101
|
Prebiotic chemistry and origins of life research with atomistic computer simulations. Phys Life Rev 2020; 34-35:105-135. [DOI: 10.1016/j.plrev.2018.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 09/10/2018] [Indexed: 02/02/2023]
|
102
|
Kondo T, Sasaki T, Ruiz-Barragan S, Ribas-Ariño J, Shiga M. Refined metadynamics through canonical sampling using time-invariant bias potential: A study of polyalcohol dehydration in hot acidic solutions. J Comput Chem 2020; 42:156-165. [PMID: 33124054 DOI: 10.1002/jcc.26443] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/13/2020] [Accepted: 10/17/2020] [Indexed: 12/17/2022]
Abstract
We propose a canonical sampling method to refine metadynamics simulations a posteriori, where the hills obtained from metadynamics are used as a time-invariant bias potential. In this way, the statistical error in the computed reaction barriers is reduced by an efficient sampling of the collective variable space at the free energy level of interest. This simple approach could be useful particularly when two or more free energy barriers are to be compared among chemical reactions in different or competing conditions. The method was then applied to study the acid dependence of polyalcohol dehydration reactions in high-temperature aqueous solutions. It was found that the reaction proceeds consistently via an SN 2 mechanism, whereby the free energy of protonation of the hydroxyl group created as an intermediate is affected significantly by the acidic species. Although demonstration is shown for a specific problem, the computational method suggested herein could be generally used for simulations of complex reactions in the condensed phase.
Collapse
Affiliation(s)
- Tomomi Kondo
- Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan.,Center for Computational Science and e-Systems, Japan Atomic Energy Agency, Chiba, Japan
| | - Takehiko Sasaki
- Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Sergi Ruiz-Barragan
- Center for Computational Science and e-Systems, Japan Atomic Energy Agency, Chiba, Japan
| | - Jordi Ribas-Ariño
- Departament de Ciència dels Materials i Química Física and IQTCUB, Universitat de Barcelona, Barcelona, Spain
| | - Motoyuki Shiga
- Center for Computational Science and e-Systems, Japan Atomic Energy Agency, Chiba, Japan
| |
Collapse
|
103
|
Pramanik K, Borah S, Kumar PP. Accessing slow diffusion in solids by employing metadynamics simulation. Phys Chem Chem Phys 2020; 22:22796-22804. [PMID: 33021276 DOI: 10.1039/d0cp03239e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Molecular dynamics (MD) is a powerful tool to investigate microscopic transport of atoms and molecules in condensed matter. However, there lies a large class of systems wherein atomic diffusion is too slow a process relative to the feasible time scales of typical atomistic simulations. Here, we demonstrate that with judicial implementation of a metadynamics (MTD) technique, the microscopic mechanism of atomic transport in solids can be accessed within a reasonable computational time. The calculations are carried out on the two end members of the true NASICON solid solutions, namely NaZr2(PO4)3 and Na4Zr2(SiO4)3, wherein Na+ diffusion is too slow to be accessed through standard MD simulations. The study also provides fresh insights on correlated ion hops and their implications on the effective diffusion barrier. The results are compared with climbing image nudged elastic band (CI-NEB) calculation, and available experimental results.
Collapse
|
104
|
Groppi J, Casimiro L, Canton M, Corra S, Jafari‐Nasab M, Tabacchi G, Cavallo L, Baroncini M, Silvi S, Fois E, Credi A. Precision Molecular Threading/Dethreading. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jessica Groppi
- CLAN-Center for Light Activated Nanostructures Istituto ISOF-CNR via Gobetti 101 40129 Bologna Italy
| | - Lorenzo Casimiro
- CLAN-Center for Light Activated Nanostructures Istituto ISOF-CNR via Gobetti 101 40129 Bologna Italy
- Dipartimento di Chimica “G. Ciamician” Università di Bologna via Selmi 2 40126 Bologna Italy
| | - Martina Canton
- CLAN-Center for Light Activated Nanostructures Istituto ISOF-CNR via Gobetti 101 40129 Bologna Italy
- Dipartimento di Chimica Industriale “Toso Montanari” Università di Bologna viale del Risorgimento 4 40136 Bologna Italy
| | - Stefano Corra
- CLAN-Center for Light Activated Nanostructures Istituto ISOF-CNR via Gobetti 101 40129 Bologna Italy
- Dipartimento di Scienze e Tecnologie Agro-alimentari Università di Bologna viale Fanin 44 40127 Bologna Italy
| | - Mina Jafari‐Nasab
- Dipartimento di Chimica “G. Ciamician” Università di Bologna via Selmi 2 40126 Bologna Italy
| | - Gloria Tabacchi
- Dipartimento di Scienza ed Alta Tecnologia and INSTM Università dell'Insubria via Valleggio 11 22100 Como Italy
| | - Luigi Cavallo
- KAUST Catalysis Center King Abdullah University of Science and Technology Thuwal 23955-6900 Saudi Arabia
| | - Massimo Baroncini
- CLAN-Center for Light Activated Nanostructures Istituto ISOF-CNR via Gobetti 101 40129 Bologna Italy
- Dipartimento di Scienze e Tecnologie Agro-alimentari Università di Bologna viale Fanin 44 40127 Bologna Italy
| | - Serena Silvi
- CLAN-Center for Light Activated Nanostructures Istituto ISOF-CNR via Gobetti 101 40129 Bologna Italy
- Dipartimento di Chimica “G. Ciamician” Università di Bologna via Selmi 2 40126 Bologna Italy
| | - Ettore Fois
- Dipartimento di Scienza ed Alta Tecnologia and INSTM Università dell'Insubria via Valleggio 11 22100 Como Italy
| | - Alberto Credi
- CLAN-Center for Light Activated Nanostructures Istituto ISOF-CNR via Gobetti 101 40129 Bologna Italy
- Dipartimento di Chimica Industriale “Toso Montanari” Università di Bologna viale del Risorgimento 4 40136 Bologna Italy
| |
Collapse
|
105
|
Groppi J, Casimiro L, Canton M, Corra S, Jafari‐Nasab M, Tabacchi G, Cavallo L, Baroncini M, Silvi S, Fois E, Credi A. Precision Molecular Threading/Dethreading. Angew Chem Int Ed Engl 2020; 59:14825-14834. [PMID: 32396687 PMCID: PMC7496742 DOI: 10.1002/anie.202003064] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Indexed: 12/12/2022]
Abstract
The general principles guiding the design of molecular machines based on interlocked structures are well known. Nonetheless, the identification of suitable molecular components for a precise tuning of the energetic parameters that determine the mechanical link is still challenging. Indeed, what are the reasons of the "all-or-nothing" effect, which turns a molecular "speed-bump" into a stopper in pseudorotaxane-based architectures? Here we investigate the threading and dethreading processes for a representative class of molecular components, based on symmetric dibenzylammonium axles and dibenzo[24]crown-8 ether, with a joint experimental-computational strategy. From the analysis of quantitative data and an atomistic insight, we derive simple rules correlating the kinetic behaviour with the substitution pattern, and provide rational guidelines for the design of modules to be integrated in molecular switches and motors with sophisticated dynamic features.
Collapse
Affiliation(s)
- Jessica Groppi
- CLAN-Center for Light Activated NanostructuresIstituto ISOF-CNRvia Gobetti 10140129BolognaItaly
| | - Lorenzo Casimiro
- CLAN-Center for Light Activated NanostructuresIstituto ISOF-CNRvia Gobetti 10140129BolognaItaly
- Dipartimento di Chimica “G. Ciamician”Università di Bolognavia Selmi 240126BolognaItaly
| | - Martina Canton
- CLAN-Center for Light Activated NanostructuresIstituto ISOF-CNRvia Gobetti 10140129BolognaItaly
- Dipartimento di Chimica Industriale “Toso Montanari”Università di Bolognaviale del Risorgimento 440136BolognaItaly
| | - Stefano Corra
- CLAN-Center for Light Activated NanostructuresIstituto ISOF-CNRvia Gobetti 10140129BolognaItaly
- Dipartimento di Scienze e Tecnologie Agro-alimentariUniversità di Bolognaviale Fanin 4440127BolognaItaly
| | - Mina Jafari‐Nasab
- Dipartimento di Chimica “G. Ciamician”Università di Bolognavia Selmi 240126BolognaItaly
| | - Gloria Tabacchi
- Dipartimento di Scienza ed Alta Tecnologia and INSTMUniversità dell'Insubriavia Valleggio 1122100ComoItaly
| | - Luigi Cavallo
- KAUST Catalysis CenterKing Abdullah University of Science and TechnologyThuwal23955-6900Saudi Arabia
| | - Massimo Baroncini
- CLAN-Center for Light Activated NanostructuresIstituto ISOF-CNRvia Gobetti 10140129BolognaItaly
- Dipartimento di Scienze e Tecnologie Agro-alimentariUniversità di Bolognaviale Fanin 4440127BolognaItaly
| | - Serena Silvi
- CLAN-Center for Light Activated NanostructuresIstituto ISOF-CNRvia Gobetti 10140129BolognaItaly
- Dipartimento di Chimica “G. Ciamician”Università di Bolognavia Selmi 240126BolognaItaly
| | - Ettore Fois
- Dipartimento di Scienza ed Alta Tecnologia and INSTMUniversità dell'Insubriavia Valleggio 1122100ComoItaly
| | - Alberto Credi
- CLAN-Center for Light Activated NanostructuresIstituto ISOF-CNRvia Gobetti 10140129BolognaItaly
- Dipartimento di Chimica Industriale “Toso Montanari”Università di Bolognaviale del Risorgimento 440136BolognaItaly
| |
Collapse
|
106
|
Paleico ML, Behler J. Global optimization of copper clusters at the ZnO(101¯0) surface using a DFT-based neural network potential and genetic algorithms. J Chem Phys 2020; 153:054704. [DOI: 10.1063/5.0014876] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Martín Leandro Paleico
- Institut für Physikalische Chemie, Theoretische Chemie, Universität Göttingen, Tammannstraße 6, 37077 Göttingen, Germany
| | - Jörg Behler
- Institut für Physikalische Chemie, Theoretische Chemie, Universität Göttingen, Tammannstraße 6, 37077 Göttingen, Germany
- International Center for Advanced Studies of Energy Conversion (ICASEC), Universität Göttingen, Tammannstraße 6, 37077 Göttingen, Germany
| |
Collapse
|
107
|
Bailleul S, Dedecker K, Cnudde P, Vanduyfhuys L, Waroquier M, Van Speybroeck V. Ab initio enhanced sampling kinetic study on MTO ethene methylation reaction. J Catal 2020. [DOI: 10.1016/j.jcat.2020.04.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
108
|
Fehér PP, Stirling A. Theoretical Study on the Formation of Ni(PR 3)(Aryl)F Complexes Observed in Ni-Catalyzed Decarbonylative C–C Coupling of Acyl Fluorides. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Péter Pál Fehér
- Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - András Stirling
- Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| |
Collapse
|
109
|
Shobhna, Kumari M, Kashyap HK. A coarse-grained model of dimethyl sulfoxide for molecular dynamics simulations with lipid membranes. J Chem Phys 2020; 153:035104. [DOI: 10.1063/5.0014614] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Shobhna
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Monika Kumari
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Hemant K. Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
110
|
de Lima Menezes G, da Silva RA. Identification of potential drugs against SARS-CoV-2 non-structural protein 1 (nsp1). J Biomol Struct Dyn 2020; 39:5657-5667. [PMID: 32657643 PMCID: PMC7443570 DOI: 10.1080/07391102.2020.1792992] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Non-structural protein 1 (nsp1) is found in all Betacoronavirus genus, an important viral group that causes severe respiratory
human diseases. This protein has significant role in pathogenesis and it is considered a
probably major virulence factor. As it is absent in humans, it becomes an interesting
target of study, especially when it comes to the rational search for drugs, since it
increases the specificity of the target and reduces possible adverse effects that may be
caused to the patient. Using approaches in silico we seek to
study the behavior of nsp1 in solution to obtain its most stable conformation and find
possible drugs with affinity to all of them. For this purpose, complete model of nsp1 of
SARS-CoV-2 were predicted and its stability analyzed by molecular dynamics simulations in
five different replicas. After main pocket validation using two control drugs and the main
conformations of nsp1, molecular docking based on virtual screening were performed to
identify novel potential inhibitors from DrugBank database. It has been found 16 molecules
in common to all five nsp1 replica conformations. Three of them was ranked as the best
compounds among them and showed better energy score than control molecules that have
in vitro activity against nsp1 from SARS-CoV-2. The
results pointed out here suggest new potential drugs for therapy to aid the rational drug
search against COVID-19. Communicated by Ramaswamy H. Sarma
Collapse
|
111
|
Das CK, Nair NN. Elucidating the Molecular Basis of Avibactam‐Mediated Inhibition of Class A β‐Lactamases. Chemistry 2020; 26:9639-9651. [DOI: 10.1002/chem.202001261] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/10/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Chandan Kumar Das
- Department of ChemistryIndian Institute of Technology Kanpur Kanpur 208016 India
- Current Address: Lehrstuhl für Theoretische ChemieRuhr Universität Bochum 44780 Bochum Germany
| | - Nisanth N. Nair
- Department of ChemistryIndian Institute of Technology Kanpur Kanpur 208016 India
| |
Collapse
|
112
|
Vithani N, Prakash B, Nair NN. Mechanism of Nucleotidyltransfer Reaction and Role of Mg 2+ Ion in Sugar Nucleotidyltransferases. Biophys J 2020; 119:619-627. [PMID: 32645293 DOI: 10.1016/j.bpj.2020.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/19/2020] [Accepted: 06/17/2020] [Indexed: 11/17/2022] Open
Abstract
Sugar nucleotidyl transferases (SNTs) catalyze nucleotidyltransfer reactions to form sugar-nucleotides and pyrophosphate in the presence of two Mg2+ ions (Mg2+A and Mg2+B). We unveil the mechanism and free energetics of nucleotidyl transfer reaction in an SNT called GlmU through hybrid quantum mechanics-molecular mechanics molecular dynamics simulations and free energy calculations. The study identifies the roles of the active site residues and the Mg2+ ions in catalyzing the reaction. Of great significance, we are able to compare the free energy barrier for the reaction with that for the Mg2+-assisted release of the product (i.e., pyrophosphate) into the solution, shedding light on the general mechanistic and kinetic aspects of catalysis by SNTs.
Collapse
Affiliation(s)
- Neha Vithani
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Balaji Prakash
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysore, India.
| | - Nisanth N Nair
- Department of Chemistry, Indian Institute of Technology, Kanpur, India.
| |
Collapse
|
113
|
Keuter J, Schwermann C, Hepp A, Bergander K, Droste J, Hansen MR, Doltsinis NL, Mück-Lichtenfeld C, Lips F. A highly unsaturated six-vertex amido-substituted silicon cluster. Chem Sci 2020; 11:5895-5901. [PMID: 32874511 PMCID: PMC7448375 DOI: 10.1039/d0sc01427c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/10/2020] [Indexed: 11/21/2022] Open
Abstract
Thermal treatment of the bicyclo[1.1.0]tetrasilatetraamide [Si4{N(SiMe3)Dipp}4] 1 resulted in the formation of a highly unsaturated six-vertex silicon cluster [Si6{N(SiMe3)Dipp}4] 2 with only four amine-substituents and two ligand-free silicon atoms. In solution, a major and a minor conformer of this cluster are in equilibrium according to multinuclear NMR spectroscopy, lineshape analysis, DFT calculations and molecular dynamics simulations. The bonding situation in the highly unsaturated cluster features lone pair type character at the ligand-free silicon atoms and partial single and double bond character in the upper butterfly-shaped ring of 2. This allows to consider 2 as the silicon analogue of a butalene isomer.
Collapse
Affiliation(s)
- Jan Keuter
- Westfälische Wilhelms-Universität Münster , Institut für Anorganische und Analytische Chemie , Corrensstraße 28-30 , 48149 Münster , Germany
| | - Christian Schwermann
- Westfälische Wilhelms-Universität Münster , Institut für Festkörpertheorie , Center for Multiscale Theory and Computation , Wilhelm-Klemm-Straße 10 , 48149 Münster , Germany
| | - Alexander Hepp
- Westfälische Wilhelms-Universität Münster , Institut für Anorganische und Analytische Chemie , Corrensstraße 28-30 , 48149 Münster , Germany
| | - Klaus Bergander
- Westfälische Wilhelms-Universität Münster , Organisch-Chemisches Institut , Center for Multiscale Theory and Computation , Corrensstraße 40 , 48149 Münster , Germany
| | - Jörn Droste
- Westfälische Wilhelms-Universität Münster , Institut für Physikalische Chemie , Corrensstraße 30 , 48149 Münster , Germany
| | - Michael Ryan Hansen
- Westfälische Wilhelms-Universität Münster , Institut für Physikalische Chemie , Corrensstraße 30 , 48149 Münster , Germany
| | - Nikos L Doltsinis
- Westfälische Wilhelms-Universität Münster , Institut für Festkörpertheorie , Center for Multiscale Theory and Computation , Wilhelm-Klemm-Straße 10 , 48149 Münster , Germany
| | - Christian Mück-Lichtenfeld
- Westfälische Wilhelms-Universität Münster , Organisch-Chemisches Institut , Center for Multiscale Theory and Computation , Corrensstraße 40 , 48149 Münster , Germany
| | - Felicitas Lips
- Westfälische Wilhelms-Universität Münster , Institut für Anorganische und Analytische Chemie , Corrensstraße 28-30 , 48149 Münster , Germany
| |
Collapse
|
114
|
Li Z, Li C, Wang Z, Voth GA. What Coordinate Best Describes the Affinity of the Hydrated Excess Proton for the Air-Water Interface? J Phys Chem B 2020; 124:5039-5046. [PMID: 32426982 DOI: 10.1021/acs.jpcb.0c03288] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular dynamics simulations and free energy sampling are employed in this work to investigate the surface affinity of the hydrated excess proton with two definitions of the interface: The Gibbs dividing interface (GDI) and the Willard-Chandler interface (WCI). Both the multistate empirical valence bond (MS-EVB) reactive molecular dynamics method and the density functional theory-based ab initio molecular dynamics (AIMD) were used to describe the hydrated excess proton species, including "vehicular" (standard diffusion) transport and (Grotthuss) proton hopping transport and associated structures of the hydrated excess proton net positive charge defect. The excess proton is found to exhibit a similar trend and quantitative free energy behavior in terms of its surface affinity as a function of the GDI or WCI. Importantly, the definitions of the two interfaces in terms of the excess proton charge defect are highly correlated and far from independent of one another, thus undermining the argument that one interface is superior to the other when describing the proton interface affinity. Moreover, the hydrated excess proton and its solvation shell significantly influence the location and local curvature of the WCI, making it difficult to disentangle the interfacial thermodynamics of the excess proton from the influence of that species on the instantaneous surface curvature.
Collapse
Affiliation(s)
- Zhefu Li
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute of Biophysics Dynamics, The University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Chenghan Li
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute of Biophysics Dynamics, The University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Zhi Wang
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute of Biophysics Dynamics, The University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute of Biophysics Dynamics, The University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| |
Collapse
|
115
|
Kumar N, Marx D. Deciphering the Self-Cleavage Reaction Mechanism of Hairpin Ribozyme. J Phys Chem B 2020; 124:4906-4918. [PMID: 32453954 DOI: 10.1021/acs.jpcb.0c03768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hairpin ribozyme catalyzes the reversible self-cleavage of phosphodiester bonds which plays prominent roles in key biological processes involving RNAs. Despite impressive advances on ribozymatic self-cleavage, critical aspects of its molecular reaction mechanism remain controversially debated. Here, we generate and analyze the multidimensional free energy landscape that underlies the reaction using extensive QM/MM metadynamics simulations to investigate in detail the full self-cleavage mechanism. This allows us to answer several pertinent yet controversial questions concerning activation of the 2'-OH group, the mechanistic role of water molecules present in the active site, and the full reaction pathway including the structures of transition states and intermediates. Importantly, we find that a sufficiently unrestricted reaction subspace must be mapped using accelerated sampling methods in order to compute the underlying free energy landscape. It is shown that lower-dimensional sampling where the bond formation and cleavage steps are coupled does not allow the system to sufficiently explore the landscape. On the basis of a three-dimensional free energy surface spanned by flexible generalized coordinates, we find that 2'-OH is indirectly activated by adjacent G8 nucleobase in conjunction with stabilizing H-bonding involving water. This allows the proton of the 2'-OH group to directly migrate toward the 5'-leaving group via a nonbridging oxygen of the phosphodiester link. At variance with similar enzymatic processes where water wires connected to protonable side chains of the protein matrix act as transient proton shuttles, no such de/reprotonation events of water molecules are found to be involved in this ribozymatic transesterification. Overall, our results support an acid-catalyzed reaction mechanism where A38 nucleobase directly acts as an acid whereas G8, in stark contrast, participates only indirectly via stabilizing the nascent nucleophile for subsequent attack. Moreover, we conclude that self-cleavage of hairpin ribozyme follows an AN + DN two-step associative pathway where the rate-determining step is the cleavage of the phosphodiester bond. These results provide a major advancement in our understanding of the unique catalytic mechanism of hairpin ribozyme which will fruitfully impact on the design of synthetic ribozymes.
Collapse
Affiliation(s)
- Narendra Kumar
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
116
|
Lambert H, Zhang YW, Lee TC. Supramolecular Catalysis of m-Xylene Isomerization by Cucurbiturils: Transition State Stabilization, Vibrational Coupling, and Dynamic Binding Equilibrium. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2020; 124:11469-11479. [PMID: 32582403 PMCID: PMC7304912 DOI: 10.1021/acs.jpcc.0c02012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/05/2020] [Indexed: 06/11/2023]
Abstract
The ability of cucurbit[6]uril (CB6) and cucurbit[7]uril (CB7) to catalyze the thermally activated 1,2-methyl shift isomerization pathway of m-xylene in vacuum is investigated using infrequent metadynamics. CB6 is predicted to effectively and selectively catalyze the meta-to-para isomerization through stabilization of the transition state (TS) by van der Waals push (packing coefficient ≈74%), while inhibiting the meta-to-ortho pathway by molding effects of the cavity. Interestingly, despite the snug binding, a very low rate of host-guest vibrational energy transfer is revealed using a novel approach of host-guest partition of the mode-specific anharmonic relaxation rates and ab initio molecular dynamics. The weak vibrational coupling suggests that CB can act as a thermal buffer, possibly shielding encapsulated guests from outside vibrational perturbations such as solvent effects. This dynamic effect could provide an additional boost to the reaction rate by blocking the occurrence of reaction barrier recrossing caused by the friction with surrounding molecules. Finally, mean residence times of xylene into the hosts' cavity were estimated for a range of host-guest complexes, revealing a highly dynamic equilibrium allowing very high guest turnover rates that could minimize catalyst inhibition effects commonly suffered by other supramolecular catalysts.
Collapse
Affiliation(s)
- Hugues Lambert
- Institute
of High Performance Computing, A*STAR, 1 Fusionopolis Way, Connexis Tower, Singapore 138632
- Department
of Chemistry, Christopher Ingold Building, University College London (UCL), 20 Gordon Street London WC1H 0AJ, U.K.
- Institute
for Materials Discovery, University College
London (UCL), London WC1E 6BT, U.K.
| | - Yong-Wei Zhang
- Institute
of High Performance Computing, A*STAR, 1 Fusionopolis Way, Connexis Tower, Singapore 138632
| | - Tung-Chun Lee
- Department
of Chemistry, Christopher Ingold Building, University College London (UCL), 20 Gordon Street London WC1H 0AJ, U.K.
- Institute
for Materials Discovery, University College
London (UCL), London WC1E 6BT, U.K.
| |
Collapse
|
117
|
Kumar A, Sanfui S, Sciortino G, Maréchal J, Garribba E, Rath SP. Stepwise Oxidations in a Cofacial Copper(II) Porphyrin Dimer: Through‐Space Spin‐Coupling and Interplay between Metal and Radical Spins. Chemistry 2020; 26:7869-7880. [DOI: 10.1002/chem.202000348] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/06/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Amit Kumar
- Department of ChemistryIndian Institute of Technology Kanpur Kanpur 208016 India
| | - Sarnali Sanfui
- Department of ChemistryIndian Institute of Technology Kanpur Kanpur 208016 India
| | - Giuseppe Sciortino
- Dipartimento di Chimica e FarmaciaUniversità di Sassari Via Vienna 2 07100 Sassari Italy
- Departament de QuímicaUniversitat Autònoma de Barcelona 08193 Cerdanyola del Vallés Barcelona Spain
| | - Jean‐Didier Maréchal
- Departament de QuímicaUniversitat Autònoma de Barcelona 08193 Cerdanyola del Vallés Barcelona Spain
| | - Eugenio Garribba
- Dipartimento di Chimica e FarmaciaUniversità di Sassari Via Vienna 2 07100 Sassari Italy
| | - Sankar Prasad Rath
- Department of ChemistryIndian Institute of Technology Kanpur Kanpur 208016 India
| |
Collapse
|
118
|
Fu H, Chen H, Wang X, Chai H, Shao X, Cai W, Chipot C. Finding an Optimal Pathway on a Multidimensional Free-Energy Landscape. J Chem Inf Model 2020; 60:5366-5374. [DOI: 10.1021/acs.jcim.0c00279] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Haohao Fu
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Haochuan Chen
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Xin’ao Wang
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Hao Chai
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Xueguang Shao
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Wensheng Cai
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Christophe Chipot
- Laboratoire International Associé CNRS and University of Illinois at Urbana−Champaign, F-54506 Vandœuvre-lès-Nancy, France
- Department of Physics, University of Illinois at Urbana−Champaign, 1110 West Green Street, Urbana, Illinois 61801, United States
| |
Collapse
|
119
|
Sakti A, Chou CP, Nakai H. Density-Functional Tight-Binding Study of Carbonaceous Species Diffusion on the (100)-γ-Al 2O 3 Surface. ACS OMEGA 2020; 5:6862-6871. [PMID: 32258922 PMCID: PMC7114690 DOI: 10.1021/acsomega.0c00203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/05/2020] [Indexed: 05/17/2023]
Abstract
Carbonaceous or oxy-carbon species are intermediates formed during C x H y combustion on a Pt n /Al2O3 catalyst, which contain carbon, hydrogen, and oxygen atoms. The accumulation of the carbonaceous species, arguably, leads to catalytic deactivation; therefore, their removal is of importance. As the diffusion process is occasionally the rate-determining step in the growth of carbonaceous species, the present study aims to reveal the diffusion mechanisms. The free energy barriers of acetate, formate, and methoxy diffusion on the (100)-γ-Al2O3 surface were evaluated through extensive metadynamics simulations at the density-functional tight-binding level. The present work deduces that each adopted carbonaceous species exhibits different diffusion mechanisms and supports experimental evidence that the acetate species exhibits the slowest diffusivity among the adopted carbonaceous species.
Collapse
Affiliation(s)
- Aditya
W. Sakti
- Element
Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyotodaigaku-Katsura, Kyoto 615-8520, Japan
- Waseda
Research Institute for Science and Engineering (WISE), Waseda University, Tokyo 169-8555, Japan
| | - Chien-Pin Chou
- Waseda
Research Institute for Science and Engineering (WISE), Waseda University, Tokyo 169-8555, Japan
| | - Hiromi Nakai
- Element
Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyotodaigaku-Katsura, Kyoto 615-8520, Japan
- Waseda
Research Institute for Science and Engineering (WISE), Waseda University, Tokyo 169-8555, Japan
- Department
of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan
- E-mail: . Phone: +81 3-5286-3452. Fax: +81 3-3205-2504
| |
Collapse
|
120
|
Zhu C, Zeng XC, Francisco JS, Gladich I. Hydration, Solvation, and Isomerization of Methylglyoxal at the Air/Water Interface: New Mechanistic Pathways. J Am Chem Soc 2020; 142:5574-5582. [PMID: 32091211 DOI: 10.1021/jacs.9b09870] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aqueous-phase processing of methylglyoxal (MG) has been suggested to play a key role in the formation of secondary organic aerosols and catalyze particle growth in the atmosphere. However, the details of these processes remain speculative owing to the lack of a complete description of the physicochemical behavior of MG on atmospheric aerosols. Here, the solvation and hydrolysis of MG at the air/liquid water interface is studied via classical and first-principles molecular dynamics simulations combined with free-energy methods. Our results reveal that the polarity of the water solvent catalyzed the trans-to-cis isomerization of MG at the air/liquid water interface relative to the gas phase. Despite the presence of a hydrophobic group, MG often solvates with both the ketone and methyl groups parallel to the water interface. Analysis of the instantaneous water surface reveals that when MG is in the trans state, the methyl group repels interfacial water to maintain the planarity of the molecule, indicating that lateral and temporal inhomogeneities of interfacial environments are important for fully characterizing the solvation of MG. The counterintuitive behavior of the hydrophobic group is ascribed to a tendency to maximize the number of hydrogen bonds between MG and interfacial water while minimizing the torsional free energy. This drives MG hydration, and our simulations indicate that the formation of MG diol is catalyzed at the air/liquid water interface compared to the gas phase and occurs through nucleophilic attack of water on the carbonyl carbon.
Collapse
Affiliation(s)
- Chongqin Zhu
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States.,Department of Earth and Environmental Science and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Xiao Cheng Zeng
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Joseph S Francisco
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States.,Department of Earth and Environmental Science and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ivan Gladich
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, P.O. Box 5825, Doha, Qatar.,European Centre for Living Technology (ECLT), Ca' Bottacin, Dorsoduro 3911, Calle Crosera, 30124 Venice, Italy
| |
Collapse
|
121
|
Kuusk A, Neves JF, Bravo-Rodriguez K, Gunnarsson A, Ruiz-Blanco YB, Ehrmann M, Chen H, Landrieu I, Sanchez-Garcia E, Boyd H, Ottmann C, Doveston RG. Adoption of a Turn Conformation Drives the Binding Affinity of p53 C-Terminal Domain Peptides to 14-3-3σ. ACS Chem Biol 2020; 15:262-271. [PMID: 31742997 DOI: 10.1021/acschembio.9b00893] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The interaction between the adapter protein 14-3-3σ and transcription factor p53 is important for preserving the tumor-suppressor functions of p53 in the cell. A phosphorylated motif within the C-terminal domain (CTD) of p53 is key for binding to the amphipathic groove of 14-3-3. This motif is unique among 14-3-3 binding partners, and the precise dynamics of the interaction is not yet fully understood. Here, we investigate this interaction at the molecular level by analyzing the binding of different length p53 CTD peptides to 14-3-3σ using ITC, SPR, NMR, and MD simulations. We observed that the propensity of the p53 peptide to adopt turn-like conformation plays an important role in the binding to the 14-3-3σ protein. Our study contributes to elucidate the molecular mechanism of the 14-3-3-p53 binding and provides useful insight into how conformation properties of a ligand influence protein binding.
Collapse
Affiliation(s)
- Ave Kuusk
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Mölndal, Sweden
- Laboratory of Chemical Biology, Department of Biomedical Engineering, and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | | | | | | | | | | | - Hongming Chen
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Mölndal, Sweden
- Chemistry and Chemical Biology Centre, Guangzhou Regenerative Medicine and Health-Guangdong Laboratory, Guangzhou, China
| | | | | | - Helen Boyd
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, U.K
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering, and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Richard G. Doveston
- Leicester Institute of Structural and Chemical Biology and School of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, U.K
| |
Collapse
|
122
|
Biswas S, Kwon H, Barsanti KC, Myllys N, Smith JN, Wong BM. Ab initio metadynamics calculations of dimethylamine for probing pKb variations in bulk vs. surface environments. Phys Chem Chem Phys 2020; 22:26265-26277. [DOI: 10.1039/d0cp03832f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Free energy landscape obtained from ab initio metadynamics calculations for dimethylamine protonation at the air–water interface.
Collapse
Affiliation(s)
- Sohag Biswas
- Department of Chemical & Environmental Engineering
- University of California-Riverside
- Riverside
- USA
| | - Hyuna Kwon
- Department of Chemical & Environmental Engineering
- University of California-Riverside
- Riverside
- USA
| | - Kelley C. Barsanti
- Department of Chemical & Environmental Engineering
- University of California-Riverside
- Riverside
- USA
| | - Nanna Myllys
- Department of Chemistry
- University of California-Irvine
- Irvine
- USA
| | - James N. Smith
- Department of Chemistry
- University of California-Irvine
- Irvine
- USA
| | - Bryan M. Wong
- Department of Chemical & Environmental Engineering
- University of California-Riverside
- Riverside
- USA
- Materials Science & Engineering Program
| |
Collapse
|
123
|
Kumari P, Kashyap HK. DMSO induced dehydration of heterogeneous lipid bilayers and its impact on their structures. J Chem Phys 2019; 151:215103. [DOI: 10.1063/1.5127852] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Pratibha Kumari
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Hemant K. Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
124
|
Bueren-Calabuig JA, G Bage M, Cowling VH, Pisliakov AV. Mechanism of allosteric activation of human mRNA cap methyltransferase (RNMT) by RAM: insights from accelerated molecular dynamics simulations. Nucleic Acids Res 2019; 47:8675-8692. [PMID: 31329932 PMCID: PMC7145595 DOI: 10.1093/nar/gkz613] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/01/2019] [Accepted: 07/08/2019] [Indexed: 02/04/2023] Open
Abstract
The RNA guanine-N7 methyltransferase (RNMT) in complex with RNMT-activating miniprotein (RAM) catalyses the formation of a N7-methylated guanosine cap structure on the 5' end of nascent RNA polymerase II transcripts. The mRNA cap protects the primary transcript from exonucleases and recruits cap-binding complexes that mediate RNA processing, export and translation. By using microsecond standard and accelerated molecular dynamics simulations, we provide for the first time a detailed molecular mechanism of allosteric regulation of RNMT by RAM. We show that RAM selects the RNMT active site conformations that are optimal for binding of substrates (AdoMet and the cap), thus enhancing their affinity. Furthermore, our results strongly suggest the likely scenario in which the cap binding promotes the subsequent AdoMet binding, consistent with the previously suggested cooperative binding model. By employing the network community analyses, we revealed the underlying long-range allosteric networks and paths that are crucial for allosteric regulation by RAM. Our findings complement and explain previous experimental data on RNMT activity. Moreover, this study provides the most complete description of the cap and AdoMet binding poses and interactions within the enzyme's active site. This information is critical for the drug discovery efforts that consider RNMT as a promising anti-cancer target.
Collapse
Affiliation(s)
- Juan A Bueren-Calabuig
- Computational Biology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Marcus G Bage
- Computational Biology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Victoria H Cowling
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Andrei V Pisliakov
- Computational Biology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.,Physics, School of Science and Engineering, University of Dundee, Dundee, DD1 4HN, UK
| |
Collapse
|
125
|
Okumura M, Kerisit S, Bourg IC, Lammers LN, Ikeda T, Sassi M, Rosso KM, Machida M. Radiocesium interaction with clay minerals: Theory and simulation advances Post-Fukushima. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2019; 210:105809. [PMID: 30340873 DOI: 10.1016/j.jenvrad.2018.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 03/14/2018] [Accepted: 03/28/2018] [Indexed: 05/24/2023]
Abstract
Insights at the microscopic level of the process of radiocesium adsorption and interaction with clay mineral particles have improved substantially over the past several years, triggered by pressing social issues such as management of huge amounts of waste soil accumulated after the Fukushima Dai-ichi nuclear power plant accident. In particular, computer-based molecular modeling supported by advanced hardware and algorithms has proven to be a powerful approach. Its application can now generally encompass the full complexity of clay particle adsorption sites from basal surfaces to interlayers with inserted water molecules, to edges including fresh and weathered frayed ones. On the other hand, its methodological schemes are now varied from traditional force-field molecular dynamics on large-scale realizations composed of many thousands of atoms including water molecules to first-principles methods on smaller models in rather exacting fashion. In this article, we overview new understanding enabled by simulations across methodological variations, focusing on recent insights that connect with experimental observations, namely: 1) the energy scale for cesium adsorption on the basal surface, 2) progress in understanding the structure of clay edges, which is difficult to probe experimentally, 3) cesium adsorption properties at hydrated interlayer sites, 4) the importance of the size relationship between the ionic radius of cesium and the interlayer distance at frayed edge sites, 5) the migration of cesium into deep interlayer sites, and 6) the effects of nuclear decay of radiocesium. Key experimental observations that motivate these simulation advances are also summarized. Furthermore, some directions toward future solutions of waste soil management are discussed based on the obtained microscopic insights.
Collapse
Affiliation(s)
- Masahiko Okumura
- Center for Computational Science and e-Systems, Japan Atomic Energy Agency, Kashiwa, Chiba 277-0871, Japan.
| | - Sebastien Kerisit
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Ian C Bourg
- Department of Civil and Environmental Engineering and Princeton Environmental Institute, Princeton University, Princeton, NJ 08544, United States
| | - Laura N Lammers
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, United States; Earth and Environmental Science Area, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Takashi Ikeda
- Synchrotron Radiation Research Center, Quantum Beam Science Research Directorate (QuBS), National Institutes for Quantum and Radiological Science and Technology (QST), Sayo, Hyogo 679-5148, Japan
| | - Michel Sassi
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Kevin M Rosso
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Masahiko Machida
- Center for Computational Science and e-Systems, Japan Atomic Energy Agency, Kashiwa, Chiba 277-0871, Japan
| |
Collapse
|
126
|
Belviso F, Claerbout VEP, Comas-Vives A, Dalal NS, Fan FR, Filippetti A, Fiorentini V, Foppa L, Franchini C, Geisler B, Ghiringhelli LM, Groß A, Hu S, Íñiguez J, Kauwe SK, Musfeldt JL, Nicolini P, Pentcheva R, Polcar T, Ren W, Ricci F, Ricci F, Sen HS, Skelton JM, Sparks TD, Stroppa A, Urru A, Vandichel M, Vavassori P, Wu H, Yang K, Zhao HJ, Puggioni D, Cortese R, Cammarata A. Viewpoint: Atomic-Scale Design Protocols toward Energy, Electronic, Catalysis, and Sensing Applications. Inorg Chem 2019; 58:14939-14980. [DOI: 10.1021/acs.inorgchem.9b01785] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Florian Belviso
- Department of Control Engineering, Czech Technical University in Prague, Technicka 2, 16627 Prague 6, Czech Republic
| | - Victor E. P. Claerbout
- Department of Control Engineering, Czech Technical University in Prague, Technicka 2, 16627 Prague 6, Czech Republic
| | - Aleix Comas-Vives
- Department of Chemistry, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain
| | - Naresh S. Dalal
- National High Magnet Field Lab, Tallahassee, Florida 32310, United States
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Feng-Ren Fan
- Laboratory for Computational Physical Sciences (MOE), State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433, China
| | - Alessio Filippetti
- Department of Physics at University of Cagliari, and CNR-IOM, UOS Cagliari, Cittadella Universitaria, I-09042 Monserrato (CA), Italy
| | - Vincenzo Fiorentini
- Department of Physics at University of Cagliari, and CNR-IOM, UOS Cagliari, Cittadella Universitaria, I-09042 Monserrato (CA), Italy
| | - Lucas Foppa
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, CH-8093 Zürich, Switzerland
| | - Cesare Franchini
- Faculty of Physics and Center for Computational Materials Science, University of Vienna, Sensengasse 8, A-1090 Vienna, Austria
- Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna 40127, Italy
| | - Benjamin Geisler
- Department of Physics and Center for Nanointegration (CENIDE), Universität Duisburg-Essen, Lotharstr. 1, Duisburg 47057, Germany
| | | | - Axel Groß
- Electrochemical Energy Storage, Helmholtz Institut Ulm, Ulm 89069, Germany
- Institute of Theoretical Chemistry, Ulm University, Ulm 89069, Germany
| | - Shunbo Hu
- Department of Physics, Materials Genome Institute, and International Center of Quantum and Molecular Structures, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Jorge Íñiguez
- Materials Research and Technology Department, Luxembourg Institute of Science and Technology, Avenue des Hauts-Fourneaux 5, L-4362 Esch/Alzette, Luxembourg
- Physics and Materials Research Unit, University of Luxembourg, Rue du Brill 41, Belvaux L-4422, Luxembourg
| | - Steven Kaai Kauwe
- Materials Science & Engineering Department, University of Utah, 122 Central Campus Drive, Salt Lake City, Utah 84112, United States
| | - Janice L. Musfeldt
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Paolo Nicolini
- Department of Control Engineering, Czech Technical University in Prague, Technicka 2, 16627 Prague 6, Czech Republic
| | - Rossitza Pentcheva
- Department of Physics and Center for Nanointegration (CENIDE), Universität Duisburg-Essen, Lotharstr. 1, Duisburg 47057, Germany
| | - Tomas Polcar
- Department of Control Engineering, Czech Technical University in Prague, Technicka 2, 16627 Prague 6, Czech Republic
| | - Wei Ren
- Department of Physics, Materials Genome Institute, and International Center of Quantum and Molecular Structures, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Fabio Ricci
- Physique Theorique des Materiaux, Universite de Liege, Sart-Tilman B-4000, Belgium
| | - Francesco Ricci
- Institute of Condensed Matter and Nanosciences, Universite Catholique de Louvain, Chemin des Etoiles 8, Louvain-la-Neuve B-1348, Belgium
| | - Huseyin Sener Sen
- Department of Control Engineering, Czech Technical University in Prague, Technicka 2, 16627 Prague 6, Czech Republic
| | - Jonathan Michael Skelton
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Taylor D. Sparks
- Materials Science & Engineering Department, University of Utah, 122 Central Campus Drive, Salt Lake City, Utah 84112, United States
| | - Alessandro Stroppa
- CNR-SPIN, Department of Physical Sciences and Chemistry, Universita degli Studi dell’Aquila, Via Vetoio, Coppito (AQ) 67010, Italy
| | - Andrea Urru
- Department of Physics at University of Cagliari, and CNR-IOM, UOS Cagliari, Cittadella Universitaria, I-09042 Monserrato (CA), Italy
| | - Matthias Vandichel
- Department of Chemical Sciences and Bernal Institute, Limerick University, Limerick, Ireland
- Department of Chemistry and Material Science and Department of Applied Physics, Aalto University, Espoo 02150, Finland
| | - Paolo Vavassori
- CIC nanoGUNE, San Sebastian E-20018, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Spain
| | - Hua Wu
- Laboratory for Computational Physical Sciences (MOE), State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - Ke Yang
- Laboratory for Computational Physical Sciences (MOE), State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433, China
| | - Hong Jian Zhao
- Materials Research and Technology Department, Luxembourg Institute of Science and Technology, Avenue des Hauts-Fourneaux 5, L-4362 Esch/Alzette, Luxembourg
- Physics Department and Institute for Engineering, University of Arkansas, Fayetteville, Arkansas 72701,United States
| | - Danilo Puggioni
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States
| | - Remedios Cortese
- Department of Physics and Chemistry, Università degli Studi di Palermo, Viale delle Scienze ed. 17, Palermo 90128, Italy
| | - Antonio Cammarata
- Department of Control Engineering, Czech Technical University in Prague, Technicka 2, 16627 Prague 6, Czech Republic
| |
Collapse
|
127
|
Tripathi R, Forbert H, Marx D. Settling the Long-Standing Debate on the Proton Storage Site of the Prototype Light-Driven Proton Pump Bacteriorhodopsin. J Phys Chem B 2019; 123:9598-9608. [DOI: 10.1021/acs.jpcb.9b09608] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
128
|
Kumari P, Kumari M, Kashyap HK. Counter-effects of Ethanol and Cholesterol on the Heterogeneous PSM–POPC Lipid Membrane: A Molecular Dynamics Simulation Study. J Phys Chem B 2019; 123:9616-9628. [DOI: 10.1021/acs.jpcb.9b07107] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Pratibha Kumari
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Monika Kumari
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Hemant K. Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
129
|
Bailleul S, Rogge SMJ, Vanduyfhuys L, Van Speybroeck V. Insight into the Role of Water on the Methylation of Hexamethylbenzene in H‐SAPO‐34 from First Principle Molecular Dynamics Simulations. ChemCatChem 2019. [DOI: 10.1002/cctc.201900618] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Simon Bailleul
- Center for Molecular Modeling (CMM)Ghent University Technologiepark 46 Zwijnaarde B-9052 Belgium
| | - Sven M. J. Rogge
- Center for Molecular Modeling (CMM)Ghent University Technologiepark 46 Zwijnaarde B-9052 Belgium
| | - Louis Vanduyfhuys
- Center for Molecular Modeling (CMM)Ghent University Technologiepark 46 Zwijnaarde B-9052 Belgium
| | - Veronique Van Speybroeck
- Center for Molecular Modeling (CMM)Ghent University Technologiepark 46 Zwijnaarde B-9052 Belgium
| |
Collapse
|
130
|
e Silva KSF, Lima RM, Baeza LC, Lima PDS, Cordeiro TDM, Charneau S, da Silva RA, Soares CMDA, Pereira M. Interactome of Glyceraldehyde-3-Phosphate Dehydrogenase Points to the Existence of Metabolons in Paracoccidioides lutzii. Front Microbiol 2019; 10:1537. [PMID: 31338083 PMCID: PMC6629890 DOI: 10.3389/fmicb.2019.01537] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/20/2019] [Indexed: 11/13/2022] Open
Abstract
Paracoccidioides is a dimorphic fungus, the causative agent of paracoccidioidomycosis. The disease is endemic within Latin America and prevalent in Brazil. The treatment is based on azoles, sulfonamides and amphotericin B. The seeking for new treatment approaches is a real necessity for neglected infections. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an essential glycolytic enzyme, well known for its multitude of functions within cells, therefore categorized as a moonlight protein. To our knowledge, this is the first approach performed on the Paracoccidioides genus regarding the description of PPIs having GAPDH as a target. Here, we show an overview of experimental GAPDH interactome in different phases of Paracoccidioides lutzii and an in silico analysis of 18 proteins partners. GAPDH interacted with 207 proteins in P. lutzii. Several proteins bound to GAPDH in mycelium, transition and yeast phases are common to important pathways such as glycolysis and TCA. We performed a co-immunoprecipitation assay to validate the complex formed by GAPDH with triose phosphate isomerase, enolase, isocitrate lyase and 2-methylcitrate synthase. We found GAPDH participating in complexes with proteins of specific pathways, indicating the existence of a glycolytic and a TCA metabolon in P. lutzii. GAPDH interacted with several proteins that undergoes regulation by nitrosylation. In addition, we modeled the GAPDH 3-D structure, performed molecular dynamics and molecular docking in order to identify the interacting interface between GAPDH and the interacting proteins. Despite the large number of interacting proteins, GAPDH has only four main regions of contact with interacting proteins, reflecting its ancestrality and conservation over evolution.
Collapse
Affiliation(s)
| | - Raisa Melo Lima
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Lilian Cristiane Baeza
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Patrícia de Sousa Lima
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Thuany de Moura Cordeiro
- Laboratório de Bioquímica e Química de Proteínas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brazil
| | - Sébastien Charneau
- Laboratório de Bioquímica e Química de Proteínas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brazil
| | - Roosevelt Alves da Silva
- Núcleo Colaborativo de Biossistemas, Instituto de Ciências Exatas, Universidade Federal de Jataí, Goiás, Brazil
| | | | - Maristela Pereira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| |
Collapse
|
131
|
Kunnikuruvan S, Nair NN. Mechanistic Insights into the Brønsted Acid-Catalyzed Dehydration of β-d-Glucose to 5-Hydroxymethylfurfural under Ambient and Subcritical Conditions. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00678] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sooraj Kunnikuruvan
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India
| | - Nisanth N. Nair
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India
| |
Collapse
|
132
|
Foppa L, Iannuzzi M, Copéret C, Comas-Vives A. Facile Fischer–Tropsch Chain Growth from CH2 Monomers Enabled by the Dynamic CO Adlayer. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00239] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lucas Foppa
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, CH-8093 Zürich, Switzerland
| | - Marcella Iannuzzi
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, CH-8093 Zürich, Switzerland
| | - Aleix Comas-Vives
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, CH-8093 Zürich, Switzerland
- Department of Chemistry, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain
| |
Collapse
|
133
|
The mechanism of ozonolysis on the surface of C70 fullerene. The free energy surface theoretical study. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
134
|
Daru J, Bakó I, Stirling A, Pápai I. Mechanism of Heterolytic Hydrogen Splitting by Frustrated Lewis Pairs: Comparison of Static and Dynamic Models. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01137] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- János Daru
- Research Center for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, Budapest H-1117, Hungary
| | - Imre Bakó
- Research Center for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, Budapest H-1117, Hungary
| | - András Stirling
- Research Center for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, Budapest H-1117, Hungary
| | - Imre Pápai
- Research Center for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, Budapest H-1117, Hungary
| |
Collapse
|
135
|
Ray S, Holden S, Martin LL, Panwar AS. Mechanistic insight into the early stages of amyloid formation using an anuran peptide. Pept Sci (Hoboken) 2019. [DOI: 10.1002/pep2.24120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Sourav Ray
- IITB‐Monash Research AcademyIndian Institute of Technology Bombay Powai Mumbai India
- School of ChemistryMonash University Clayton Victoria Australia
- Department of Metallurgical Engineering and Materials ScienceIndian Institute of Technology Bombay Powai Mumbai India
| | | | | | - Ajay Singh Panwar
- Department of Metallurgical Engineering and Materials ScienceIndian Institute of Technology Bombay Powai Mumbai India
| |
Collapse
|
136
|
Arunachalam V, Tummanapelli AK, Vasudevan S. The multiple dissociation constants of glutathione disulfide: interpreting experimental pH-titration curves with ab initio MD simulations. Phys Chem Chem Phys 2019; 21:9212-9217. [PMID: 30993274 DOI: 10.1039/c9cp00761j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The hexapeptide glutathione disulfide (GSSG) has six ionizable groups with six associated dissociation constants. The experimentally measured pH-titration curve, however, does not exhibit the six corresponding equivalence points and bears little resemblance to standard textbook examples of acid-base pH-titration curves. The curve highlights the difficulties in determining multiple pKa values of polyprotic acids - typically proteins and peptides - from experiment. The six pKa values of GSSG can, however, be estimated using Car-Parrinello molecular dynamics (CPMD) simulations in conjunction with metadynamics sampling of the underlying free energy landscape of the dissociation reactions. Ab initio MD simulations were performed on a GSSG molecule solvated by 200 water molecules. Using the estimated pKa values the theoretical titration curve was calculated and found to be in good agreement with experiment. The results clearly highlight how dissociation constants estimated from ab initio MD simulations can facilitate the interpretation of the pH-titration curves of complex chemical and biological systems.
Collapse
|
137
|
Rey J, Gomez A, Raybaud P, Chizallet C, Bučko T. On the origin of the difference between type A and type B skeletal isomerization of alkenes catalyzed by zeolites: The crucial input of ab initio molecular dynamics. J Catal 2019. [DOI: 10.1016/j.jcat.2019.04.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
138
|
Quesne MG, Silveri F, de Leeuw NH, Catlow CRA. Advances in Sustainable Catalysis: A Computational Perspective. Front Chem 2019; 7:182. [PMID: 31032245 PMCID: PMC6473102 DOI: 10.3389/fchem.2019.00182] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/07/2019] [Indexed: 11/13/2022] Open
Abstract
The enormous challenge of moving our societies to a more sustainable future offers several exciting opportunities for computational chemists. The first principles approach to "catalysis by design" will enable new and much greener chemical routes to produce vital fuels and fine chemicals. This prospective outlines a wide variety of case studies to underscore how the use of theoretical techniques, from QM/MM to unrestricted DFT and periodic boundary conditions, can be applied to biocatalysis and to both homogeneous and heterogenous catalysts of all sizes and morphologies to provide invaluable insights into the reaction mechanisms they catalyze.
Collapse
|
139
|
Baletto F. Structural properties of sub-nanometer metallic clusters. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:113001. [PMID: 30562724 DOI: 10.1088/1361-648x/aaf989] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
At the nanoscale, the investigation of structural features becomes fundamental as we can establish relationships between cluster geometries and their physicochemical properties. The peculiarity lies in the variety of shapes often unusual and far from any geometrical and crystallographic intuition clusters can assume. In this respect, we should treat and consider nanoparticles as a new form of matter. Nanoparticle structures depend on their size, chemical composition, ordering, as well as external conditions e.g. synthesis method, pressure, temperature, support. On top of that, at finite temperatures nanoparticles can fluctuate among different structures, opening new and exciting horizons for the design of optimal nanoparticles for advanced applications. This article aims to overview geometrical features of transition metal clusters and of their various rearrangements.
Collapse
Affiliation(s)
- Francesca Baletto
- Physics Department, King's College London, WC2R 2LS, London, United Kingdom
| |
Collapse
|
140
|
Colón YJ, Guo AZ, Antony LW, Hoffmann KQ, de Pablo JJ. Free energy of metal-organic framework self-assembly. J Chem Phys 2019; 150:104502. [DOI: 10.1063/1.5063588] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Yamil J. Colón
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
- Institute for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Ashley Z. Guo
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Lucas W. Antony
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Kyle Q. Hoffmann
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Juan J. de Pablo
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
- Institute for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| |
Collapse
|
141
|
Foppa L, Iannuzzi M, Copéret C, Comas-Vives A. CO methanation on ruthenium flat and stepped surfaces: Key role of H-transfers and entropy revealed by ab initio molecular dynamics. J Catal 2019. [DOI: 10.1016/j.jcat.2019.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
142
|
-60 °C solution synthesis of atomically dispersed cobalt electrocatalyst with superior performance. Nat Commun 2019; 10:606. [PMID: 30723206 PMCID: PMC6363747 DOI: 10.1038/s41467-019-08484-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 01/04/2019] [Indexed: 11/08/2022] Open
Abstract
Temperature can govern morphologies, structures and properties of products from synthesis in solution. A reaction in solution at low temperature may result in different materials than at higher temperature due to thermodynamics and kinetics of nuclei formation. Here, we report a low-temperature solution synthesis of atomically dispersed cobalt in a catalyst with superior performance. By using a water/alcohol mixed solvent with low freezing point, liquid-phase reduction of a cobalt precursor with hydrazine hydrate is realized at -60 °C. A higher energy barrier and a sluggish nucleation rate are achieved to suppress nuclei formation; thus atomically dispersed cobalt is successfully obtained in a catalyst for oxygen reduction with electrochemical performance superior to that of a Pt/C catalyst. Furthermore, the atomically dispersed cobalt catalyst is applied in a microbial fuel cell to obtain a high maximum power density (2550 ± 60 mW m-2) and no current drop upon operation for 820 h.
Collapse
|
143
|
Tran DP, Kitao A. Dissociation Process of a MDM2/p53 Complex Investigated by Parallel Cascade Selection Molecular Dynamics and the Markov State Model. J Phys Chem B 2019; 123:2469-2478. [PMID: 30645121 DOI: 10.1021/acs.jpcb.8b10309] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Recently, we efficiently generated dissociation pathways of a protein-ligand complex without applying force bias with parallel cascade selection molecular dynamics (PaCS-MD) and showed that PaCS-MD in combination with the Markov state model (MSM) yielded a binding free energy comparable to experimental values. In this work, we applied the same procedure to a complex of MDM2 protein and the transactivation domain of p53 protein (TAD-p53), the latter of which is known to be very flexible in the unbound state. Using 30 independent MD simulations in PaCS-MD, we successfully generated 25 dissociation pathways of the complex, which showed complete or partial unfolding of the helical region of TAD-p53 during the dissociation process within an average simulation time of 154.8 ± 46.4 ns. The standard binding free energy obtained in combination with one-dimensional-, three-dimensional (3D)- or Cα-MSM was in good agreement with those determined experimentally. Using 3D-MSM based on the center of mass position of TAD-p53 relative to MDM2, the dissociation rate constant was calculated, which was comparable to those measured experimentally. Cα-MSM based on all Cα coordinates of TAD-p53 reproduced the experimentally measured standard binding free energy, and dissociation and association rate constants. We conclude that the combination of PaCS-MD and MSM offers an efficient computational procedure to calculate binding free energies and kinetic rates.
Collapse
Affiliation(s)
- Duy Phuoc Tran
- School of Life Sciences and Technology , Tokyo Institute of Technology , 2-12-1, Ookayama , Meguro-ku, Tokyo 152-8550 , Japan
| | - Akio Kitao
- School of Life Sciences and Technology , Tokyo Institute of Technology , 2-12-1, Ookayama , Meguro-ku, Tokyo 152-8550 , Japan
| |
Collapse
|
144
|
Tripathi R, Noetzel J, Marx D. Exposing catalytic versatility of GTPases: taking reaction detours in mutants of hGBP1 enzyme without additional energetic cost. Phys Chem Chem Phys 2019; 21:859-867. [DOI: 10.1039/c8cp06343e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Our study reveals that the replacement of catalytically competent residues by the inert amino acid alanine, S73A and E99A, in hGBP1 opens a plethora of molecularly different reaction pathways featuring very similar energy barriers as the wild type.
Collapse
Affiliation(s)
- Ravi Tripathi
- Lehrstuhl für Theoretische Chemie
- Ruhr-Universität Bochum
- 44780 Bochum
- Germany
| | - Jan Noetzel
- Lehrstuhl für Theoretische Chemie
- Ruhr-Universität Bochum
- 44780 Bochum
- Germany
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie
- Ruhr-Universität Bochum
- 44780 Bochum
- Germany
| |
Collapse
|
145
|
Iino T, Sakurai M, Furuta T. A novel ring-shaped reaction pathway with interconvertible intermediates in chitinase A as revealed by QM/MM simulation combined with a one-dimensional projection technique. Phys Chem Chem Phys 2019; 21:24956-24966. [DOI: 10.1039/c9cp05163e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Efficient sampling achieved by the use of a one-dimensional projection technique reveals the catalytic mechanism of chitinase A from Serratia marcescens.
Collapse
Affiliation(s)
- Tsubasa Iino
- Center for Biological Resources and Informatics
- Tokyo Institute of Technology
- Yokohama
- Japan
| | - Minoru Sakurai
- Center for Biological Resources and Informatics
- Tokyo Institute of Technology
- Yokohama
- Japan
| | - Tadaomi Furuta
- Center for Biological Resources and Informatics
- Tokyo Institute of Technology
- Yokohama
- Japan
| |
Collapse
|
146
|
Abstract
This chapter discusses how the PLUMED plugin for molecular dynamics can be used to analyze and bias molecular dynamics trajectories. The chapter begins by introducing the notion of a collective variable and by then explaining how the free energy can be computed as a function of one or more collective variables. A number of practical issues mostly around periodic boundary conditions that arise when these types of calculations are performed using PLUMED are then discussed. Later parts of the chapter discuss how PLUMED can be used to perform enhanced sampling simulations that introduce simulation biases or multiple replicas of the system and Monte Carlo exchanges between these replicas. This section is then followed by a discussion on how free-energy surfaces and associated error bars can be extracted from such simulations by using weighted histogram and block averaging techniques.
Collapse
Affiliation(s)
- Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy.
| | - Gareth A Tribello
- Atomistic Simulation Centre, School of Mathematics and Physics, Queen's University Belfast, Belfast, UK.
| |
Collapse
|
147
|
Kubota Y, Bučko T. Carbon dioxide capture in 2,2'-iminodiethanol aqueous solution from ab initio molecular dynamics simulations. J Chem Phys 2018; 149:224103. [PMID: 30553265 DOI: 10.1063/1.5025016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The reaction of carbon dioxide (CO2) with aqueous 2,2'-iminodiethanol (trivial name is diethanolamine: DEA) has been investigated using both blue moon ensemble and metadynamics approaches combined with ab initio molecular dynamics (AIMD) simulations. A spontaneous direct proton transfer from DEA zwitterion (DEAZW) to DEA but not to H2O has been observed in straightforward AIMD simulation in the time scale of ps. The ab initio free-energy calculations reproduced the overall free-energy difference, predicting the ionic products DEA carbamate ion (DEAC) and the protonated DEA (DEAH). The computed free-energy barrier for the first reaction step, which is the CO2 binding (48 kJ mol-1), is found to agree reasonably well with the available experimental data (52-56 kJ mol-1). By contrast, the barriers for the next step, the deprotonation of zwitterion realized either via reaction with DEA or H2O, are underestimated by 25-35 kJ mol-1 compared to the experimental reference. A part of this error is attributed to the neglected reversible work needed to bring two reactants together, which might significantly contribute to the free-energy of activation of bimolecular reactions in a dilute solution. The computed free-energy profile is compared with our results [Y. Kubota et al., J. Chem. Phys. 146, 094303 (2017)] for the same reaction in 2-aminoethanol (trivial name is monoethanolamine: MEA).
Collapse
Affiliation(s)
- Yoshiyuki Kubota
- Fundamental Technology Laboratory, Research and Development Center, The Kansai Electric Power Company, Inc., Amagasaki, Hyogo 661-0974, Japan
| | - Tomáš Bučko
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, SK-84215 Bratislava, Slovakia
| |
Collapse
|
148
|
Simon A, Rapacioli M, Michoulier E, Zheng L, Korchagina K, Cuny J. Contribution of the density-functional-based tight-binding scheme to the description of water clusters: methods, applications and extension to bulk systems. MOLECULAR SIMULATION 2018. [DOI: 10.1080/08927022.2018.1554903] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- A. Simon
- Laboratoire de Chimie et Physique Quantiques LCPQ/IRSAMC, Université de Toulouse and CNRS, Toulouse, France
| | - M. Rapacioli
- Laboratoire de Chimie et Physique Quantiques LCPQ/IRSAMC, Université de Toulouse and CNRS, Toulouse, France
| | - E. Michoulier
- Laboratoire de Chimie et Physique Quantiques LCPQ/IRSAMC, Université de Toulouse and CNRS, Toulouse, France
- Laboratoire Collisions Agrégats et Réactivité LCAR/IRSAMC, Université de Toulouse and CNRS, Toulouse, France
| | - L. Zheng
- Laboratoire de Chimie et Physique Quantiques LCPQ/IRSAMC, Université de Toulouse and CNRS, Toulouse, France
| | - K. Korchagina
- Laboratoire de Chimie et Physique Quantiques LCPQ/IRSAMC, Université de Toulouse and CNRS, Toulouse, France
| | - J. Cuny
- Laboratoire de Chimie et Physique Quantiques LCPQ/IRSAMC, Université de Toulouse and CNRS, Toulouse, France
| |
Collapse
|
149
|
Awasthi S, Nair NN. Exploring high‐dimensional free energy landscapes of chemical reactions. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2018. [DOI: 10.1002/wcms.1398] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Shalini Awasthi
- Department of Chemistry Indian Institute of Technology Kanpur Uttar Pradesh India
| | - Nisanth N. Nair
- Department of Chemistry Indian Institute of Technology Kanpur Uttar Pradesh India
| |
Collapse
|
150
|
Perlt E, Ray P, Hansen A, Malberg F, Grimme S, Kirchner B. Finding the best density functional approximation to describe interaction energies and structures of ionic liquids in molecular dynamics studies. J Chem Phys 2018; 148:193835. [PMID: 30307237 DOI: 10.1063/1.5013122] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ionic liquids raise interesting but complicated questions for theoretical investigations due to the fact that a number of different inter-molecular interactions, e.g., hydrogen bonding, long-range Coulomb interactions, and dispersion interactions, need to be described properly. Here, we present a detailed study on the ionic liquids ethylammonium nitrate and 1-ethyl-3-methylimidazolium acetate, in which we compare different dispersion corrected density functional approximations to accurate local coupled cluster data in static calculations on ionic liquid clusters. The efficient new composite method B97-3c is tested and has been implemented in CP2K for future studies. Furthermore, tight-binding based approaches which may be used in large scale simulations are assessed. Subsequently, ab initio as well as classical molecular dynamics simulations are conducted and structural analyses are presented in order to shed light on the different short- and long-range structural patterns depending on the method and the system size considered in the simulation. Our results indicate the presence of strong hydrogen bonds in ionic liquids as well as the aggregation of alkyl side chains due to dispersion interactions.
Collapse
Affiliation(s)
- Eva Perlt
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4, D-53115 Bonn, Germany
| | - Promit Ray
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4, D-53115 Bonn, Germany
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4, D-53115 Bonn, Germany
| | - Friedrich Malberg
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4, D-53115 Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4, D-53115 Bonn, Germany
| | - Barbara Kirchner
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4, D-53115 Bonn, Germany
| |
Collapse
|