassy dynamics. Overall, our results suggest that with increasing persistence time, microscopic properties of the active fluid change quantitatively, but the general features of the nonequilibrium glassy dynamics observed with decreasing the effective temperature remain qualitatively similar to those of thermal glass-formers.
Collapse
Affiliation(s)
- Elijah Flenner
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | |
Collapse
|
141
|
Pearce DJG, Giomi L. Linear response to leadership, effective temperature, and decision making in flocks. Phys Rev E 2016; 94:022612. [PMID: 27627365 DOI: 10.1103/physreve.94.022612] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Indexed: 11/07/2022]
Abstract
Large collections of autonomously moving agents, such as animals or micro-organisms, are able to flock coherently in space even in the absence of a central control mechanism. While the direction of the flock resulting from this critical behavior is random, this can be controlled by a small subset of informed individuals acting as leaders of the group. In this article we use the Vicsek model to investigate how flocks respond to leadership and make decisions. Using a combination of numerical simulations and continuous modeling we demonstrate that flocks display a linear response to leadership that can be cast in the framework of the fluctuation-dissipation theorem, identifying an effective temperature reflecting how promptly the flock reacts to the initiative of the leaders. The linear response to leadership also holds in the presence of two groups of informed individuals with competing interests, indicating that the flock's behavioral decision is determined by both the number of leaders and their degree of influence.
Collapse
Affiliation(s)
- Daniel J G Pearce
- Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, The Netherlands
| | - Luca Giomi
- Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, The Netherlands
| |
Collapse
|
142
|
Fodor É, Nardini C, Cates ME, Tailleur J, Visco P, van Wijland F. How Far from Equilibrium Is Active Matter? PHYSICAL REVIEW LETTERS 2016; 117:038103. [PMID: 27472145 DOI: 10.1103/physrevlett.117.038103] [Citation(s) in RCA: 290] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Indexed: 05/18/2023]
Abstract
Active matter systems are driven out of thermal equilibrium by a lack of generalized Stokes-Einstein relation between injection and dissipation of energy at the microscopic scale. We consider such a system of interacting particles, propelled by persistent noises, and show that, at small but finite persistence time, their dynamics still satisfy a time-reversal symmetry. To do so, we compute perturbatively their steady-state measure and show that, for short persistent times, the entropy production rate vanishes. This endows such systems with an effective fluctuation-dissipation theorem akin to that of thermal equilibrium systems. Last, we show how interacting particle systems with viscous drags and correlated noises can be seen as in equilibrium with a viscoelastic bath but driven out of equilibrium by nonconservative forces, hence providing energetic insight into the departure of active systems from equilibrium.
Collapse
Affiliation(s)
- Étienne Fodor
- Université Paris Diderot, Sorbonne Paris Cité, MSC, UMR 7057 CNRS, 75205 Paris, France
| | - Cesare Nardini
- SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| | - Michael E Cates
- SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| | - Julien Tailleur
- Université Paris Diderot, Sorbonne Paris Cité, MSC, UMR 7057 CNRS, 75205 Paris, France
| | - Paolo Visco
- Université Paris Diderot, Sorbonne Paris Cité, MSC, UMR 7057 CNRS, 75205 Paris, France
| | - Frédéric van Wijland
- Université Paris Diderot, Sorbonne Paris Cité, MSC, UMR 7057 CNRS, 75205 Paris, France
| |
Collapse
|
143
|
Preisler Z, Dijkstra M. Configurational entropy and effective temperature in systems of active Brownian particles. SOFT MATTER 2016; 12:6043-6048. [PMID: 27328434 DOI: 10.1039/c6sm00889e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We propose a method to determine the effective density of states and configurational entropy in systems of active Brownian particles by measuring the probability distribution function of potential energy at varying temperatures. Assuming that the entropy is a continuous and monotonically increasing function of energy, we provide support that two-dimensional systems of purely repulsive active Brownian spheres can be mapped onto an equilibrium system with a Boltzmann-like distribution and an effective temperature. We find that the effective temperature depends even for a large number of particles on system size, suggesting that active systems are non-extensive. In addition, the effective Helmholtz free energy can be derived from the configurational entropy. We verify our results regarding the configurational entropy by using thermodynamic integration of the effective Helmholtz free energy with respect to temperature.
Collapse
Affiliation(s)
- Zdeněk Preisler
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands.
| | - Marjolein Dijkstra
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands.
| |
Collapse
|
144
|
Szamel G. Theory for the dynamics of dense systems of athermal self-propelled particles. Phys Rev E 2016; 93:012603. [PMID: 26871118 DOI: 10.1103/physreve.93.012603] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Indexed: 06/05/2023]
Abstract
We present a derivation of a recently proposed theory for the time dependence of density fluctuations in stationary states of strongly interacting, athermal, self-propelled particles. The derivation consists of two steps. First, we start from the equation of motion for the joint distribution of particles' positions and self-propulsions and we integrate out the self-propulsions. In this way we derive an approximate, many-particle evolution equation for the probability distribution of the particles' positions. Second, we use this evolution equation to describe the time dependence of steady-state density correlations. We derive a memory function representation of the density correlation function and then we use a factorization approximation to obtain an approximate expression for the memory function. In the final equation of motion for the density correlation function the nonequilibrium character of the active system manifests itself through the presence of a new steady-state correlation function that quantifies spatial correlations of the velocities of the particles. This correlation function enters into the frequency term, and thus it describes the dependence of the short-time dynamics on the properties of the self-propulsions. More importantly, the correlation function of particles' velocities enters into the vertex of the memory function and through the vertex it modifies the long-time glassy dynamics.
Collapse
Affiliation(s)
- Grzegorz Szamel
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80525, USA and Laboratoire Charles Coulomb, UMR 5221 CNRS, Université Montpellier, Montpellier, France
| |
Collapse
|
145
|
Mani E, Löwen H. Effect of self-propulsion on equilibrium clustering. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:032301. [PMID: 26465467 DOI: 10.1103/physreve.92.032301] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Indexed: 06/05/2023]
Abstract
In equilibrium, colloidal suspensions governed by short-range attractive and long-range repulsive interactions form thermodynamically stable clusters. Using Brownian dynamics computer simulations, we investigate how this equilibrium clustering is affected when such particles are self-propelled. We find that the clustering process is stable under self-propulsion. For the range of interaction parameters studied and at low particle density, the cluster size increases with the speed of self-propulsion (activity) and for higher activity the cluster size decreases, showing a nonmonotonic variation of cluster size with activity. This clustering behavior is distinct from the pure kinetic (or motility-induced) clustering of self-propelling particles which is observed at significantly higher activities and densities. We present an equilibrium model incorporating the effect of activity as activity-induced attraction and repulsion by imposing that the strength of these interactions depend on activity superlinearly. The model explains the cluster size dependence of activity obtained from simulations semiquantitatively. Our predictions are verifiable in experiments on interacting synthetic colloidal microswimmers.
Collapse
Affiliation(s)
- Ethayaraja Mani
- Polymer Engineering and Colloid Science Laboratory, Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
146
|
Szamel G, Flenner E, Berthier L. Glassy dynamics of athermal self-propelled particles: Computer simulations and a nonequilibrium microscopic theory. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:062304. [PMID: 26172716 DOI: 10.1103/physreve.91.062304] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Indexed: 06/04/2023]
Abstract
We combine computer simulations and analytical theory to investigate the glassy dynamics in dense assemblies of athermal particles evolving under the sole influence of self-propulsion. Our simulations reveal that when the persistence time of the self-propulsion is increased, the local structure becomes more pronounced, whereas the long-time dynamics first accelerates and then slows down. We explain these surprising findings by constructing a nonequilibrium microscopic theory that yields nontrivial predictions for the glassy dynamics. These predictions are in qualitative agreement with the simulations and reveal the importance of steady-state correlations of the local velocities to the nonequilibrium dynamics of dense self-propelled particles.
Collapse
Affiliation(s)
- Grzegorz Szamel
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Elijah Flenner
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Ludovic Berthier
- Laboratoire Charles Coulomb, UMR 5221 CNRS, Université Montpellier, Montpellier, France
| |
Collapse
|
147
|
Cugliandolo LF, Gonnella G, Suma A. Rotational and translational diffusion in an interacting active dumbbell system. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:062124. [PMID: 26172678 DOI: 10.1103/physreve.91.062124] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Indexed: 06/04/2023]
Abstract
We study the dynamical properties of a two-dimensional ensemble of self-propelled dumbbells with only repulsive interactions. This model undergoes a phase transition between a homogeneous and a segregated phase and we focus on the former. We analyze the translational and rotational mean-square displacements in terms of the Péclet number, describing the relative role of active forces and thermal fluctuations, and of particle density. We find that the four distinct regimes of the translational mean-square displacement of the single active dumbbell survive at finite density for parameters that lead to a separation of time scales. We establish the Péclet number and density dependence of the diffusion constant in the last diffusive regime. We prove that the ratio between the diffusion constant and its value for the single dumbbell depends on temperature and active force only through the Péclet number at all densities explored. We also study the rotational mean-square displacement proving the existence of a rich behavior with intermediate regimes only appearing at finite density. The ratio of the rotational late-time diffusion constant and its vanishing density limit depends on the Péclet number and density only. At low Péclet number it is a monotonically decreasing function of density. At high Péclet number it first increases to reach a maximum and then decreases as a function of density. We interpret the latter result advocating the presence of large-scale fluctuations close to the transition, at large-enough density, that favor coherent rotation inhibiting, however, rotational motion for even larger packing fractions.
Collapse
Affiliation(s)
- Leticia F Cugliandolo
- Sorbonne Universités, Université Pierre et Marie Curie, Paris VI, Laboratoire de Physique Théorique et Hautes Énergies, 4 Place Jussieu, 75252 Paris Cedex 05, France
| | - Giuseppe Gonnella
- Dipartimento di Fisica, Università di Bari and INFN, Sezione di Bari, via Amendola 173, Bari, I-70126, Italy
| | - Antonio Suma
- SISSA-Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, 34136 Trieste Italy
| |
Collapse
|
148
|
Nourhani A, Crespi VH, Lammert PE. Gaussian memory in kinematic matrix theory for self-propellers. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:062304. [PMID: 25615090 DOI: 10.1103/physreve.90.062304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Indexed: 06/04/2023]
Abstract
We extend the kinematic matrix ("kinematrix") formalism [Phys. Rev. E 89, 062304 (2014)], which via simple matrix algebra accesses ensemble properties of self-propellers influenced by uncorrelated noise, to treat Gaussian correlated noises. This extension brings into reach many real-world biological and biomimetic self-propellers for which inertia is significant. Applying the formalism, we analyze in detail ensemble behaviors of a 2D self-propeller with velocity fluctuations and orientation evolution driven by an Ornstein-Uhlenbeck process. On the basis of exact results, a variety of dynamical regimes determined by the inertial, speed-fluctuation, orientational diffusion, and emergent disorientation time scales are delineated and discussed.
Collapse
Affiliation(s)
- Amir Nourhani
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Vincent H Crespi
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA and Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA and Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Paul E Lammert
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
149
|
Suma A, Gonnella G, Laghezza G, Lamura A, Mossa A, Cugliandolo LF. Dynamics of a homogeneous active dumbbell system. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:052130. [PMID: 25493762 DOI: 10.1103/physreve.90.052130] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Indexed: 05/15/2023]
Abstract
We analyze the dynamics of a two-dimensional system of interacting active dumbbells. We characterize the mean-square displacement, linear response function, and deviation from the equilibrium fluctuation-dissipation theorem as a function of activity strength, packing fraction, and temperature for parameters such that the system is in its homogeneous phase. While the diffusion constant in the last diffusive regime naturally increases with activity and decreases with packing fraction, we exhibit an intriguing nonmonotonic dependence on the activity of the ratio between the finite-density and the single-particle diffusion constants. At fixed packing fraction, the time-integrated linear response function depends nonmonotonically on activity strength. The effective temperature extracted from the ratio between the integrated linear response and the mean-square displacement in the last diffusive regime is always higher than the ambient temperature, increases with increasing activity, and, for small active force, monotonically increases with density while for sufficiently high activity it first increases and next decreases with the packing fraction. We ascribe this peculiar effect to the existence of finite-size clusters for sufficiently high activity and density at the fixed (low) temperatures at which we worked. The crossover occurs at lower activity or density the lower the external temperature. The finite-density effective temperature is higher (lower) than the single dumbbell one below (above) a crossover value of the Péclet number.
Collapse
Affiliation(s)
- Antonio Suma
- SISSA-Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, 34136 Trieste, Italy
| | - Giuseppe Gonnella
- Dipartimento di Fisica, Università di Bari and INFN, Sezione di Bari, via Amendola 173, Bari I-70126, Italy
| | - Gianluca Laghezza
- Dipartimento di Fisica, Università di Bari and INFN, Sezione di Bari, via Amendola 173, Bari I-70126, Italy
| | - Antonio Lamura
- Istituto Applicazioni Calcolo, CNR, via Amendola 122/D, Bari I-70126, Italy
| | - Alessandro Mossa
- Dipartimento di Fisica, Università di Bari and INFN, Sezione di Bari, via Amendola 173, Bari I-70126, Italy
| | - Leticia F Cugliandolo
- Sorbonne Universités, Université Pierre et Marie Curie, Paris 6, Laboratoire de Physique Théorique et Hautes Energies, 4, Place Jussieu, Tour 13, 5ème étage, 75252 Paris Cedex 05, France
| |
Collapse
|