101
|
Van Vu T, Vo VT, Hasegawa Y. Entropy production estimation with optimal current. Phys Rev E 2020; 101:042138. [PMID: 32422750 DOI: 10.1103/physreve.101.042138] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/03/2020] [Indexed: 11/07/2022]
Abstract
Entropy production characterizes the thermodynamic irreversibility and reflects the amount of heat dissipated into the environment and free energy lost in nonequilibrium systems. According to the thermodynamic uncertainty relation, we propose a deterministic method to estimate the entropy production from a single trajectory of system states. We explicitly and approximately compute an optimal current that yields the tightest lower bound using predetermined basis currents. Notably, the obtained tightest lower bound is intimately related to the multidimensional thermodynamic uncertainty relation. By proving the saturation of the thermodynamic uncertainty relation in the short-time limit, the exact estimate of the entropy production can be obtained for overdamped Langevin systems, irrespective of the underlying dynamics. For Markov jump processes, because the attainability of the thermodynamic uncertainty relation is not theoretically ensured, the proposed method provides the tightest lower bound for the entropy production. When entropy production is the optimal current, a more accurate estimate can be further obtained using the integral fluctuation theorem. We illustrate the proposed method using three systems: a four-state Markov chain, a periodically driven particle, and a multiple bead-spring model. The estimated results in all examples empirically verify the effectiveness and efficiency of the proposed method.
Collapse
Affiliation(s)
- Tan Van Vu
- Department of Information and Communication Engineering, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| | - Van Tuan Vo
- Department of Information and Communication Engineering, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yoshihiko Hasegawa
- Department of Information and Communication Engineering, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
102
|
Manikandan SK, Gupta D, Krishnamurthy S. Inferring Entropy Production from Short Experiments. PHYSICAL REVIEW LETTERS 2020; 124:120603. [PMID: 32281844 DOI: 10.1103/physrevlett.124.120603] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/18/2020] [Indexed: 06/11/2023]
Abstract
We provide a strategy for the exact inference of the average as well as the fluctuations of the entropy production in nonequilibrium systems in the steady state, from the measurements of arbitrary current fluctuations. Our results are built upon the finite-time generalization of the thermodynamic uncertainty relation, and require only very short time series data from experiments. We illustrate our results with exact and numerical solutions for two colloidal heat engines.
Collapse
Affiliation(s)
| | - Deepak Gupta
- Dipartimento di Fisica "G. Galilei," INFN, Università di Padova, Via Marzolo 8, 35131 Padova, Italy
| | | |
Collapse
|
103
|
Marchegiani G, Braggio A, Giazotto F. Nonlinear Thermoelectricity with Electron-Hole Symmetric Systems. PHYSICAL REVIEW LETTERS 2020; 124:106801. [PMID: 32216390 DOI: 10.1103/physrevlett.124.106801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 02/05/2020] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
In the linear regime, thermoelectric effects between two conductors are possible only in the presence of an explicit breaking of the electron-hole symmetry. We consider a tunnel junction between two electrodes and show that this condition is no longer required outside the linear regime. In particular, we demonstrate that a thermally biased junction can display an absolute negative conductance, and hence thermoelectric power, at a small but finite voltage bias, provided that the density of states of one of the electrodes is gapped and the other is monotonically decreasing. We consider a prototype system that fulfills these requirements, namely, a tunnel junction between two different superconductors where the Josephson contribution is suppressed. We discuss this nonlinear thermoelectric effect based on the spontaneous breaking of electron-hole symmetry in the system, characterize its main figures of merit, and discuss some possible applications.
Collapse
Affiliation(s)
- G Marchegiani
- NEST Istituto Nanoscienze-CNR and Scuola Normale Superiore, I-56127 Pisa, Italy
| | - A Braggio
- NEST Istituto Nanoscienze-CNR and Scuola Normale Superiore, I-56127 Pisa, Italy
| | - F Giazotto
- NEST Istituto Nanoscienze-CNR and Scuola Normale Superiore, I-56127 Pisa, Italy
| |
Collapse
|
104
|
Kumari A, Pal PS, Saha A, Lahiri S. Stochastic heat engine using an active particle. Phys Rev E 2020; 101:032109. [PMID: 32289893 DOI: 10.1103/physreve.101.032109] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/18/2020] [Indexed: 06/11/2023]
Abstract
The topic of microscopic heat engine has undergone intensive research in recent years. Microscopic heat engines can exploit thermal as well as active fluctuations to extract thermodynamic work. We investigate the properties of a microscopic Stirling's engine that uses an active (self-propelling) particle as a working substance, in contact with two thermal baths. It is shown that the presence of activity leads to an enhanced performance of the engine. The efficiency can be improved by increasing the activity strength for all cycle time, including the nonquasistatic regime. We verify that the analytical results agree very well with our simulations. The variation of efficiency with the temperature difference between the two thermal baths has also been explored. The optimum region of operation of the engine has been deduced, by using its efficient power (product of efficiency and power) as a quantifier. Finally, a simple model is provided that emulates the behavior of a flywheel driven by this engine.
Collapse
Affiliation(s)
- Aradhana Kumari
- Department of Physics, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India
| | - P S Pal
- Department of Physics, University of Maryland, Baltimore County, Baltimore, Maryland 21250, USA
| | - Arnab Saha
- Department of Physics, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India
| | - Sourabh Lahiri
- Department of Physics, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India
| |
Collapse
|
105
|
Bryant SJ, Machta BB. Energy dissipation bounds for autonomous thermodynamic cycles. Proc Natl Acad Sci U S A 2020; 117:3478-3483. [PMID: 32019890 PMCID: PMC7035472 DOI: 10.1073/pnas.1915676117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
How much free energy is irreversibly lost during a thermodynamic process? For deterministic protocols, lower bounds on energy dissipation arise from the thermodynamic friction associated with pushing a system out of equilibrium in finite time. Recent work has also bounded the cost of precisely moving a single degree of freedom. Using stochastic thermodynamics, we compute the total energy cost of an autonomously controlled system by considering both thermodynamic friction and the entropic cost of precisely directing a single control parameter. Our result suggests a challenge to the usual understanding of the adiabatic limit: Here, even infinitely slow protocols are energetically irreversible.
Collapse
Affiliation(s)
- Samuel J Bryant
- Department of Physics, Yale University, New Haven, CT 06520;
| | - Benjamin B Machta
- Department of Physics, Yale University, New Haven, CT 06520;
- Systems Biology Institute, Yale University, West Haven, CT 06516
| |
Collapse
|
106
|
Gonzalez-Ayala J, Guo J, Medina A, Roco JMM, Hernández AC. Energetic Self-Optimization Induced by Stability in Low-Dissipation Heat Engines. PHYSICAL REVIEW LETTERS 2020; 124:050603. [PMID: 32083912 DOI: 10.1103/physrevlett.124.050603] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
The local stability of a weakly dissipative heat engine is analyzed and linked to an energetic multi-objective optimization perspective. This constitutes a novel issue in the unified study of cyclic energy converters, opening the perspective to the possibility that stability favors self-optimization of thermodynamic quantities including efficiency, power and entropy generation. To this end, a dynamics simulating the restitution forces, which mimics a harmonic potential, bringing the system back to the steady state is analyzed. It is shown that relaxation trajectories are not arbitrary but driven by the improvement of several energetic functions. Insights provided by the statistical behavior of consecutive random perturbations show that the irreversible behavior works as an attractor for the energetics of the system, while the endoreversible limit acts as an upper bound and the Pareto front as a global attractor. Fluctuations around the operation regime reveal a difference between the behavior coming from fast and slow relaxation trajectories: while the former are associated to an energetic self-optimization evolution, the latter are ascribed to better performances. The self-optimization induced by stability and the possible use of instabilities in the operation regime to improve the energetic performance might usher into new useful perspectives in the control of variables for real engines.
Collapse
Affiliation(s)
- J Gonzalez-Ayala
- Departamento de Física Aplicada
- Instituto Universitario de Física Fundamental y Matemáticas (IUFFyM), Universidad de Salamanca, 37008 Salamanca, Spain
| | - J Guo
- Departamento de Física Aplicada
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350116, People's Republic of China
| | - A Medina
- Departamento de Física Aplicada
- Instituto Universitario de Física Fundamental y Matemáticas (IUFFyM), Universidad de Salamanca, 37008 Salamanca, Spain
| | - J M M Roco
- Departamento de Física Aplicada
- Instituto Universitario de Física Fundamental y Matemáticas (IUFFyM), Universidad de Salamanca, 37008 Salamanca, Spain
| | - A Calvo Hernández
- Departamento de Física Aplicada
- Instituto Universitario de Física Fundamental y Matemáticas (IUFFyM), Universidad de Salamanca, 37008 Salamanca, Spain
| |
Collapse
|
107
|
Lee S, Ha M, Park JM, Jeong H. Finite-time quantum Otto engine: Surpassing the quasistatic efficiency due to friction. Phys Rev E 2020; 101:022127. [PMID: 32168587 DOI: 10.1103/physreve.101.022127] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
In finite-time quantum heat engines, some work is consumed to drive a working fluid accompanying coherence, which is called "friction." To understand the role of friction in quantum thermodynamics, we present a couple of finite-time quantum Otto cycles with two different baths: Agarwal versus Lindbladian. We solve them exactly and compare the performance of the Agarwal engine with that of the Lindbladian engine. In particular, we find remarkable and counterintuitive results that the performance of the Agarwal engine due to friction can be much higher than that in the quasistatic limit with the Otto efficiency, and the power of the Lindbladian engine can be nonzero in the short-time limit. Based on additional numerical calculations of these outcomes, we discuss possible origins of such differences between two engines and reveal them. Our results imply that, even with an equilibrium bath, a nonequilibrium working fluid brings on the higher performance than what an equilibrium working fluid does.
Collapse
Affiliation(s)
- Sangyun Lee
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34051, Korea
| | - Meesoon Ha
- Department of Physics Education, Chosun University, Gwangju 61452, Korea
| | - Jong-Min Park
- School of Physics, Korea Institute for Advanced Study, Seoul, 02455, Korea
| | - Hawoong Jeong
- Department of Physics and Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|
108
|
Brandner K, Saito K. Thermodynamic Geometry of Microscopic Heat Engines. PHYSICAL REVIEW LETTERS 2020; 124:040602. [PMID: 32058746 DOI: 10.1103/physrevlett.124.040602] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Indexed: 06/10/2023]
Abstract
We develop a general framework to describe the thermodynamics of microscopic heat engines driven by arbitrary periodic temperature variations and modulations of a mechanical control parameter. Within the slow-driving regime, our approach leads to a universal trade-off relation between efficiency and power, which follows solely from geometric arguments and holds for any thermodynamically consistent microdynamics. Focusing on Lindblad dynamics, we derive a second bound showing that coherence as a genuine quantum effect inevitably reduces the performance of slow engine cycles regardless of the driving amplitudes. To show how our theory can be applied in practice, we work out a specific example, which lies within the range of current solid-state technologies.
Collapse
Affiliation(s)
- Kay Brandner
- Department of Applied Physics, Aalto University, 00076 Aalto, Finland
- Department of Physics, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| | - Keiji Saito
- Department of Physics, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| |
Collapse
|
109
|
Myers NM, Deffner S. Bosons outperform fermions: The thermodynamic advantage of symmetry. Phys Rev E 2020; 101:012110. [PMID: 32069543 DOI: 10.1103/physreve.101.012110] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Indexed: 06/10/2023]
Abstract
We examine a quantum Otto engine with a harmonic working medium consisting of two particles to explore the use of wave function symmetry as an accessible resource. It is shown that the bosonic system displays enhanced performance when compared to two independent single particle engines, while the fermionic system displays reduced performance. To this end, we explore the trade-off between efficiency and power output and the parameter regimes under which the system functions as engine, refrigerator, or heater. Remarkably, the bosonic system operates under a wider parameter space both when operating as an engine and as a refrigerator.
Collapse
Affiliation(s)
- Nathan M Myers
- Department of Physics, University of Maryland, Baltimore County, Baltimore, Maryland 21250, USA
| | - Sebastian Deffner
- Department of Physics, University of Maryland, Baltimore County, Baltimore, Maryland 21250, USA
| |
Collapse
|
110
|
Potts PP, Samuelsson P. Thermodynamic uncertainty relations including measurement and feedback. Phys Rev E 2019; 100:052137. [PMID: 31869995 DOI: 10.1103/physreve.100.052137] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Indexed: 12/26/2022]
Abstract
Thermodynamic uncertainty relations quantify how the signal-to-noise ratio of a given observable is constrained by dissipation. Fluctuation relations generalize the second law of thermodynamics to stochastic processes. We show that any fluctuation relation directly implies a thermodynamic uncertainty relation, considerably increasing their range of applicability. In particular, we extend thermodynamic uncertainty relations to scenarios which include measurement and feedback. Since feedback generally breaks time-reversal invariance, the uncertainty relations involve quantities averaged over the forward and the backward experiment defined by the associated fluctuation relation. This implies that the signal-to-noise ratio of a given experiment can in principle become arbitrarily large as long as the corresponding backward experiment compensates, e.g., by being sufficiently noisy. We illustrate our results with the Szilard engine as well as work extraction by free energy reduction in a quantum dot.
Collapse
Affiliation(s)
- Patrick P Potts
- Physics Department and NanoLund, Lund University, Box 118, 22100 Lund, Sweden
| | - Peter Samuelsson
- Physics Department and NanoLund, Lund University, Box 118, 22100 Lund, Sweden
| |
Collapse
|
111
|
Lee JS, Park JM, Park H. Thermodynamic uncertainty relation for underdamped Langevin systems driven by a velocity-dependent force. Phys Rev E 2019; 100:062132. [PMID: 31962517 DOI: 10.1103/physreve.100.062132] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Indexed: 06/10/2023]
Abstract
Recently, it has been shown that there is a trade-off relation between thermodynamic cost and current fluctuations, referred to as the thermodynamic uncertainty relation (TUR). The TUR has been derived for various processes, such as discrete-time Markov jump processes and overdamped Langevin dynamics. For underdamped dynamics, it has recently been reported that some modification is necessary for application of the TUR. However, the previous TUR for underdamped dynamics is not applicable to a system driven by a velocity-dependent force. In this study, we present a TUR, applicable to a system driven by a velocity-dependent force in the context of underdamped Langevin dynamics, by extending the theory of Vu and Hasegawa [Phys. Rev. E 100, 032130 (2019)2470-004510.1103/PhysRevE.100.032130]. We show that our TUR accurately describes the trade-off properties of a molecular refrigerator (cold damping), Brownian dynamics in a magnetic field, and an active particle system.
Collapse
Affiliation(s)
- Jae Sung Lee
- School of Physics and Quantum Universe Center, Korea Institute for Advanced Study, Seoul 02455, Korea
| | - Jong-Min Park
- School of Physics and Quantum Universe Center, Korea Institute for Advanced Study, Seoul 02455, Korea
| | - Hyunggyu Park
- School of Physics and Quantum Universe Center, Korea Institute for Advanced Study, Seoul 02455, Korea
| |
Collapse
|
112
|
Gonzalez-Ayala J, Guo J, Medina A, Roco JMM, Calvo Hernández A. Optimization induced by stability and the role of limited control near a steady state. Phys Rev E 2019; 100:062128. [PMID: 31962470 DOI: 10.1103/physreve.100.062128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Indexed: 06/10/2023]
Abstract
A relationship between stability and self-optimization is found for weakly dissipative heat devices. The effect of limited control on operation variables around an steady state is such that, after instabilities, the paths toward relaxation are given by trajectories stemming from restitution forces which improve the system thermodynamic performance (power output, efficiency, and entropy generation). Statistics over random trajectories for many cycles shows this behavior as well. Two types of dynamics are analyzed, one where an stability basin appears and another one where the system is globally stable. Under both dynamics there is an induced trend in the control variables space due to stability. In the energetic space this behavior translates into a preference for better thermodynamic states, and thus stability could favor self-optimization under limited control. This is analyzed from the multiobjective optimization perspective. As a result, the statistical behavior of the system is strongly influenced by the Pareto front (the set of points with the best compromise between several objective functions) and the stability basin. Additionally, endoreversible and irreversible behaviors appear as very relevant limits: The first one is an upper bound in energetic performance, connected with the Pareto front, and the second one represents an attractor for the stochastic trajectories.
Collapse
Affiliation(s)
- J Gonzalez-Ayala
- Departamento de Física Aplicada, Universidad de Salamanca, 37008 Salamanca, Spain
- Instituto Universitario de Física Fundamental y Matemáticas (IUFFyM), Universidad de Salamanca, 37008 Salamanca, Spain
| | - J Guo
- Departamento de Física Aplicada, Universidad de Salamanca, 37008 Salamanca, Spain
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350116, People's Republic of China
| | - A Medina
- Departamento de Física Aplicada, Universidad de Salamanca, 37008 Salamanca, Spain
- Instituto Universitario de Física Fundamental y Matemáticas (IUFFyM), Universidad de Salamanca, 37008 Salamanca, Spain
| | - J M M Roco
- Departamento de Física Aplicada, Universidad de Salamanca, 37008 Salamanca, Spain
- Instituto Universitario de Física Fundamental y Matemáticas (IUFFyM), Universidad de Salamanca, 37008 Salamanca, Spain
| | - A Calvo Hernández
- Departamento de Física Aplicada, Universidad de Salamanca, 37008 Salamanca, Spain
- Instituto Universitario de Física Fundamental y Matemáticas (IUFFyM), Universidad de Salamanca, 37008 Salamanca, Spain
| |
Collapse
|
113
|
Wang J, He J, Ma Y. Finite-time performance of a quantum heat engine with a squeezed thermal bath. Phys Rev E 2019; 100:052126. [PMID: 31870038 DOI: 10.1103/physreve.100.052126] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Indexed: 06/10/2023]
Abstract
We consider the finite-time performance of a quantum Otto engine working between a hot squeezed and a cold thermal bath at inverse temperatures β_{h} and β_{c}(>β_{h}) with (k_{B}≡1)β=1/T. We derive the analytical expressions for work, efficiency, power, and power fluctuations, in which the squeezing parameter is involved. By optimizing the power output with respect to two frequencies, we derive the efficiency at maximum power as η_{mp}=(η_{C}^{gen})^{2}/[η_{C}^{gen}-(1-η_{C}^{gen})ln(1-η_{C}^{gen})], where the generalized Carnot efficiency η_{C}^{gen} in the high-temperature or small squeezing limit simplifies to an analytic function of squeezing parameter γ: η_{C}^{gen}=1-β_{h}/[β_{c}cosh(2γ)]. Within the context of irreversible thermodynamics, we demonstrate that the expression of efficiency at maximum power satisfies a general form derived from nonlinear steady state heat engines. We show that, the power fluctuations are considerably increased, although the engine efficiency is enhanced by squeezing.
Collapse
Affiliation(s)
- Jianhui Wang
- Department of Physics, Nanchang University, Nanchang 330031, China
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
| | - Jizhou He
- Department of Physics, Nanchang University, Nanchang 330031, China
| | - Yongli Ma
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
| |
Collapse
|
114
|
Van Vu T, Hasegawa Y. Uncertainty relations for underdamped Langevin dynamics. Phys Rev E 2019; 100:032130. [PMID: 31640023 DOI: 10.1103/physreve.100.032130] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Indexed: 11/07/2022]
Abstract
A trade-off between the precision of an arbitrary current and the dissipation, known as the thermodynamic uncertainty relation, has been investigated for various Markovian systems. Here, we study the thermodynamic uncertainty relation for underdamped Langevin dynamics. By employing information inequalities, we prove that for such systems, the relative fluctuation of a current at a steady state is constrained by both the entropy production and the average dynamical activity. We find that unlike what is the case for overdamped dynamics, the dynamical activity plays an important role in the bound. We illustrate our results with two systems, a single-well potential system and a periodically driven Brownian particle model, and numerically verify the inequalities.
Collapse
Affiliation(s)
- Tan Van Vu
- Department of Information and Communication Engineering, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yoshihiko Hasegawa
- Department of Information and Communication Engineering, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
115
|
Timpanaro AM, Guarnieri G, Goold J, Landi GT. Thermodynamic Uncertainty Relations from Exchange Fluctuation Theorems. PHYSICAL REVIEW LETTERS 2019; 123:090604. [PMID: 31524493 DOI: 10.1103/physrevlett.123.090604] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Indexed: 06/10/2023]
Abstract
Thermodynamic uncertainty relations (TURs) place strict bounds on the fluctuations of thermodynamic quantities in terms of the associated entropy production. In this Letter, we identify the tightest (and saturable) matrix-valued TUR that can be derived from the exchange fluctuation theorems describing the statistics of heat and particle flow between multiple systems of arbitrary dimensions. Our result holds for both quantum and classical systems, undergoing general finite-time nonstationary processes. Moreover, it provides bounds not only for the variances, but also for the correlations between thermodynamic quantities. To demonstrate the relevance of TURs to the design of nanoscale machines, we consider the operation of a 2-qubit swap engine undergoing an Otto cycle and show how our results can be used to place strict bounds on the correlations between heat and work.
Collapse
Affiliation(s)
| | | | - John Goold
- Department of Physics, Trinity College Dublin, Dublin 2, Ireland
| | - Gabriel T Landi
- Instituto de Física da Universidade de São Paulo, 05314-970 São Paulo, Brazil
| |
Collapse
|
116
|
Abstract
Biomolecular machines are protein complexes that convert between different forms of free energy. They are utilized in nature to accomplish many cellular tasks. As isothermal nonequilibrium stochastic objects at low Reynolds number, they face a distinct set of challenges compared with more familiar human-engineered macroscopic machines. Here we review central questions in their performance as free energy transducers, outline theoretical and modeling approaches to understand these questions, identify both physical limits on their operational characteristics and design principles for improving performance, and discuss emerging areas of research.
Collapse
Affiliation(s)
- Aidan I Brown
- Department of Physics , University of California, San Diego , La Jolla , California 92093 , United States
| | - David A Sivak
- Department of Physics , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada
| |
Collapse
|
117
|
Power, Efficiency and Fluctuations in a Quantum Point Contact as Steady-State Thermoelectric Heat Engine. ENTROPY 2019; 21:e21080777. [PMID: 33267490 PMCID: PMC7515306 DOI: 10.3390/e21080777] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 07/03/2019] [Accepted: 07/29/2019] [Indexed: 11/17/2022]
Abstract
The trade-off between large power output, high efficiency and small fluctuations in the operation of heat engines has recently received interest in the context of thermodynamic uncertainty relations (TURs). Here we provide a concrete illustration of this trade-off by theoretically investigating the operation of a quantum point contact (QPC) with an energy-dependent transmission function as a steady-state thermoelectric heat engine. As a starting point, we review and extend previous analysis of the power production and efficiency. Thereafter the power fluctuations and the bound jointly imposed on the power, efficiency, and fluctuations by the TURs are analyzed as additional performance quantifiers. We allow for arbitrary smoothness of the transmission probability of the QPC, which exhibits a close to step-like dependence in energy, and consider both the linear and the non-linear regime of operation. It is found that for a broad range of parameters, the power production reaches nearly its theoretical maximum value, with efficiencies more than half of the Carnot efficiency and at the same time with rather small fluctuations. Moreover, we show that by demanding a non-zero power production, in the linear regime a stronger TUR can be formulated in terms of the thermoelectric figure of merit. Interestingly, this bound holds also in a wide parameter regime beyond linear response for our QPC device.
Collapse
|
118
|
Holubec V, Novotný T. Effects of noise-induced coherence on the fluctuations of current in quantum absorption refrigerators. J Chem Phys 2019; 151:044108. [DOI: 10.1063/1.5096275] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Viktor Holubec
- Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, D-04009 Leipzig, Germany
- Charles University, Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holešovičkách 2, CZ-180 00 Praha, Czech Republic
| | - Tomáš Novotný
- Charles University, Faculty of Mathematics and Physics, Department of Condensed Matter Physics, Ke Karlovu 5, CZ-121 16 Praha, Czech Republic
| |
Collapse
|
119
|
Liu Q, Li W, Zhang M, He J, Wang J. Efficiency Bounds for Minimally Nonlinear Irreversible Heat Engines with Broken Time-Reversal Symmetry. ENTROPY (BASEL, SWITZERLAND) 2019; 21:e21070717. [PMID: 33267431 PMCID: PMC7515233 DOI: 10.3390/e21070717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/12/2019] [Accepted: 07/17/2019] [Indexed: 06/12/2023]
Abstract
We study the minimally nonlinear irreversible heat engines in which the time-reversal symmetry for the systems may be broken. The expressions for the power and the efficiency are derived, in which the effects of the nonlinear terms due to dissipations are included. We show that, as within the linear responses, the minimally nonlinear irreversible heat engines can enable attainment of Carnot efficiency at positive power. We also find that the Curzon-Ahlborn limit imposed on the efficiency at maximum power can be overcome if the time-reversal symmetry is broken.
Collapse
Affiliation(s)
- Qin Liu
- Department of Physics, Nanchang University, Nanchang 330031, China
| | - Wei Li
- Department of Physics, Nanchang University, Nanchang 330031, China
| | - Min Zhang
- Department of Physics, Nanchang University, Nanchang 330031, China
| | - Jizhou He
- Department of Physics, Nanchang University, Nanchang 330031, China
| | - Jianhui Wang
- Department of Physics, Nanchang University, Nanchang 330031, China
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
- State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
120
|
Koyuk T, Seifert U. Operationally Accessible Bounds on Fluctuations and Entropy Production in Periodically Driven Systems. PHYSICAL REVIEW LETTERS 2019; 122:230601. [PMID: 31298898 DOI: 10.1103/physrevlett.122.230601] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Indexed: 06/10/2023]
Abstract
For periodically driven systems, we derive a family of inequalities that relate entropy production with experimentally accessible data for the mean, its dependence on driving frequency, and the variance of a large class of observables. With one of these relations, overall entropy production can be bounded by just observing the time spent in a set of states. Among further consequences, the thermodynamic efficiency both of isothermal cyclic engines like molecular motors under a periodic load and of cyclic heat engines can be bounded using experimental data without requiring knowledge of the specific interactions within the system. We illustrate these results for a driven three-level system and for a colloidal Stirling engine.
Collapse
Affiliation(s)
- Timur Koyuk
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Udo Seifert
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
| |
Collapse
|
121
|
Liu J, Segal D. Thermodynamic uncertainty relation in quantum thermoelectric junctions. Phys Rev E 2019; 99:062141. [PMID: 31330645 DOI: 10.1103/physreve.99.062141] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Indexed: 06/10/2023]
Abstract
Recently, a thermodynamic uncertainty relation (TUR) has been formulated for classical Markovian systems demonstrating trade-off between precision (current fluctuation) and cost (dissipation). Systems that violate the TUR are interesting as they overcome another trade-off relation concerning the efficiency of a heat engine, its power, and its stability (power fluctuations). Here, we analyze the root, extent, and impact on performance of TUR violations in quantum thermoelectric junctions at steady state. Considering noninteracting electrons, first we show that only the "classical" component of the current noise, arising from single-electron transfer events, follows the TUR. The remaining, "quantum" part of current noise is therefore responsible for the potential violation of the TUR in such quantum systems. Next, focusing on the resonant transport regime we determine the parameter range in which the violation of the TUR can be observed-for both voltage-biased junctions and thermoelectric engines. We illustrate our findings with exact numerical simulations of a serial double quantum dot system. Most significantly, we demonstrate that the TUR always holds in noninteracting thermoelectric generators when approaching the thermodynamic efficiency limit.
Collapse
Affiliation(s)
- Junjie Liu
- Department of Chemistry and Centre for Quantum Information and Quantum Control, University of Toronto, Toronto, Ontario, Canada M5S 3H6
| | - Dvira Segal
- Department of Chemistry and Centre for Quantum Information and Quantum Control, University of Toronto, Toronto, Ontario, Canada M5S 3H6
| |
Collapse
|
122
|
Manikandan SK, Dabelow L, Eichhorn R, Krishnamurthy S. Efficiency Fluctuations in Microscopic Machines. PHYSICAL REVIEW LETTERS 2019; 122:140601. [PMID: 31050471 DOI: 10.1103/physrevlett.122.140601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/01/2019] [Indexed: 06/09/2023]
Abstract
Nanoscale machines are strongly influenced by thermal fluctuations, contrary to their macroscopic counterparts. As a consequence, even the efficiency of such microscopic machines becomes a fluctuating random variable. Using geometric properties and the fluctuation theorem for the total entropy production, a "universal theory of efficiency fluctuations" at long times, for machines with a finite state space, was developed by Verley et al. [Nat. Commun. 5, 4721 (2014)NCAOBW2041-172310.1038/ncomms5721; Phys. Rev. E 90, 052145 (2014)PRESCM1539-375510.1103/PhysRevE.90.052145]. We extend this theory to machines with an arbitrary state space. Thereby, we work out more detailed prerequisites for the "universal features" and explain under which circumstances deviations can occur. We also illustrate our findings with exact results for two nontrivial models of colloidal engines.
Collapse
Affiliation(s)
| | - Lennart Dabelow
- Fakultät für Physik, Universität Bielefeld, 33615 Bielefeld, Germany
| | - Ralf Eichhorn
- Nordita, Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-106 91 Stockholm, Sweden
| | | |
Collapse
|
123
|
Chun HM, Fischer LP, Seifert U. Effect of a magnetic field on the thermodynamic uncertainty relation. Phys Rev E 2019; 99:042128. [PMID: 31108658 DOI: 10.1103/physreve.99.042128] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Indexed: 06/09/2023]
Abstract
The thermodynamic uncertainty relation provides a universal lower bound on the product of entropy production and the fluctuations of any current. While proven for Markov dynamics on a discrete set of states and for overdamped Langevin dynamics, its status for underdamped dynamics is still open. We consider a two-dimensional harmonically confined charged particle in a magnetic field under the action of an external torque. We show analytically that, depending on the sign of the magnetic field, the thermodynamic uncertainty relation does not hold for the currents associated with work and heat. A strong magnetic field can effectively localize the particle with concomitant bounded fluctuations and low dissipation. Numerical results for a three-dimensional variant and for further currents suggest that the existence of such a bound depends crucially on the specific current.
Collapse
Affiliation(s)
- Hyun-Myung Chun
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Lukas P Fischer
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Udo Seifert
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
| |
Collapse
|
124
|
Holubec V, Kroy K, Steffenoni S. Physically consistent numerical solver for time-dependent Fokker-Planck equations. Phys Rev E 2019; 99:032117. [PMID: 30999402 DOI: 10.1103/physreve.99.032117] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Indexed: 06/09/2023]
Abstract
We present a simple thermodynamically consistent method for solving time-dependent Fokker-Planck equations (FPE) for overdamped stochastic processes, also known as Smoluchowski equations. It yields both transition and steady-state behavior and allows for computations of moment-generating and large-deviation functions of observables defined along stochastic trajectories, such as the fluctuating particle current, heat, and work. The key strategy is to approximate the FPE by a master equation with transition rates in configuration space that obey a local detailed balance condition for arbitrary discretization. Its time-dependent solution is obtained by a direct computation of the time-ordered exponential, representing the propagator of the FPE, by summing over all possible paths in the discretized space. The method thus not only preserves positivity and normalization of the solutions but also yields a physically reasonable total entropy production, regardless of the discretization. To demonstrate the validity of the method and to exemplify its potential for applications, we compare it against Brownian-dynamics simulations of a heat engine based on an active Brownian particle trapped in a time-dependent quartic potential.
Collapse
Affiliation(s)
- Viktor Holubec
- Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, D-04009 Leipzig, Germany
- Faculty of Mathematics and Physics, Department of Macromolecular Physics, Charles University, V Holešovičkách 2, CZ-180 00 Praha, Czech Republic
| | - Klaus Kroy
- Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, D-04009 Leipzig, Germany
| | - Stefano Steffenoni
- Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, D-04009 Leipzig, Germany
- Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22, D-04103 Leipzig, Germany
| |
Collapse
|
125
|
Gonzalez-Ayala J, Santillán M, Santos MJ, Calvo Hernández A, Mateos Roco JM. Optimization and Stability of Heat Engines: The Role of Entropy Evolution. ENTROPY 2018; 20:e20110865. [PMID: 33266589 PMCID: PMC7512428 DOI: 10.3390/e20110865] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 11/16/2022]
Abstract
Local stability of maximum power and maximum compromise (Omega) operation regimes dynamic evolution for a low-dissipation heat engine is analyzed. The thermodynamic behavior of trajectories to the stationary state, after perturbing the operation regime, display a trade-off between stability, entropy production, efficiency and power output. This allows considering stability and optimization as connected pieces of a single phenomenon. Trajectories inside the basin of attraction display the smallest entropy drops. Additionally, it was found that time constraints, related with irreversible and endoreversible behaviors, influence the thermodynamic evolution of relaxation trajectories. The behavior of the evolution in terms of the symmetries of the model and the applied thermal gradients was analyzed.
Collapse
Affiliation(s)
- Julian Gonzalez-Ayala
- Departamento de Física Aplicada, Universidad de Salamanca, 37008 Salamanca, Spain
- Instituto de Física Fundamental y Matemáticas, Universidad de Salamanca, 37008 Salamanca, Spain
- Correspondence:
| | - Moises Santillán
- Centro de Investigación y Estudios Avanzados del IPN Unidad Monterrey, Apodaca, NL 66600, Mexico
| | - Maria Jesus Santos
- Departamento de Física Aplicada, Universidad de Salamanca, 37008 Salamanca, Spain
- Instituto de Física Fundamental y Matemáticas, Universidad de Salamanca, 37008 Salamanca, Spain
| | - Antonio Calvo Hernández
- Departamento de Física Aplicada, Universidad de Salamanca, 37008 Salamanca, Spain
- Instituto de Física Fundamental y Matemáticas, Universidad de Salamanca, 37008 Salamanca, Spain
| | - José Miguel Mateos Roco
- Departamento de Física Aplicada, Universidad de Salamanca, 37008 Salamanca, Spain
- Instituto de Física Fundamental y Matemáticas, Universidad de Salamanca, 37008 Salamanca, Spain
| |
Collapse
|
126
|
Macieszczak K, Brandner K, Garrahan JP. Unified Thermodynamic Uncertainty Relations in Linear Response. PHYSICAL REVIEW LETTERS 2018; 121:130601. [PMID: 30312036 DOI: 10.1103/physrevlett.121.130601] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/06/2018] [Indexed: 06/08/2023]
Abstract
Thermodynamic uncertainty relations (TURs) are recently established relations between the relative uncertainty of time-integrated currents and entropy production in nonequilibrium systems. For small perturbations away from equilibrium, linear response (LR) theory provides the natural framework to study generic nonequilibrium processes. Here, we use LR to derive TURs in a straightforward and unified way. Our approach allows us to generalize TURs to systems without local time-reversal symmetry, including, e.g., ballistic transport and periodically driven classical and quantum systems. We find that, for broken time reversal, the bounds on the relative uncertainty are controlled both by dissipation and by a parameter encoding the asymmetry of the Onsager matrix. We illustrate our results with an example from mesoscopic physics. We also extend our approach beyond linear response: for Markovian dynamics, it reveals a connection between the TUR and current fluctuation theorems.
Collapse
Affiliation(s)
- Katarzyna Macieszczak
- School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
- Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
- TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Ave., Cambridge CB3 0HE, United Kingdom
| | - Kay Brandner
- Department of Applied Physics, Aalto University, 00076 Aalto, Finland
| | - Juan P Garrahan
- School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
- Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
127
|
Holubec V, Ryabov A. Cycling Tames Power Fluctuations near Optimum Efficiency. PHYSICAL REVIEW LETTERS 2018; 121:120601. [PMID: 30296120 DOI: 10.1103/physrevlett.121.120601] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Indexed: 06/08/2023]
Abstract
According to the laws of thermodynamics, no heat engine can beat the efficiency of a Carnot cycle. This efficiency traditionally comes with vanishing power output and practical designs, optimized for power, generally achieve far less. Recently, various strategies to obtain Carnot's efficiency at large power were proposed. However, a thermodynamic uncertainty relation implies that steady-state heat engines can operate in this regime only at the cost of large fluctuations that render them immensely unreliable. Here, we demonstrate that this unfortunate trade-off can be overcome by designs operating cyclically under quasistatic conditions. The experimentally relevant yet exactly solvable model of an overdamped Brownian heat engine is used to illustrate the formal result. Our study highlights that work in cyclic heat engines and that in quasistatic ones are different stochastic processes.
Collapse
Affiliation(s)
- Viktor Holubec
- Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, D-04009 Leipzig, Germany
- Charles University, Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holešovičkách 2, CZ-180 00 Praha, Czech Republic
| | - Artem Ryabov
- Charles University, Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holešovičkách 2, CZ-180 00 Praha, Czech Republic
| |
Collapse
|