101
|
Huang L, Gu Z, Chen Z, Yu J, Chu R, Tan H, Zhao D, Fan X, Zhang C, Li Q, Liu Q. Improving rice eating and cooking quality by coordinated expression of the major starch synthesis-related genes, SSII and Wx, in endosperm. PLANT MOLECULAR BIOLOGY 2021; 106:419-432. [PMID: 34129189 DOI: 10.1007/s11103-021-01162-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 06/07/2021] [Indexed: 05/18/2023]
Abstract
Coordinated regulation of amylose and amylopectin synthesis via manipulation of SSII-2, SSII-3 and Wx expression in endosperm can improve rice eating and cooking quality. With increasing rice consumption worldwide, many researchers are working to increase the yield and improve grain quality, especially eating and cooking quality (ECQ). The rice ECQ is mainly controlled by the expression of starch synthesis-related genes (SSRGs) in endosperm. Although the Wx and SSII-3/SSIIa/ALK genes, two major SSRGs, have been manipulated to improve rice ECQ via various breeding approaches, new methods to further improve ECQ are desired. In our previous study, we enhanced rice ECQ by knocking down SSII-2 expression in the japonica Nipponbare cultivar (carrying the Wxb allele) via RNA interference. Herein, the SSII-2 RNAi was introduced into two Nipponbare-derived near-isogenic lines (NILs), Nip(Wxa) and Nip(wx), carrying Wxa and wx alleles respond for high and no amylose levels, respectively. Analysis of physicochemical properties revealed that the improved grain quality of SSII-2 RNAi transgenic lines was achieved by coordinated downregulating the expression of SSII-2, SSII-3 and Wx. To further confirm this conclusion, we generated ssii-2, ssii-3 and ssii-2ssii-3 mutants via CRISPR/Cas9 technique. The amylopectin structure of the resulting ssii-2sii-3 mutants was similar to that in SSII-2 RNAi transgenic lines, and the absence of SSII-2 decreased the amylose content, gelatinisation temperature and rapid visco-analyser profile, indicating essential roles for SSII-2 in the regulation of amylopectin biosynthesis and amylose content in rice endosperm. The effect of SSII-2 was seen only when the activity of SSII-3 was very low or lacking. Our study provides novel approaches and valuable germplasm resources for improving ECQ via plant breeding.
Collapse
Affiliation(s)
- Lichun Huang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou, 225009, China
| | - Zhengwen Gu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Zhuanzhuan Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Jiawen Yu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Rui Chu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Hongyan Tan
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Dongsheng Zhao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou, 225009, China
| | - Xiaolei Fan
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou, 225009, China
| | - Changquan Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou, 225009, China
| | - Qianfeng Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, China.
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou, 225009, China.
| | - Qiaoquan Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, China.
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
102
|
Xie Q, Xu J, Huang K, Su Y, Tong J, Huang Z, Huang C, Wei M, Lin W, Xiao L. Dynamic formation and transcriptional regulation mediated by phytohormones during chalkiness formation in rice. BMC PLANT BIOLOGY 2021; 21:308. [PMID: 34193032 PMCID: PMC8247166 DOI: 10.1186/s12870-021-03109-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/21/2021] [Indexed: 05/02/2023]
Abstract
BACKGROUND Rice (Oryza sativa L.) Chalkiness, the opaque part in the kernel endosperm formed by loosely piled starch and protein bodies. Chalkiness is a complex quantitative trait regulated by multiple genes and various environmental factors. Phytohormones play important roles in the regulation of chalkiness formation but the underlying molecular mechanism is still unclear at present. RESULTS In this research, Xiangzaoxian24 (X24, pure line of indica rice with high-chalkiness) and its origin parents Xiangzaoxian11 (X11, female parent, pure line of indica rice with high-chalkiness) and Xiangzaoxian7 (X7, male parent, pure line of indica rice with low-chalkiness) were used as materials. The phenotype, physiological and biochemical traits combined with transcriptome analysis were conducted to illustrate the dynamic process and transcriptional regulation of rice chalkiness formation. Impressively, phytohormonal contents and multiple phytohormonal signals were significantly different in chalky caryopsis, suggesting the involvement of phytohormones, particularly ABA and auxin, in the regulation of rice chalkiness formation, through the interaction of multiple transcription factors and their downstream regulators. CONCLUSION These results indicated that chalkiness formation is a dynamic process associated with multiple genes, forming a complex regulatory network in which phytohormones play important roles. These results provided informative clues for illustrating the regulatory mechanisms of chalkiness formation in rice.
Collapse
Affiliation(s)
- Qin Xie
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, 410128, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Jinke Xu
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, 410128, China
| | - Ke Huang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, 410128, China
| | - Yi Su
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, 410128, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Jianhua Tong
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, 410128, China
| | - Zhigang Huang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, 410128, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Chao Huang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, 410128, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Manlin Wei
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, 410128, China
| | - Wanhuang Lin
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, 410128, China.
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
| | - Langtao Xiao
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, 410128, China.
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
103
|
Selvaraj R, Singh AK, Singh VK, Abbai R, Habde SV, Singh UM, Kumar A. Superior haplotypes towards development of low glycemic index rice with preferred grain and cooking quality. Sci Rep 2021; 11:10082. [PMID: 33980871 PMCID: PMC8115083 DOI: 10.1038/s41598-021-87964-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 03/19/2021] [Indexed: 02/03/2023] Open
Abstract
Increasing trends in the occurrence of diabetes underline the need to develop low glycemic index (GI) rice with preferred grain quality. In the current study, a diverse set of 3 K sub-panel of rice consisting of 150 accessions was evaluated for resistant starch and predicted glycemic index, including nine other quality traits under transplanted situation. Significant variations were noticed among the accessions for the traits evaluated. Trait associations had shown that amylose content possess significant positive and negative association with resistant starch and predicted glycemic index. Genome-wide association studies with 500 K SNPs based on MLM model resulted in a total of 41 marker-trait associations (MTAs), which were further confirmed and validated with mrMLM multi-locus model. We have also determined the allelic effect of identified MTAs for 11 targeted traits and found favorable SNPs for 8 traits. A total of 11 genes were selected for haplo-pheno analysis to identify the superior haplotypes for the target traits where haplotypes ranges from 2 (Os10g0469000-GC) to 15 (Os06g18720-AC). Superior haplotypes for RS and PGI, the candidate gene Os06g11100 (H4-3.28% for high RS) and Os08g12590 (H13-62.52 as intermediate PGI). The identified superior donors possessing superior haplotype combinations may be utilized in Haplotype-based breeding to developing next-generation tailor-made high quality healthier rice varieties suiting consumer preference and market demand.
Collapse
Affiliation(s)
- Ramchander Selvaraj
- IRRI South Asia Hub (IRRI-SAH), ICRISAT Campus, Patancheru, Hyderabad, India
| | - Arun Kumar Singh
- IRRI South Asia Hub (IRRI-SAH), ICRISAT Campus, Patancheru, Hyderabad, India
| | - Vikas Kumar Singh
- IRRI South Asia Hub (IRRI-SAH), ICRISAT Campus, Patancheru, Hyderabad, India
| | - Ragavendran Abbai
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Sonali Vijay Habde
- South-Asia Regional Centre (SARC), International Rice Research Institute (IRRI), Varanasi, India
| | - Uma Maheshwar Singh
- South-Asia Regional Centre (SARC), International Rice Research Institute (IRRI), Varanasi, India
| | - Arvind Kumar
- IRRI South Asia Hub (IRRI-SAH), ICRISAT Campus, Patancheru, Hyderabad, India.
- South-Asia Regional Centre (SARC), International Rice Research Institute (IRRI), Varanasi, India.
| |
Collapse
|
104
|
Differential expression of three key starch biosynthetic genes in developing grains of rice differing in glycemic index. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
105
|
Zhu J, Zhang CQ, Xu J, Gilbert RG, Liu Q. Identification of Structure-Controlling Rice Biosynthesis Enzymes. Biomacromolecules 2021; 22:2148-2159. [PMID: 33914519 DOI: 10.1021/acs.biomac.1c00248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The main enzymes controlling the chain-length distributions (CLDs) of starches are starch synthases (SSs), starch branching enzymes (SBEs), and debranching enzymes (DBEs), which have various isoforms, denoted as SSI, SSII-1, etc. Different isozymes dominate the CLD in different ranges of degrees of polymerization (DPs). Models have been developed for the CLDs in terms of the activities of isoforms of these enzymes, in terms of two parameters: βi, which is the ratio of the activity of SBE to that of SS in set i, and hi, which is the relative activity of SS in that set. These provide good fits to data but without specifying which isozymes are in set i. Here, CLDs for amylopectin and amylose synthesis in rice endosperm are explored. Molecular weight distributions of the different chains formed in 87 rice varieties were obtained using size-exclusion chromatography following enzymatic debranching (converting a complex branched macromolecule to linear polymers), and fitted by the biosynthesis-based models. The mutants of each isoform among tested rice varieties were identified by amino-acid mutations in coding sequences based on the extraction and analysis of whole gene sequences. The significant differences between mutant groups of different isoforms indicate that SSI, SSII-3, SSIII-1, SSIII-2, and SBEI as well as GBSSI (an isozyme of granule-bound starch synthase) belong to the enzymes sets that control amylose biosynthesis. Further, GBSSI is in the enzyme sets that control amylopectin chains. This enables specification of all isozymes and the DP range, which they dominate, over the entire DP range. As the CLD controls many functional properties of rice, this can help breeders target and develop improved rice species.
Collapse
Affiliation(s)
- Jihui Zhu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu 225009, China.,Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chang-Quan Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu 225009, China.,Jiangsu Key Laboratory of Crop Genetics and Physiology, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jianlong Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 9 100081, China
| | - Robert G Gilbert
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia.,Jiangsu Key Laboratory of Crop Genetics and Physiology, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Qiaoquan Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu 225009, China.,Jiangsu Key Laboratory of Crop Genetics and Physiology, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu, Yangzhou University, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
106
|
Ma B, Zhang L, Gao Q, Wang J, Li X, Wang H, Liu Y, Lin H, Liu J, Wang X, Li Q, Deng Y, Tang W, Luan S, He Z. A plasma membrane transporter coordinates phosphate reallocation and grain filling in cereals. Nat Genet 2021; 53:906-915. [PMID: 33927398 DOI: 10.1038/s41588-021-00855-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 03/24/2021] [Indexed: 01/08/2023]
Abstract
Phosphate (Pi) is essential to plant growth and crop yield. However, it remains unknown how Pi homeostasis is maintained during cereal grain filling. Here, we identified a rice grain-filling-controlling PHO1-type Pi transporter, OsPHO1;2, through map-based cloning. Pi efflux activity and its localization to the plasma membrane of seed tissues implicated a specific role for OsPHO1;2 in Pi reallocation during grain filling. Indeed, Pi over-accumulated in developing seeds of the Ospho1;2 mutant, which inhibited the activity of ADP-glucose pyrophosphorylase (AGPase), important for starch synthesis, and the grain-filling defect was alleviated by overexpression of AGPase in Ospho1;2-mutant plants. A conserved function was recognized for the maize transporter ZmPHO1;2. Importantly, ectopic overexpression of OsPHO1;2 enhanced grain yield, especially under low-Pi conditions. Collectively, we discovered a mechanism underlying Pi transport, grain filling and P-use efficiency, providing an efficient strategy for improving grain yield with minimal P-fertilizer input in cereals.
Collapse
Affiliation(s)
- Bin Ma
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Lin Zhang
- Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Qifei Gao
- School of Life Sciences, Northwest University, Xi'an, China.,Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Junmin Wang
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaoyuan Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Hu Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yu Liu
- State Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, China
| | - Hui Lin
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Jiyun Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xin Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Qun Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yiwen Deng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Weihua Tang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China.
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.
| | - Zuhua He
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China. .,National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
107
|
Wasserman LA, Filatova AG, Khatefov EB, Goldshtein VG, Plashchina IG. Some Structural and Thermodynamic Parameters of Maize Starch from Different Maize Genotypes. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2021. [DOI: 10.1134/s1990793121010292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
108
|
Schoen A, Joshi A, Tiwari V, Gill BS, Rawat N. Triple null mutations in starch synthase SSIIa gene homoeologs lead to high amylose and resistant starch in hexaploid wheat. BMC PLANT BIOLOGY 2021; 21:74. [PMID: 33535983 PMCID: PMC7860177 DOI: 10.1186/s12870-020-02822-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/30/2020] [Indexed: 05/23/2023]
Abstract
BACKGROUND Lack of nutritionally appropriate foods is one of the leading causes of obesity in the US and worldwide. Wheat (Triticum aestivum) provides 20% of the calories consumed daily across the globe. The nutrients in the wheat grain come primarily from the starch composed of amylose and amylopectin. Resistant starch content, which is known to have significant human health benefits, can be increased by modifying starch synthesis pathways. Starch synthase enzyme SSIIa, also known as starch granule protein isoform-1 (SGP-1), is integral to the biosynthesis of the branched and readily digestible glucose polymer amylopectin. The goal of this work was to develop a triple null mutant genotype for SSIIa locus in the elite hard red winter wheat variety 'Jagger' and evaluate the effect of the knock-out mutations on resistant starch content in grains with respect to wild type. RESULTS Knock-out mutations in SSIIa in the three genomes of wheat variety 'Jagger' were identified using TILLING. Subsequently, these loss-of function mutations on A, B, and D genomes were combined by crossing to generate a triple knockout mutant genotype Jag-ssiia-∆ABD. The Jag-ssiia-∆ABD had an amylose content of 35.70% compared to 31.15% in Jagger, leading to ~ 118% increase in resistant starch in the Jag-ssiia-∆ABD genotype of Jagger wheat. The single individual genome mutations also had various effects on starch composition. CONCLUSIONS Our full null Jag-ssiia-∆ABD mutant showed a significant increase in RS without the shriveled grain phenotype seen in other ssiia knockouts in elite wheat cultivars. Moreover, this study shows the potential for developing nutritionally improved foods in a non-GM approach. Since all the mutants have been developed in an elite wheat cultivar, their adoption in production and supply will be feasible in future.
Collapse
Affiliation(s)
- Adam Schoen
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA
| | - Anupama Joshi
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Vijay Tiwari
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA
| | - Bikram S Gill
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA.
| | - Nidhi Rawat
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
109
|
Fan W, Zhang Y, Wu Y, Zhou W, Yang J, Yuan L, Zhang P, Wang H. The H +-pyrophosphatase IbVP1 regulates carbon flux to influence the starch metabolism and yield of sweet potato. HORTICULTURE RESEARCH 2021; 8:20. [PMID: 33518705 PMCID: PMC7847997 DOI: 10.1038/s41438-020-00454-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/19/2020] [Accepted: 11/28/2020] [Indexed: 05/10/2023]
Abstract
Storage roots of sweet potato are important sink organs for photoassimilates and energy, and carbohydrate metabolism in storage roots affects yield and starch production. Our previous study showed that sweet potato H+-pyrophosphatase (IbVP1) plays a vital role in mitigating iron deficiency and positively controls fibrous root growth. However, its roles in regulating starch production in storage roots have not been investigated. In this study, we found that IbVP1 overexpression in sweet potato improved the photosynthesis ability of and sucrose content in source leaves and increased both the starch content in and total yield of sink tissues. Using 13C-labeled sucrose feeding, we determined that IbVP1 overexpression promotes phloem loading and sucrose long-distance transport and enhances Pi-use efficiency. In sweet potato plants overexpressing IbVP1, the expression levels of starch biosynthesis pathway genes, especially AGPase and GBSSI, were upregulated, leading to changes in the structure, composition, and physicochemical properties of stored starch. Our study shows that the IbVP1 gene plays an important role in regulating starch metabolism in sweet potato. Application of the VP1 gene in genetic engineering of sweet potato cultivars may allow the improvement of starch production and yield under stress or nutrient-limited conditions.
Collapse
Affiliation(s)
- Weijuan Fan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Yandi Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yinliang Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenzhi Zhou
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jun Yang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Ling Yuan
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546, USA
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Hongxia Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
110
|
Miura S, Koyama N, Crofts N, Hosaka Y, Abe M, Fujita N. Generation and Starch Characterization of Non-Transgenic BEI and BEIIb Double Mutant Rice (Oryza sativa) with Ultra-High Level of Resistant Starch. RICE (NEW YORK, N.Y.) 2021; 14:3. [PMID: 33409744 PMCID: PMC7788159 DOI: 10.1186/s12284-020-00441-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 11/23/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND Cereals high in resistant starch (RS) are gaining popularity, as their intake is thought to help manage diabetes and prediabetes. Number of patients suffering from diabetes is also increasing in Asian countries where people consume rice as a staple food, hence generation of practically growable high RS rice line has been anticipated. It is known that suppression of starch branching enzyme (BE) IIb increases RS content in cereals. To further increase RS content and for more practical use, we generated a non-transgenic be1 be2b double mutant rice (Oryza sativa) line, which completely lacked both proteins, by crossing a be1 mutant with a be2b mutant. RESULTS The be1 be2b mutant showed a decrease in intermediate amylopectin chains and an increase in long amylopectin chains compared with be2b. The amylose content of be1 be2b mutant (51.7%) was the highest among all pre-existing non-transgenic rice lines. To understand the effects of chewing cooked rice and cooking rice flour on RS content, RS content of mashed and un-mashed cooked rice as well as raw and gelatinized rice flour were measured using be1 be2b and its parent mutant lines. The RS contents of mashed cooked rice and raw rice flour of be1 be2b mutant (28.4% and 35.1%, respectively) were 3-fold higher than those of be2b mutant. Gel-filtration analyses of starch treated with digestive enzymes showed that the RS in be1 be2b mutant was composed of the degradation products of amylose and long amylopectin chains. Seed weight of be1 be2b mutant was approximately 60% of the wild type and rather heavier than that of be2b mutant. CONCLUSIONS The endosperm starch in be1 be2b double mutant rice were enriched with long amylopectin chains. This led to a great increase in RS content in cooked rice grains and rice flour in be1 be2b compared with be2b single mutant. be1 be2b generated in this study must serve as a good material for an ultra-high RS rice cultivar.
Collapse
Affiliation(s)
- Satoko Miura
- Department of Biological Production, Akita Prefectural University, Akita, 010-0195 Japan
| | - Nana Koyama
- Department of Biological Production, Akita Prefectural University, Akita, 010-0195 Japan
| | - Naoko Crofts
- Department of Biological Production, Akita Prefectural University, Akita, 010-0195 Japan
| | - Yuko Hosaka
- Department of Biological Production, Akita Prefectural University, Akita, 010-0195 Japan
| | - Misato Abe
- Department of Biological Production, Akita Prefectural University, Akita, 010-0195 Japan
| | - Naoko Fujita
- Department of Biological Production, Akita Prefectural University, Akita, 010-0195 Japan
| |
Collapse
|
111
|
AbdElgawad H, Hassan YM, Alotaibi MO, Mohammed AE, Saleh AM. C3 and C4 plant systems respond differently to the concurrent challenges of mercuric oxide nanoparticles and future climate CO 2. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:142356. [PMID: 33370918 DOI: 10.1016/j.scitotenv.2020.142356] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/06/2020] [Accepted: 09/10/2020] [Indexed: 06/12/2023]
Abstract
Future climate CO2 (eCO2) and contamination with nano-sized heavy metals (HM-NPs) represent concurrent challenges threatening plants. The interaction between eCO2 and HM-NPs is rarely investigated, and no study has addressed their synchronous impact on the metabolism of the multifunctional stress-related metabolites, such as sugars and amino acids. Moreover, the characteristic responses of C3 and C4 plant systems to the concurrent impact of eCO2 and HM-NPs are poorly understood. Herein, we have assessed the impact of eCO2 (620 ppm) and/or HgO-NPs (100 mg/Kg soil) on growth, physiology and metabolism of sugars and amino acids, particularly proline, in C3 (wheat) and C4 (maize) plant systems. Under Hg-free conditions, eCO2 treatment markedly improved the growth and photosynthesis and induced sugars levels and metabolism (glucose, fructose, sucrose, starch, sucrose P synthase and starch synthase) in wheat (C3) only. In contrast, HgO-NPs induced the uptake, accumulation and translocation of Hg in wheat and to less extend in maize plants. Particularly in wheat, this induced significant decreases in growth and photosynthesis and increases in photorespiration, dark respiration and levels of tricarboxylic acid cycle organic acids. Interestingly, the co-application of eCO2 reduced the accumulation of Hg and recovered the HgO-NPs-induced effects on growth and metabolism in both plants. At stress defense level, HgO-NPs induced the accumulation of sucrose and proline, more in maize, via upregulation of sucrose P synthase, ornithine amino transferase, ∆1-pyrroline-5-carboxylate (P5C) synthetase and P5C reductase. The co-existence of eCO2 favored reduced sucrose biosynthesis and induced proline catabolism, which provide high energy to resume plant growth. Overall, despite the difference in their response to eCO2 under normal conditions, eCO2 induced similar metabolic events in C3 and C4 plants under stressful conditions, which trigger stress recovery.
Collapse
Affiliation(s)
- Hamada AbdElgawad
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, 62521 Beni-Suef, Egypt
| | - Yasser M Hassan
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, 62521 Beni-Suef, Egypt
| | - Modhi O Alotaibi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
| | - Afrah E Mohammed
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ahmed M Saleh
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza 12613, Egypt; Biology Department, Faculty of Science at Yanbu, Taibah University, King Khalid Rd., Al Amoedi, 46423 Yanbu El-Bahr, Saudi Arabia.
| |
Collapse
|
112
|
Seung D. Amylose in starch: towards an understanding of biosynthesis, structure and function. THE NEW PHYTOLOGIST 2020; 228:1490-1504. [PMID: 32767769 DOI: 10.1111/nph.16858] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/13/2020] [Indexed: 05/20/2023]
Abstract
Starch granules are composed of two distinct glucose polymers - amylose and amylopectin. Amylose constitutes 5-35% of most natural starches and has a major influence over starch properties in foods. Its synthesis and storage occurs within the semicrystalline amylopectin matrix of starch granules, this poses a great challenge for biochemical and structural analyses. However, the last two decades have seen vast progress in understanding amylose synthesis, including new insights into the action of GRANULE BOUND STARCH SYNTHASE (GBSS), the major glucosyltransferase that synthesises amylose, and the discovery of PROTEIN TARGETING TO STARCH1 (PTST1) that targets GBSS to starch granules. Advances in analytical techniques have resolved the fine structure of amylose, raising new questions on how structure is determined during biosynthesis. Furthermore, the discovery of wild plants that do not produce amylose revives a long-standing question of why starch granules contain amylose, rather than amylopectin alone. Overall, these findings contribute towards a full understanding of amylose biosynthesis, structure and function that will be essential for future approaches to improve starch quality in crops.
Collapse
Affiliation(s)
- David Seung
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
113
|
Nakamura Y, Ono M, Hatta T, Kainuma K, Yashiro K, Matsuba G, Matsubara A, Miyazato A, Mizutani G. Effects of BEIIb-Deficiency on the Cluster Structure of Amylopectin and the Internal Structure of Starch Granules in Endosperm and Culm of Japonica-Type Rice. FRONTIERS IN PLANT SCIENCE 2020; 11:571346. [PMID: 33312184 DOI: 10.3389/fpls.2020.571346.ecollection] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/29/2020] [Indexed: 05/24/2023]
Abstract
It is known that one of starch branching enzyme (BE) isoforms, BEIIb, plays a specific role not only in the synthesis of distinct amylopectin cluster structure, but also in the formation of the internal structure of starch granules in rice endosperm because in its absence the starch crystalline polymorph changes to the B-type from the typical A-type found in the wild-type (WT) cereal endosperm starch granules. In the present study, to examine the contribution of BEIIb to the amylopectin cluster structure, the chain-length distributions of amylopectin and its phosphorylase-limit dextrins (Φ-LD) from endosperm and culm of a null be2b mutant called amylose-extender (ae) mutant line, EM10, were compared with those of its WT cultivar, Kinmaze, of japonica rice. The results strongly suggest that BEIIb specifically formed new short chains whose branch points were localized in the basal part of the crystalline lamellae and presumably in the intermediate between the crystalline and amorphous lamellae of amylopectin clusters in the WT endosperm, whereas in its absence branch points which were mainly formed by BEI were only located in the amorphous lamellae of amylopectin. These differences in the cluster structure of amylopectin between Kinmaze and EM10 endosperm were considered to be responsible for the differences in the A-type and B-type crystalline structures of starch granules between Kinmaze and EM10, respectively. The changes in internal structure of starch granules caused by BEIIb were analyzed by wide angle X-ray diffraction, small-angle X-ray scattering, solid state 13C NMR, and optical sum frequency generation spectroscopy. It was noted that the size the amylopectin cluster in ae endosperm (approximately 8.24 nm) was significantly smaller than that in WT endosperm (approximately 8.81 nm). Based on the present results, we proposed a model for the cluster structure of amylopectin in WT and ae mutant of rice endosperm. We also hypothesized the role of BEIIa in amylopectin biosynthesis in culm where BEIIb was not expressed and instead BEIIa was the major BE component in WT of rice.
Collapse
Affiliation(s)
- Yasunori Nakamura
- Starch Technologies, Co., Ltd., Akita Prefectural University, Akita, Japan
- Akita Natural Science Laboratory, Katagami, Japan
| | - Masami Ono
- Akita Natural Science Laboratory, Katagami, Japan
| | - Tamao Hatta
- Faculty of Risk and Crisis Management, Chiba Institute of Science, Choshi, Japan
| | | | - Kazuki Yashiro
- Graduate School of Organic Materials Science, Yamagata University, Yonezawa, Japan
| | - Go Matsuba
- Graduate School of Organic Materials Science, Yamagata University, Yonezawa, Japan
| | - Akira Matsubara
- School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Japan
| | - Akio Miyazato
- School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Japan
| | - Goro Mizutani
- School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Japan
| |
Collapse
|
114
|
The relationship between the expression pattern of starch biosynthesis enzymes and molecular structure of high amylose maize starch. Carbohydr Polym 2020; 247:116681. [PMID: 32829809 DOI: 10.1016/j.carbpol.2020.116681] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/02/2020] [Accepted: 06/21/2020] [Indexed: 11/20/2022]
Abstract
Two high amylose (HAM) inbred lines with apparent amylose contents of 55 % and 62 %, respectively, were selected to explore the relationship between molecular structure and gene expression of starch-synthase involved enzymes. GPC analysis of debranched starches showed that the HAM starches (HAMSs) had shorter amylose chains and longer amylopectin chains than normal maize starch (NMS). FACE analysis showed that these HAMSs had a higher content of amylopectin chains of DP > 21. Quantitative Real-Time PCR analysis showed that the HAM lines had specifically low expression of the starch branching enzyme IIb (SBEIIb), and the starch synthase IIIa (SSIIIa) homologue, and high expression of the isoamylase 2 (ISA2), potentially suppressing the generation of amylopectin molecules through deficient branching and excessive debranching process, thereby increasing the relative amylose content. A high expression of GBSS1 was potentially associated with increased short amylose chain lengths in HAMSs.
Collapse
|
115
|
Baysal C, He W, Drapal M, Villorbina G, Medina V, Capell T, Khush GS, Zhu C, Fraser PD, Christou P. Inactivation of rice starch branching enzyme IIb triggers broad and unexpected changes in metabolism by transcriptional reprogramming. Proc Natl Acad Sci U S A 2020; 117:26503-26512. [PMID: 33020297 PMCID: PMC7584904 DOI: 10.1073/pnas.2014860117] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Starch properties can be modified by mutating genes responsible for the synthesis of amylose and amylopectin in the endosperm. However, little is known about the effects of such targeted modifications on the overall starch biosynthesis pathway and broader metabolism. Here we investigated the effects of mutating the OsSBEIIb gene encoding starch branching enzyme IIb, which is required for amylopectin synthesis in the endosperm. As anticipated, homozygous mutant plants, in which OsSBEIIb was completely inactivated by abolishing the catalytic center and C-terminal regulatory domain, produced opaque seeds with depleted starch reserves. Amylose content in the mutant increased from 19.6 to 27.4% and resistant starch (RS) content increased from 0.2 to 17.2%. Many genes encoding isoforms of AGPase, soluble starch synthase, and other starch branching enzymes were up-regulated, either in their native tissues or in an ectopic manner, whereas genes encoding granule-bound starch synthase, debranching enzymes, pullulanase, and starch phosphorylases were largely down-regulated. There was a general increase in the accumulation of sugars, fatty acids, amino acids, and phytosterols in the mutant endosperm, suggesting that intermediates in the starch biosynthesis pathway increased flux through spillover pathways causing a profound impact on the accumulation of multiple primary and secondary metabolites. Our results provide insights into the broader implications of perturbing starch metabolism in rice endosperm and its impact on the whole plant, which will make it easier to predict the effect of metabolic engineering in cereals for nutritional improvement or the production of valuable metabolites.
Collapse
Affiliation(s)
- Can Baysal
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, 25198 Lleida, Spain
| | - Wenshu He
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, 25198 Lleida, Spain
| | - Margit Drapal
- Department of Biological Sciences, Royal Holloway University of London, TW20 0EX Egham, United Kingdom
| | - Gemma Villorbina
- Department of Chemistry, University of Lleida-Agrotecnio Center, 25198 Lleida, Spain
| | - Vicente Medina
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, 25198 Lleida, Spain
| | - Teresa Capell
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, 25198 Lleida, Spain
| | - Gurdev S Khush
- Department of Plant Sciences, University of California, Davis, CA 95616;
| | - Changfu Zhu
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, 25198 Lleida, Spain
| | - Paul D Fraser
- Department of Biological Sciences, Royal Holloway University of London, TW20 0EX Egham, United Kingdom
| | - Paul Christou
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, 25198 Lleida, Spain;
- Catalan Institute for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
116
|
Zhang H, Chen J, Shan S, Cao F, Chen G, Zou Y, Huang M, Abou-Elwafa SF. Proteomic profiling reveals differentially expressed proteins associated with amylose accumulation during rice grain filling. BMC Genomics 2020; 21:714. [PMID: 33059592 PMCID: PMC7561244 DOI: 10.1186/s12864-020-07105-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Amylose accumulation in rice grains is controlled by genetic and environmental factors. Amylose content is a determinant factor of rice quality in terms of cooking and eating. Great variations in amylose content in indica rice cultivars have been observed. The current study was to identify differentially expressed proteins in starch and sucrose metabolism and glycolysis/gluconeogenesis pathways and their relationships to amylose synthesis using two rice cultivars possess contrasting phenotypes in grain amylose content. RESULTS Synthesis and accumulation of amylose in rice grains significantly affected the variations between rice cultivars in amylose contents. The high amylose content cultivar has three down-regulated differentially expressed proteins, i.e., LOC_Os01g62420.1, LOC_Os02g36600.1, and LOC_Os08g37380.2 in the glycolysis/gluconeogenesis pathway, which limit the glycolytic process and decrease the glucose-1-phosphate consumption. In the starch and sucrose metabolic pathway, an up-regulated protein, i.e., LOC_Os06g04200.1 and two down-regulated proteins, i.e., LOC_Os05g32710.1 and LOC_Os04g43360.1 were identified (Figure 4). Glucose-1-phosphate is one of the first substrates in starch synthesis and glycolysis that are catalyzed to form adenosine diphosphate glucose (ADPG), then the ADPG is catalyzed by granule-bound starch synthase I (GBSS I) to elongate amylose. CONCLUSIONS The results indicate that decreasing the consumption of glucose-1-phosphate in the glycolytic process is essential for the formation of ADPG and UDPG, which are substrates for amylose synthesis. In theory, amylose content in rice can be regulated by controlling the fate of glucose-1-phosphate.
Collapse
Affiliation(s)
- Hengdong Zhang
- Crop and Environment Research Center, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China.,Qianxinan Institute of Karst Regional Development Xingyi, Xingyi, 652400, Guizhou, China
| | - Jiana Chen
- Crop and Environment Research Center, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Shuanglü Shan
- Crop and Environment Research Center, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Fangbo Cao
- Crop and Environment Research Center, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Guanghui Chen
- Crop and Environment Research Center, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Yingbin Zou
- Crop and Environment Research Center, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Min Huang
- Crop and Environment Research Center, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China.
| | - Salah F Abou-Elwafa
- Agronomy Department, Faculty of Agriculture, Assiut University, Assiut, 71526, Egypt.
| |
Collapse
|
117
|
Luo J, Butardo VM, Yang Q, Konik-Rose C, Colgrave ML, Millar A, Jobling SA, Li Z. The impact of the indica rice SSIIa allele on the apparent high amylose starch from rice grain with downregulated japonica SBEIIb. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2961-2974. [PMID: 32651668 DOI: 10.1007/s00122-020-03649-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/01/2020] [Indexed: 05/24/2023]
Abstract
Catalytically active indica SSIIa allele in high amylose rice with down-regulated japonica SBEIIb can increase starch content and modify the starch structure and properties without changing its amylose content. Rice (Oryza sativa) genotypes with inactive starch synthase IIa (SSIIa) with recessive variants of starch branching enzyme IIb (SBEIIb) exhibit a range of alterations in grain phenotype, starch granule morphology, starch granule bound proteins, starch structure, and functional properties. However, the interactions between the two enzymes have not been thoroughly investigated yet. We analysed recombinant rice lines having down-regulated SBEIIb expression (SBEIIbDR) with either indica or japonica type SSIIa (SSIIaind or SSIIajap). In SBEIIbDR rice starch granules, the increased abundance of two protein bands (SSI and SSIIa) was found with eight additional protein bands not generally associated with starch granules. The amount of SSIIa was higher in SSIIaindSBEIIbDR than SSIIajapSBEIIbDR, which indicated that indica type SSIIa, possibly in the monomer form, was extensively involved in starch biosynthesis in the SBEIIbDR endosperm. Furthermore, SSIIaindSBEIIbDR grains had higher total starch content and higher starch swelling power than SSIIajapSBEIIbDR lines, but the amylopectin gelatinization temperatures and enthalpy and the apparent amylose content remained similar. In summary, this work suggests that SSIIaind can partly compensate for the alteration of starch synthesis resulting from the SBEIIb down-regulation in japonica background without reducing its amylose content. The study provides insight into the starch structural and textural improvements of high amylose starch.
Collapse
Affiliation(s)
- Jixun Luo
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT, 2601, Australia
- Research School of Biology, Australian National University, Canberra, ACT, 0200, Australia
| | - Vito M Butardo
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT, 2601, Australia
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Qiang Yang
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT, 2601, Australia
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | | | | | - Anthony Millar
- Research School of Biology, Australian National University, Canberra, ACT, 0200, Australia
| | - Stephen A Jobling
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Zhongyi Li
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT, 2601, Australia.
| |
Collapse
|
118
|
Tetlow IJ, Bertoft E. A Review of Starch Biosynthesis in Relation to the Building Block-Backbone Model. Int J Mol Sci 2020; 21:E7011. [PMID: 32977627 PMCID: PMC7582286 DOI: 10.3390/ijms21197011] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 01/31/2023] Open
Abstract
Starch is a water-insoluble polymer of glucose synthesized as discrete granules inside the stroma of plastids in plant cells. Starch reserves provide a source of carbohydrate for immediate growth and development, and act as long term carbon stores in endosperms and seed tissues for growth of the next generation, making starch of huge agricultural importance. The starch granule has a highly complex hierarchical structure arising from the combined actions of a large array of enzymes as well as physicochemical self-assembly mechanisms. Understanding the precise nature of granule architecture, and how both biological and abiotic factors determine this structure is of both fundamental and practical importance. This review outlines current knowledge of granule architecture and the starch biosynthesis pathway in relation to the building block-backbone model of starch structure. We highlight the gaps in our knowledge in relation to our understanding of the structure and synthesis of starch, and argue that the building block-backbone model takes accurate account of both structural and biochemical data.
Collapse
Affiliation(s)
- Ian J. Tetlow
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | |
Collapse
|
119
|
Guo D, Ling X, Zhou X, Li X, Wang J, Qiu S, Yang Y, Zhang B. Evaluation of the Quality of a High-Resistant Starch and Low-Glutelin Rice ( Oryza sativa L.) Generated through CRISPR/Cas9-Mediated Targeted Mutagenesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9733-9742. [PMID: 32786832 DOI: 10.1021/acs.jafc.0c02995] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A high-resistant starch (RS) and low-glutelin diet is beneficial for the health of patients with diabetes and kidney diseases. Rice is an important food crop worldwide. Previous studies have demonstrated that downregulating the expression of rice starch branching enzyme IIb (SBEIIb) affected the composition and the structure of starch. However, there has been no report about generating the loss-of-function mutants of SBEIIb using low-glutelin rice cultivars as recipients. In this study, we adopted a CRISPR/Cas9 system to induce site-specific mutations at the SBEIIb locus in an elite low-glutelin japonica rice cultivar derived from Low Glutelin Content-1 (LGC-1) and successfully obtained two independent transgene-free sbeIIb/Lgc1 mutant lines. In the mutant lines, the apparent amylose content (AAC) was increased by approximately 1.8-fold and the RS content reached approximately 6%. The glutelin content was approximately 2%, maintaining the low-glutelin trait of the recipient cultivar. The formation mechanism of RS was explored by analyzing the fine structures and the properties of starch. According to the X-ray diffraction pattern and the increased lipid content, the high RS content of the sbeIIb/Lgc1 lines was attributed to the increased content of amylose-lipid complex. Further analyses of the nutritional quality revealed that the soluble sugar and lipid contents, especially sucrose and unsaturated fatty acids, increased in the sbeIIb/Lgc1 lines significantly. This research is expected to facilitate the cultivation and the application of functional rice suitable for patients with diabetes and kidney diseases.
Collapse
Affiliation(s)
- Dongshu Guo
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xitie Ling
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiaogeng Zhou
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiao Li
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jinyan Wang
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Shi Qiu
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yuwen Yang
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Baolong Zhang
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
120
|
Cho YG, Kang KK. Functional Analysis of Starch Metabolism in Plants. PLANTS 2020; 9:plants9091152. [PMID: 32899939 PMCID: PMC7569781 DOI: 10.3390/plants9091152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 09/04/2020] [Indexed: 01/02/2023]
Abstract
In plants, starch is synthesized in leaves during the day-time from fixed carbon through photosynthesis and is mobilized at night to support continued respiration, sucrose export, and growth in the dark. The main crops where starch is biosynthesized and stored are corn, rice, wheat, and potatoes, and they are mainly used as food resources for humankind. There are many genes that are involved in starch biosynthesis from cytosol to storage organs in plants. ADP-glucose, UDP- glucose, and glucose-6-phosphate are synthesized catalyzed by UDP-invertase, AGPase, hexokinase, and P- hexose-isomerase in cytosol. Starch composed of amylopectin and amylose is synthesized by starch synthase, granule bound starch synthase, starch-branching enzyme, debranching enzyme, and pullulanase, which is primarily responsible for starch production in storage organs. Recently, it has been uncovered that structural genes are controlled by proteins derived from other genes such as transcription factors. To obtain more precise information on starch metabolism, the functions of genes and transcription factors need to be studied to understand their roles and functions in starch biosynthesis in plants. However, the roles of genes related to starch biosynthesis are not yet clearly understood. The papers of this special issue contain reviews and research articles on these topics and will be a useful resource for researchers involved in the quality improvement of starch storage crops.
Collapse
Affiliation(s)
- Yong-Gu Cho
- Department of Crop Science, Chungbuk National University, Cheongju 28644, Korea
- Correspondence: (Y.-G.C.); (K.-K.K.)
| | - Kwon-Kyoo Kang
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Korea
- Correspondence: (Y.-G.C.); (K.-K.K.)
| |
Collapse
|
121
|
Xi M, Wu W, Xu Y, Zhou Y, Chen G, Ji Y, Sun X. iTRAQ-based quantitative proteomic analysis reveals the metabolic pathways of grain chalkiness in response to nitrogen topdressing in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:622-635. [PMID: 32717594 DOI: 10.1016/j.plaphy.2020.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/25/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
Grain chalkiness is a highly undesirable trait that adversely affects rice quality. This chalkiness is easily influenced by the application of chemical nitrogen (N) fertilizer at the late growth stage. However, on the molecular mechanism underlying grain chalkiness caused by late N fertilization is not fully clear. In this study, proteomic differences in expression were determined in developing grains exposed to N topdressing (108 kg N ha-1, N+) and a control (0 kg N ha-1, N0), using the rice variety OM052, which has a high level of chalkiness. A total of 198 differentially expressed proteins (DEPs) were detected between the N+ and N0 treatments, including 9 up-regulated proteins and 189 down-regulated proteins. Of these DEPs, approximately half were associated with carbohydrate metabolism (glycolysis, tricarboxylic acid cycle, pentose phosphate pathway, fermentation and starch metabolism) and N metabolism (protein synthesis, folding, degradation and storage, amino acid synthesis and catabolism). A detailed pathway dissection revealed that multiple metabolic pathways during the grain filling stage were involved in the N-induced grain chalkiness. Reduced abundances of proteins associated with respiratory metabolism and energy metabolism drastically impaired the biosynthesis and deposition of starch in the developmental endosperms, which might be a crucial trigger for the increase in grain chalkiness. The disturbed N metabolism and differential expression of storage proteins up-regulated during the grain filling stage are able to partially explain the occurrence of grain chalkiness in rice.
Collapse
Affiliation(s)
- Min Xi
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui Province, PR China
| | - Wenge Wu
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui Province, PR China.
| | - Youzun Xu
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui Province, PR China
| | - Yongjin Zhou
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui Province, PR China
| | - Gang Chen
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui Province, PR China
| | - Yalan Ji
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui Province, PR China
| | - Xueyuan Sun
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui Province, PR China
| |
Collapse
|
122
|
Starch and Glycogen Analyses: Methods and Techniques. Biomolecules 2020; 10:biom10071020. [PMID: 32660096 PMCID: PMC7407607 DOI: 10.3390/biom10071020] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 01/16/2023] Open
Abstract
For complex carbohydrates, such as glycogen and starch, various analytical methods and techniques exist allowing the detailed characterization of these storage carbohydrates. In this article, we give a brief overview of the most frequently used methods, techniques, and results. Furthermore, we give insights in the isolation, purification, and fragmentation of both starch and glycogen. An overview of the different structural levels of the glucans is given and the corresponding analytical techniques are discussed. Moreover, future perspectives of the analytical needs and the challenges of the currently developing scientific questions are included.
Collapse
|
123
|
Tabassum R, Dosaka T, Ichida H, Morita R, Ding Y, Abe T, Katsube-Tanaka T. FLOURY ENDOSPERM11-2 encodes plastid HSP70-2 involved with the temperature-dependent chalkiness of rice (Oryza sativa L.) grains. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:604-616. [PMID: 32215974 DOI: 10.1111/tpj.14752] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 02/01/2020] [Accepted: 03/10/2020] [Indexed: 05/23/2023]
Abstract
The frequent occurrence of chalky rice (Oryza sativa L.) grains becomes a serious problem as a result of climate change. The molecular mechanism underlying chalkiness is largely unknown, however. In this study, the temperature-sensitive floury endosperm11-2 (flo11-2) mutant was isolated from ion beam-irradiated rice of 1116 lines. The flo11-2 mutant showed significantly higher chalkiness than the wild type grown under a mean temperature of 28°C, but similar levels of chalkiness to the wild type grown under a mean temperature of 24°C. Whole-exome sequencing of the flo11-2 mutant showed three causal gene candidates, including Os12g0244100, which encodes the plastid-localized 70-kDa heat shock protein 2 (cpHSP70-2). The cpHSP70-2 of the flo11-2 mutant has an amino acid substitution on the 259th aspartic acid with valine (D259V) in the conserved Motif 5 of the ATPase domain. Transgenic flo11-2 mutants that express the wild-type cpHSP70-2 showed significantly lower chalkiness than the flo11-2 mutant. Moreover, the accumulation level of cpHSP70-2 was negatively correlated with the chalky ratio, indicating that cpHSP70-2 is a causal gene for the chalkiness of the flo11-2 mutant. The intrinsic ATPase activity of recombinant cpHSP70-2 was lower by 23% at Vmax for the flo11-2 mutant than for the wild type. The growth of DnaK-defective Escherichia coli cells complemented with DnaK with the D201V mutation (equivalent to the D259V mutation) was severely reduced at 37°C, but not in the wild-type DnaK. The results indicate that the lowered cpHSP70-2 function is involved with the chalkiness of the flo11-2 mutant.
Collapse
Affiliation(s)
- Rehenuma Tabassum
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Kyoto, 606-8502, Japan
- Department of Crop Botany and Tea Production Technology, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - Tokinori Dosaka
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Kyoto, 606-8502, Japan
| | - Hiroyuki Ichida
- RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama, 351-0198, Japan
| | - Ryouhei Morita
- RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama, 351-0198, Japan
| | - Yifan Ding
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Kyoto, 606-8502, Japan
| | - Tomoko Abe
- RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama, 351-0198, Japan
| | | |
Collapse
|
124
|
Wang W, Wei X, Jiao G, Chen W, Wu Y, Sheng Z, Hu S, Xie L, Wang J, Tang S, Hu P. GBSS-BINDING PROTEIN, encoding a CBM48 domain-containing protein, affects rice quality and yield. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:948-966. [PMID: 31449354 DOI: 10.1111/jipb.12866] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/20/2019] [Indexed: 05/20/2023]
Abstract
The percentage of amylose in the endosperm of rice (Oryza sativa) largely determines grain cooking and eating qualities. Granule-bound starch synthase I (GBSSI) and GBSSII are responsible for amylose biosynthesis in the endosperm and leaf, respectively. Here, we identified OsGBP, a rice GBSS-binding protein that interacted with GBSSI and GBSSII in vitro and in vivo. The total starch and amylose contents in osgbp mutants were significantly lower than those of wild type in leaves and grains, resulting in reduced grain weight and quality. The carbohydrate-binding module 48 (CBM48) domain present in the C-terminus of OsGBP is crucial for OsGBP binding to starch. In the osgbp mutant, the extent of GBSSI and GBSSII binding to starch in the leaf and endosperm was significantly lower than wild type. Our data suggest that OsGBP plays an important role in leaf and endosperm starch biosynthesis by mediating the binding of GBSS proteins to developing starch granules. This elucidation of the function of OsGBP enhances our understanding of the molecular basis of starch biosynthesis in rice and contributes information that can be potentially used for the genetic improvement of yield and grain quality.
Collapse
Affiliation(s)
- Wei Wang
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006, China
| | - Xiangjin Wei
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006, China
| | - Guiai Jiao
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006, China
| | - Wenqiang Chen
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006, China
| | - Yawen Wu
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006, China
| | - Zhonghua Sheng
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006, China
| | - Shikai Hu
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006, China
| | - Lihong Xie
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006, China
| | - Jiayu Wang
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006, China
| | - Peisong Hu
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006, China
| |
Collapse
|
125
|
Krishnan V, Awana M, Samota MK, Warwate SI, Kulshreshtha A, Ray M, Bollinedi H, Singh AK, Thandapilly SJ, Praveen S, Singh A. Pullulanase activity: A novel indicator of inherent resistant starch in rice (Oryza sativa. L). Int J Biol Macromol 2020; 152:1213-1223. [DOI: 10.1016/j.ijbiomac.2019.10.218] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/03/2019] [Accepted: 10/24/2019] [Indexed: 10/25/2022]
|
126
|
Bao J, Ying Y, Zhou X, Xu Y, Wu P, Xu F, Pang Y. Relationships among starch biosynthesizing protein content, fine structure and functionality in rice. Carbohydr Polym 2020; 237:116118. [DOI: 10.1016/j.carbpol.2020.116118] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 12/17/2022]
|
127
|
Zhao Q, Ye Y, Han Z, Zhou L, Guan X, Pan G, Asad MAU, Cheng F. SSIIIa-RNAi suppression associated changes in rice grain quality and starch biosynthesis metabolism in response to high temperature. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 294:110443. [PMID: 32234229 DOI: 10.1016/j.plantsci.2020.110443] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/07/2020] [Accepted: 02/09/2020] [Indexed: 06/11/2023]
Abstract
High temperature (HT) is a main environmental restraint that affects rice yield and grain quality. In this study, SSIIIa-RNAi and its wild-type (WT) were used to investigate the effect of HT exposure on the isozyme-specific variation of several key starch biosynthesis enzymes in developing endosperms and its relation to starch properties. SSIIIa-RNAi had minimal impact on grain chalky occurrence under normal temperature growth, but it could up-grade the susceptibility of grain chalky occurrence to HT exposure, due to the relatively sensitive response of AGPase and SSI to HT exposure. Different from WT, SSIIIa-RNAi had the relatively enriched proportion of chains with DP 13-16 under HT, and HT-induced decline in the proportion of DP < 12 became much larger for SSIIIa-RNAi relative to WT. SSIIIa-RNAi significantly enhanced the expression of SSI isozyme and total SS activity, whereas SSI-RNAi deficiency had little impact on the expression of SSIIIa isozyme. In this regard, the compensatory increase in SSI isozyme as a result of SSIIIa deficiency occurred only in a one-way manner. SSIIIa-RNAi caused a striking elevation in BEIIa expression, and the effect of SSIIIa deficiency on the chain length distribution in relation to HT exposure was closely associated with the participation of BEIIa, SSI, and their interaction in amylopectin biosynthesis.
Collapse
Affiliation(s)
- Qian Zhao
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China; Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, China.
| | - Yu Ye
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Zhanyu Han
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Lujian Zhou
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xianyue Guan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Gang Pan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | | | - Fangmin Cheng
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China; Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, China.
| |
Collapse
|
128
|
Wang H, Ham TH, Im DE, Lar SM, Jang SG, Lee J, Mo Y, Jeung JU, Kim ST, Kwon SW. A New SNP in Rice Gene Encoding Pyruvate Phosphate Dikinase (PPDK) Associated with Floury Endosperm. Genes (Basel) 2020; 11:genes11040465. [PMID: 32344582 PMCID: PMC7230733 DOI: 10.3390/genes11040465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/16/2020] [Accepted: 04/22/2020] [Indexed: 01/26/2023] Open
Abstract
Rice varieties with suitable flour-making qualities are required to promote the rice processed-food industry and to boost rice consumption. A rice mutation, Namil(SA)-flo1, produces grains with floury endosperm. Overall, grains with low grain hardness, low starch damage, and fine particle size are more suitable for use in flour processing grains with waxy, dull endosperm with normal grain hardness and a high amylose content. In this study, fine mapping found a C to T single nucleotide polymorphism (SNP) in exon 2 of the gene encoding cytosolic pyruvate phosphate dikinase (cyOsPPDK). The SNP resulted in a change of serine to phenylalanine acid at amino acid position 101. The gene was named FLOURY ENDOSPERM 4-5 (FLO4-5). Co-segregation analysis with the developed cleaved amplified polymorphic sequence (CAPS) markers revealed co-segregation between the floury phenotype and the flo4-5. This CAPS marker could be applied directly for marker-assisted selection. Real-time RT-PCR experiments revealed that PPDK was expressed at considerably higher levels in the flo4-5 mutant than in the wild type during the grain filling stage. Plastid ADP-glucose pyrophosphorylase small subunit (AGPS2a and AGPS2b) and soluble starch synthase (SSIIb and SSIIc) also exhibited enhanced expression in the flo4-5 mutant.
Collapse
Affiliation(s)
- Heng Wang
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea; (H.W.); (D.-E.I.); (S.M.L.); (S.-G.J.); (S.T.K.)
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tae-Ho Ham
- Department of Applied Bioscience, Konkuk University, Seoul 05029, Korea; (T.-H.H.); (J.L.)
| | - Da-Eun Im
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea; (H.W.); (D.-E.I.); (S.M.L.); (S.-G.J.); (S.T.K.)
| | - San Mar Lar
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea; (H.W.); (D.-E.I.); (S.M.L.); (S.-G.J.); (S.T.K.)
| | - Seong-Gyu Jang
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea; (H.W.); (D.-E.I.); (S.M.L.); (S.-G.J.); (S.T.K.)
| | - Joohyun Lee
- Department of Applied Bioscience, Konkuk University, Seoul 05029, Korea; (T.-H.H.); (J.L.)
| | - Youngjun Mo
- National Institute of Crop Science, Rural Development Administration, Jeonju 54874, Korea; (Y.M.); (J.-U.J.)
| | - Ji-Ung Jeung
- National Institute of Crop Science, Rural Development Administration, Jeonju 54874, Korea; (Y.M.); (J.-U.J.)
| | - Sun Tae Kim
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea; (H.W.); (D.-E.I.); (S.M.L.); (S.-G.J.); (S.T.K.)
| | - Soon-Wook Kwon
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea; (H.W.); (D.-E.I.); (S.M.L.); (S.-G.J.); (S.T.K.)
- Correspondence: ; Tel.: +82-55-350-5506
| |
Collapse
|
129
|
Madany MMY, Obaid WA, Hozien W, AbdElgawad H, Hamed BA, Saleh AM. Salicylic acid confers resistance against broomrape in tomato through modulation of C and N metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 147:322-335. [PMID: 31911359 DOI: 10.1016/j.plaphy.2019.12.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/26/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
It is well known that parasitic weeds such as Orobanche (broomrape) significantly decrease crop growth and yield. Although hormonal priming is a well-known inducer of plant resistance against broomrapes (Orobanche spp.), the metabolic events associated with such resistance are poorly understood. Therefore, the current work was undertaken to elucidate the role of SA in inducing tomato resistance against Orobanche, considering its impact on carbon and nitrogen metabolism of the host. Total carbon and nitrogen and levels of carbon (sugars, organic acids and fatty acids) and nitrogen (amino acids and polyamines)-containing metabolites as well as the activities of some key enzymes involved in their metabolic pathways were evaluated. Broomrape infection significantly disrupted C/N ratio in the host roots. On contrary, SA treatment markedly induced accumulation of sugars, organic acids, fatty acids, amino acids as well as polyamines in healthy plants. Under broomrape challenge, SA mitigated the infection-induced growth inhibition by improving the level of nitrogen-containing osmoprotectants (proline, arginine and some polyamines). However, a decrease was observed in some C and N assimilates which are well known to be potentially transferred to the parasite, such as sucrose, asparagine, alanine, serine and glutamate. Interestingly, SA treatment induced the catapolism of polyamines and fatty acids in the host root. Accordingly, our study suggests that SA-induced resistance against broomrape relies on the rational utilization of C and N assimilates in a manner that disturbs the sink strength of the parasite and/or activates the defense pool of the host.
Collapse
Affiliation(s)
- Mahmoud M Y Madany
- Biology Department, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah, 41411, Saudi Arabia; Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | - Wael A Obaid
- Biology Department, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah, 41411, Saudi Arabia
| | - Wael Hozien
- Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia; Department of Botany and microbiology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium; Department of Botany and microbiology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Badreldin A Hamed
- Department of Botany and microbiology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed M Saleh
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
130
|
ABNORMAL FLOWER AND GRAIN 1 encodes OsMADS6 and determines palea identity and affects rice grain yield and quality. SCIENCE CHINA-LIFE SCIENCES 2020; 63:228-238. [PMID: 31919631 DOI: 10.1007/s11427-019-1593-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/28/2019] [Indexed: 12/21/2022]
Abstract
The palea and lemma are floral organ structures unique to grasses; these structures form the hull and directly affect grain size and quality. However, the molecular mechanisms controlling the development of the hull are not well understood. In this study, we characterized the rice (Oryza sativa) abnormal flower and grain1 (afg1) mutant, a new allele of OsMADS6. Similar to previously characterized osmads6 alleles, in the afg1 floret, the palea lost its marginal region and acquired the lemma identity. However, in contrast to other osmads6 alleles, the afg1 mutant showed altered grain size and grain quality, with decreased total starch and amylose contents, and increased protein and soluble sugar contents. The analysis of transcriptional activity suggested that AFG1 is a transcriptional activator and may affect grain size by regulating the expression levels of several genes related to cell expansion and proliferation in the afg1 mutant. These results revealed that AFG1 plays an important role in determining palea identity and affecting grain yield and quality in rice.
Collapse
|
131
|
Liu D, Xu L, Wang W, Jia S, Jin S, Gao J. OsRRM, an RNA-Binding Protein, Modulates Sugar Transport in Rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2020; 11:605276. [PMID: 33363560 PMCID: PMC7752781 DOI: 10.3389/fpls.2020.605276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/09/2020] [Indexed: 05/09/2023]
Abstract
Sugar allocation between vegetative and reproductive tissues is vital to plant development, and sugar transporters play fundamental roles in this process. Although several transcription factors have been identified that control their transcription levels, the way in which the expression of sugar transporter genes is controlled at the posttranscriptional level is unknown. In this study, we showed that OsRRM, an RNA-binding protein, modulates sugar allocation in tissues on the source-to-sink route. The OsRRM expression pattern partly resembles that of several sugar transporter and transcription factor genes that specifically affect sugar transporter gene expression. The messenger RNA levels of almost all of the sugar transporter genes are severely reduced in the osrrm mutant, and this alters sugar metabolism and sugar signaling, which further affects plant height, flowering time, seed size, and starch synthesis. We further showed that OsRRM binds directly to messenger RNAs encoded by sugar transporter genes and thus may stabilize their transcripts. Therefore, we have uncovered the physiological function of OsRRM, which sheds new light on sugar metabolism and sugar signaling.
Collapse
Affiliation(s)
- Derui Liu
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Crop Genomics and Molecular Breeding of Jiangsu Province, Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, College of Agriculture, Yangzhou University, Yangzhou, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Lina Xu
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Crop Genomics and Molecular Breeding of Jiangsu Province, Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, College of Agriculture, Yangzhou University, Yangzhou, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Wei Wang
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Crop Genomics and Molecular Breeding of Jiangsu Province, Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, College of Agriculture, Yangzhou University, Yangzhou, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Shuwen Jia
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Crop Genomics and Molecular Breeding of Jiangsu Province, Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, College of Agriculture, Yangzhou University, Yangzhou, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Sukui Jin
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Crop Genomics and Molecular Breeding of Jiangsu Province, Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, College of Agriculture, Yangzhou University, Yangzhou, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Jiping Gao
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Crop Genomics and Molecular Breeding of Jiangsu Province, Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, College of Agriculture, Yangzhou University, Yangzhou, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Jiping Gao,
| |
Collapse
|
132
|
Nakamura Y, Ono M, Hatta T, Kainuma K, Yashiro K, Matsuba G, Matsubara A, Miyazato A, Mizutani G. Effects of BEIIb-Deficiency on the Cluster Structure of Amylopectin and the Internal Structure of Starch Granules in Endosperm and Culm of Japonica-Type Rice. FRONTIERS IN PLANT SCIENCE 2020; 11:571346. [PMID: 33312184 PMCID: PMC7704622 DOI: 10.3389/fpls.2020.571346] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/29/2020] [Indexed: 05/04/2023]
Abstract
It is known that one of starch branching enzyme (BE) isoforms, BEIIb, plays a specific role not only in the synthesis of distinct amylopectin cluster structure, but also in the formation of the internal structure of starch granules in rice endosperm because in its absence the starch crystalline polymorph changes to the B-type from the typical A-type found in the wild-type (WT) cereal endosperm starch granules. In the present study, to examine the contribution of BEIIb to the amylopectin cluster structure, the chain-length distributions of amylopectin and its phosphorylase-limit dextrins (Φ-LD) from endosperm and culm of a null be2b mutant called amylose-extender (ae) mutant line, EM10, were compared with those of its WT cultivar, Kinmaze, of japonica rice. The results strongly suggest that BEIIb specifically formed new short chains whose branch points were localized in the basal part of the crystalline lamellae and presumably in the intermediate between the crystalline and amorphous lamellae of amylopectin clusters in the WT endosperm, whereas in its absence branch points which were mainly formed by BEI were only located in the amorphous lamellae of amylopectin. These differences in the cluster structure of amylopectin between Kinmaze and EM10 endosperm were considered to be responsible for the differences in the A-type and B-type crystalline structures of starch granules between Kinmaze and EM10, respectively. The changes in internal structure of starch granules caused by BEIIb were analyzed by wide angle X-ray diffraction, small-angle X-ray scattering, solid state 13C NMR, and optical sum frequency generation spectroscopy. It was noted that the size the amylopectin cluster in ae endosperm (approximately 8.24 nm) was significantly smaller than that in WT endosperm (approximately 8.81 nm). Based on the present results, we proposed a model for the cluster structure of amylopectin in WT and ae mutant of rice endosperm. We also hypothesized the role of BEIIa in amylopectin biosynthesis in culm where BEIIb was not expressed and instead BEIIa was the major BE component in WT of rice.
Collapse
Affiliation(s)
- Yasunori Nakamura
- Starch Technologies, Co., Ltd., Akita Prefectural University, Akita, Japan
- Akita Natural Science Laboratory, Katagami, Japan
- *Correspondence: Yasunori Nakamura,
| | - Masami Ono
- Akita Natural Science Laboratory, Katagami, Japan
| | - Tamao Hatta
- Faculty of Risk and Crisis Management, Chiba Institute of Science, Choshi, Japan
| | | | - Kazuki Yashiro
- Graduate School of Organic Materials Science, Yamagata University, Yonezawa, Japan
| | - Go Matsuba
- Graduate School of Organic Materials Science, Yamagata University, Yonezawa, Japan
| | - Akira Matsubara
- School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Japan
| | - Akio Miyazato
- School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Japan
| | - Goro Mizutani
- School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Japan
| |
Collapse
|
133
|
Griebel S, Westerman RP, Adeyanju A, Addo-Quaye C, Craig BA, Weil CF, Cunningham SM, Patel B, Campanella OH, Tuinstra MR. Mutations in sorghum SBEIIb and SSIIa affect alkali spreading value, starch composition, thermal properties and flour viscosity. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:3357-3374. [PMID: 31624872 PMCID: PMC6820604 DOI: 10.1007/s00122-019-03430-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 09/17/2019] [Indexed: 05/27/2023]
Abstract
Seven novel alleles of SBEIIb and one allele of SSIIa co-segregated with the ASV phenotype and contributed to distinct starch quality traits important for food-processing applications. Sorghum is an important food crop for millions of people in Africa and Asia. Whole-genome re-sequencing of sorghum EMS mutants exhibiting an alkali spreading value (ASV) phenotype revealed candidate SNPs in Sobic.004G163700 and Sobic.010G093400. Comparative genomics identified Sobic.010G093400 as a starch synthase IIa and Sobic.004G163700 as a starch branching enzyme IIb. Segregation analyses showed that mutations in Sobic.010G093400 or Sobic.004G163700 co-segregated with the ASV phenotype. Mutants in SSIIa exhibited no change in amylose content but expressed lower final viscosity and lower starch gelatinization temperature (GT) than starches from non-mutant plants. The sbeIIb mutants exhibited significantly higher amylose levels and starch GT and lower viscosity compared to non-mutant starches and ssIIa mutants. Mutations in SBEIIb had a dosage-dependent effect on amylose content. Double mutants of sbeIIb and ssIIa resembled their sbeIIb parent in amylose content, starch thermal properties and viscosity profiles. These variants will provide opportunities to produce sorghum varieties with modified starch end-use qualities important for the beer brewing and baking industries and specialty foods for humans with diabetes.
Collapse
Affiliation(s)
- Stefanie Griebel
- Department of Agronomy, Purdue University, Lilly Hall of Life Sciences, 915 W State Street, West Lafayette, IN, 47907, USA
| | - Richard P Westerman
- College of Agriculture Administration, Purdue University, West Lafayette, IN, 47907, USA
| | - Adedayo Adeyanju
- Department of Agronomy, Purdue University, Lilly Hall of Life Sciences, 915 W State Street, West Lafayette, IN, 47907, USA
| | - Charles Addo-Quaye
- Division Natural Sciences and Mathematics, Lewis-Clark State College, Lewiston, ID, 83501, USA
| | - Bruce A Craig
- Department of Statistics, Purdue University, West Lafayette, IN, 47907, USA
| | - Clifford F Weil
- Department of Agronomy, Purdue University, Lilly Hall of Life Sciences, 915 W State Street, West Lafayette, IN, 47907, USA
| | - Suzanne M Cunningham
- Department of Agronomy, Purdue University, Lilly Hall of Life Sciences, 915 W State Street, West Lafayette, IN, 47907, USA
| | - Bhavesh Patel
- Whistler Carbohydrate Research Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Osvaldo H Campanella
- Whistler Carbohydrate Research Center, Purdue University, West Lafayette, IN, 47907, USA
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, 43210-1007, USA
| | - Mitchell R Tuinstra
- Department of Agronomy, Purdue University, Lilly Hall of Life Sciences, 915 W State Street, West Lafayette, IN, 47907, USA.
| |
Collapse
|
134
|
Lin L, Huang J, Zhang L, Zhang C, Liu Q, Wei C. Effects of inhibiting starch branching enzymes on molecular and crystalline structures of starches from endosperm different regions in rice. Food Chem 2019; 301:125271. [DOI: 10.1016/j.foodchem.2019.125271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/27/2019] [Accepted: 07/26/2019] [Indexed: 12/20/2022]
|
135
|
Zhu J, Yu W, Zhang C, Zhu Y, Xu J, Li E, Gilbert RG, Liu Q. New insights into amylose and amylopectin biosynthesis in rice endosperm. Carbohydr Polym 2019; 230:115656. [PMID: 31887861 DOI: 10.1016/j.carbpol.2019.115656] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/13/2019] [Accepted: 11/21/2019] [Indexed: 11/18/2022]
Abstract
How various isoforms of rice-starch biosynthesis enzymes interact during amylose and amylopectin synthesis is explored. The chain-length distributions of amylopectin and amylose from 95 varieties with different environmental and genetic backgrounds were obtained using size- exclusion chromatography, and fitted with biosynthesis-derived models based on isoforms of starch synthase (SSI-SSIV), starch branching enzyme (SBE, including SBEI and SBEII) and granule-bound starch synthase (GBSS) that are involved in amylose and amylopectin synthesis. It is usually thought that these are synthesized by separate enzymes. However, the amount of longer amylopectin chains correlated with that of shorter amylose chains, indicating that GBSS, SBE and SS affect both amylose and amylopectin synthesis. Further, the activity of GBSS in amylose correlated with that of SS in amylopectin. This new understanding of which enzymes are suggested by the statistics to be involved in both amylose and amylopectin synthesis could help rice breeders develop cereals with targeted properties.
Collapse
Affiliation(s)
- Jihui Zhu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu, 225009, China; The University of Queensland, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, Brisbane, QLD, 4072, Australia
| | - Wenwen Yu
- Department of Food Science & Engineering, Jinan University, Huangpu West Avenue 601, Guangzhou, Jiangsu Province, China
| | - Changquan Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Jiangsu Key Laboratory of Crop Genetics and Physiology, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yajun Zhu
- Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jianlong Xu
- Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Enpeng Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Robert G Gilbert
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu, Yangzhou University, Yangzhou, Jiangsu, 225009, China; The University of Queensland, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, Brisbane, QLD, 4072, Australia.
| | - Qiaoquan Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Jiangsu Key Laboratory of Crop Genetics and Physiology, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
136
|
Ren D, Cui Y, Hu H, Xu Q, Rao Y, Yu X, Zhang Y, Wang Y, Peng Y, Zeng D, Hu J, Zhang G, Gao Z, Zhu L, Chen G, Shen L, Zhang Q, Guo L, Qian Q. AH2 encodes a MYB domain protein that determines hull fate and affects grain yield and quality in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:813-824. [PMID: 31357245 DOI: 10.1111/tpj.14481] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/03/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
The palea and lemma (hull) are grass-specific organs, and determine grain size and quality. In the study, AH2 encodes a MYB domain protein, and functions in the development of hull and grain. Mutation of AH2 produces smaller grains and alters grain quality including decreased amylose content and gel consistency, and increased protein content. Meantime, part of the hull lost the outer silicified cells, and induces a transformation of the outer rough epidermis to inner smooth epidermis cells, and the body of the palea was reduced in the ah2 mutant. We confirmed the function of AH2 by complementation, CRISPR-Cas9, and cytological and molecular tests. Additionally, AH2, as a repressor, repress transcription of the downstream genes. Our results revealed that AH2 plays an important role in the determination of hull epidermis development, palea identity, and grain size.
Collapse
Affiliation(s)
- Deyong Ren
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
| | - Yuanjiang Cui
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
| | - Haitao Hu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Qiankun Xu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
| | - Yuchun Rao
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Xiaoqi Yu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
| | - Yu Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
| | - Yuexing Wang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
| | - Youlin Peng
- Rice Research Institute, Southwest University of Science and Technology, Mianyang, 621010, People's Republic of China
| | - Dali Zeng
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
| | - Jiang Hu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
| | - Guangheng Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
| | - Zhenyu Gao
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
| | - Li Zhu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
| | - Guang Chen
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
| | - Lan Shen
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
| | - Qiang Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
| | - Longbiao Guo
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
| | - Qian Qian
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
| |
Collapse
|
137
|
Zhao Q, Du X, Han Z, Ye Y, Pan G, Asad MAU, Zhou Q, Cheng F. Suppression of starch synthase I (SSI) by RNA interference alters starch biosynthesis and amylopectin chain distribution in rice plants subjected to high temperature. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.cj.2019.03.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
138
|
Teng X, Zhong M, Zhu X, Wang C, Ren Y, Wang Y, Zhang H, Jiang L, Wang D, Hao Y, Wu M, Zhu J, Zhang X, Guo X, Wang Y, Wan J. FLOURY ENDOSPERM16 encoding a NAD-dependent cytosolic malate dehydrogenase plays an important role in starch synthesis and seed development in rice. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1914-1927. [PMID: 30860317 PMCID: PMC6737025 DOI: 10.1111/pbi.13108] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/07/2019] [Indexed: 05/18/2023]
Abstract
Starch is the most important form of energy storage in cereal crops. Many key enzymes involved in starch biosynthesis have been identified. However, the molecular mechanisms underlying the regulation of starch biosynthesis are largely unknown. In this study, we isolated a novel floury endosperm rice (Oryza sativa) mutant flo16 with defective starch grain (SG) formation. The amylose content and amylopectin structure were both altered in the flo16 mutant. Map-based cloning and complementation tests demonstrated that FLO16 encodes a NAD-dependent cytosolic malate dehydrogenase (CMDH). The ATP contents were decreased in the mutant, resulting in significant reductions in the activity of starch synthesis-related enzymes. Our results indicated that FLO16 plays a critical role in redox homeostasis that is important for compound SG formation and subsequent starch biosynthesis in rice endosperm. Overexpression of FLO16 significantly improved grain weight, suggesting a possible application of FLO16 in rice breeding. These findings provide a novel insight into the regulation of starch synthesis and seed development in rice.
Collapse
Affiliation(s)
- Xuan Teng
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Mingsheng Zhong
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Xiaopin Zhu
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Chunming Wang
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Yulong Ren
- National Key Facility for Crop Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Yunlong Wang
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Huan Zhang
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Di Wang
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Yuanyuan Hao
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Mingming Wu
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Jianping Zhu
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Xin Zhang
- National Key Facility for Crop Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Xiuping Guo
- National Key Facility for Crop Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Yihua Wang
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
- National Key Facility for Crop Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
139
|
Okada S, Yamasaki M. Validation of a quantitative trait locus for the white-core expression rate of grain on chromosome 6 in a brewing rice cultivar and development of DNA markers for marker-assisted selection. BREEDING SCIENCE 2019; 69:401-409. [PMID: 31598072 PMCID: PMC6776145 DOI: 10.1270/jsbbs.18166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 04/01/2019] [Indexed: 05/25/2023]
Abstract
Sake-brewing cultivars among varieties of Japanese rice (Oryza sativa L.) have traits adapted to the sake-brewing process, such as a high white-core expression rate (WCE). Our previous study detected putative quantitative trait loci (QTLs) associated with a high WCE derived from Yamadanishiki, a popular brewing rice cultivar. Because the occurrence of white-core grains depends on air temperature and the position of the grain on the panicle, phenotyping of WCE must consider these variable conditions. In this study, qWCE6, a QTL for the WCE on chromosome 6, was validated for the first time, and the phenotyping method examined for its suitability in fine-mapping. A clear tendency towards high WCE was observed in late-heading substituted lines which headed under low daily mean temperature at the experimental location. White-core grains were often expressed by the primary spikelets on the upper panicle, producing a high percentage of superior grains. The segregating population for qWCE6 in late heading revealed a distinct difference in WCE between the Koshihikari and Yamadanishiki homozygous alleles at qWCE6 as determined from that locality. Further, two insertion/deletion markers were developed for the marker-assisted selection of qWCE6. Our results will be useful for informing the breeding of sake-brewing rice cultivars.
Collapse
Affiliation(s)
- Satoshi Okada
- Food Resources Education and Research Center, Graduate School of Agricultural Science, Kobe University,
Kasai, Hyogo 675-2103,
Japan
| | - Masanori Yamasaki
- Food Resources Education and Research Center, Graduate School of Agricultural Science, Kobe University,
Kasai, Hyogo 675-2103,
Japan
| |
Collapse
|
140
|
Qu J, Xu S, Tian X, Li T, Wang L, Zhong Y, Xue J, Guo D. Comparative transcriptomics reveals the difference in early endosperm development between maize with different amylose contents. PeerJ 2019; 7:e7528. [PMID: 31523504 PMCID: PMC6717500 DOI: 10.7717/peerj.7528] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/22/2019] [Indexed: 01/06/2023] Open
Abstract
In seeds, the endosperm is a crucial organ that plays vital roles in supporting embryo development and determining seed weight and quality. Starch is the predominant storage carbohydrate of the endosperm and accounts for ∼70% of the mature maize kernel weight. Nonetheless, because starch biosynthesis is a complex process that is orchestrated by multiple enzymes, the gene regulatory networks of starch biosynthesis, particularly amylose and amylopectin biosynthesis, have not been fully elucidated. Here, through high-throughput RNA sequencing, we developed a temporal transcriptome atlas of the endosperms of high-amylose maize and common maize at 5-, 10-, 15- and 20-day after pollination and found that 21,986 genes are involved in the programming of the high-amylose and common maize endosperm. A coexpression analysis identified multiple sequentially expressed gene sets that are closely correlated with cellular and metabolic programmes and provided valuable insight into the dynamic reprogramming of the transcriptome in common and high-amylose maize. In addition, a number of genes and transcription factors were found to be strongly linked to starch synthesis, which might help elucidate the key mechanisms and regulatory networks underlying amylose and amylopectin biosynthesis. This study will aid the understanding of the spatiotemporal patterns and genetic regulation of endosperm development in different types of maize and provide valuable genetic information for the breeding of starch varieties with different contents.
Collapse
Affiliation(s)
- Jianzhou Qu
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.,Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, Shaanxi, China
| | - Shutu Xu
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.,Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, Shaanxi, China
| | - Xiaokang Tian
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.,Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, Shaanxi, China
| | - Ting Li
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.,Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, Shaanxi, China
| | - Licheng Wang
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.,Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, Shaanxi, China
| | - Yuyue Zhong
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.,Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, Shaanxi, China
| | - Jiquan Xue
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.,Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, Shaanxi, China
| | - Dongwei Guo
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.,Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, Shaanxi, China
| |
Collapse
|
141
|
Xiong Y, Ren Y, Li W, Wu F, Yang W, Huang X, Yao J. NF-YC12 is a key multi-functional regulator of accumulation of seed storage substances in rice. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3765-3780. [PMID: 31211389 PMCID: PMC6685661 DOI: 10.1093/jxb/erz168] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/27/2019] [Indexed: 05/02/2023]
Abstract
Starch and storage proteins, the primary storage substances of cereal endosperm, are a major source of food for humans. However, the transcriptional regulatory networks of the synthesis and accumulation of storage substances remain largely unknown. Here, we identified a rice endosperm-specific gene, NF-YC12, that encodes a putative nuclear factor-Y transcription factor subunit C. NF-YC12 is expressed in the aleurone layer and starchy endosperm during grain development. Knockout of NF-YC12 significantly decreased grain weight as well as altering starch and protein accumulation and starch granule formation. RNA-sequencing analysis revealed that in the nf-yc12 mutant genes related to starch biosynthesis and the metabolism of energy reserves were enriched in the down-regulated category. In addition, starch and protein contents in seeds differed between NF-YC12-overexpression lines and the wild-type. NF-YC12 was found to interact with NF-YB1. ChIP-qPCR and yeast one-hybrid assays showed that NF-YC12 regulated the rice sucrose transporter OsSUT1 in coordination with NF-YB1 in the aleurone layer. In addition, NF-YC12 was directly bound to the promoters of FLO6 (FLOURY ENDOSPERM6) and OsGS1;3 (glutamine synthetase1) in developing endosperm. This study demonstrates a transcriptional regulatory network involving NF-YC12, which coordinates multiple pathways to regulate endosperm development and the accumulation of storage substances in rice seeds.
Collapse
Affiliation(s)
- Yufei Xiong
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ye Ren
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wang Li
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fengsheng Wu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wenjie Yang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaolong Huang
- The Key Laboratory of Plant Physiology and Development Regulation, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Jialing Yao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- Correspondence:
| |
Collapse
|
142
|
Wu M, Ren Y, Cai M, Wang Y, Zhu S, Zhu J, Hao Y, Teng X, Zhu X, Jing R, Zhang H, Zhong M, Wang Y, Lei C, Zhang X, Guo X, Cheng Z, Lin Q, Wang J, Jiang L, Bao Y, Wang Y, Wan J. Rice FLOURY ENDOSPERM10 encodes a pentatricopeptide repeat protein that is essential for the trans-splicing of mitochondrial nad1 intron 1 and endosperm development. THE NEW PHYTOLOGIST 2019; 223:736-750. [PMID: 30916395 DOI: 10.1111/nph.15814] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/14/2019] [Indexed: 05/18/2023]
Abstract
Endosperm, the major storage organ in cereal grains, determines grain yield and quality. Despite the fact that a role for P-type pentatricopeptide repeat (PPR) proteins in the regulation of endosperm development has emerged, molecular functions of many P-type PPR proteins remain obscure. Here, we report a rice endosperm defective mutant, floury endosperm10 (flo10), which developed smaller starch grains in starchy endosperm and abnormal cells in the aleurone layer. Map-based cloning and rescued experiments showed that FLO10 encodes a P-type PPR protein with 26 PPR motifs, which is localized to mitochondria. Loss of function of FLO10 affected the trans-splicing of the mitochondrial nad1 intron 1, which was accompanied by the increased accumulation of the nad1 exon 1 and exons 2-5 precursors. The failed formation of mature nad1 led to a dramatically decreased assembly and activity of complex I, reduced ATP production, and changed mitochondrial morphology. In addition, loss of function of FLO10 significantly induced an alternative respiratory pathway involving alternative oxidase. These results reveal that FLO10 plays an important role in the maintenance of mitochondrial function and endosperm development through its effect on the trans-splicing of the mitochondrial nad1 intron 1 in rice.
Collapse
Affiliation(s)
- Mingming Wu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yulong Ren
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Maohong Cai
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yunlong Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shanshan Zhu
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jianping Zhu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanyuan Hao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuan Teng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaopin Zhu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruonan Jing
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huan Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingsheng Zhong
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yongfei Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Cailin Lei
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xin Zhang
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiuping Guo
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhijun Cheng
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qibing Lin
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jie Wang
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yiqun Bao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yihua Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
143
|
Boehlein SK, Liu P, Webster A, Ribeiro C, Suzuki M, Wu S, Guan JC, Stewart JD, Tracy WF, Settles AM, McCarty DR, Koch KE, Hannah LC, Hennen-Bierwagen TA, Myers AM. Effects of long-term exposure to elevated temperature on Zea mays endosperm development during grain fill. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:23-40. [PMID: 30746832 DOI: 10.1111/tpj.14283] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 05/28/2023]
Abstract
Cereal yields decrease when grain fill proceeds under conditions of prolonged, moderately elevated temperatures. Endosperm-endogenous processes alter both rate and duration of dry weight gain, but underlying mechanisms remain unclear. Heat effects could be mediated by either abnormal, premature cessation of storage compound deposition or accelerated implementation of normal development. This study used controlled environments to isolate temperature as the sole environmental variable during Zea mays kernel-fill, from 12 days after pollination to maturity. Plants subjected to elevated day, elevated night temperatures (38°C day, 28°C night (38/28°C])) or elevated day, normal night (38/17°C), were compared with those from controls grown under normal day and night conditions (28/17°C). Progression of change over time in endosperm tissue was followed to dissect contributions at multiple levels, including transcriptome, metabolome, enzyme activities, product accumulation, and tissue ultrastructure. Integrated analyses indicated that the normal developmental program of endosperm is fully executed under prolonged high-temperature conditions, but at a faster rate. Accelerated development was observed when both day and night temperatures were elevated, but not when daytime temperature alone was increased. Although transcripts for most components of glycolysis and respiration were either upregulated or minimally affected, elevated temperatures decreased abundance of mRNAs related to biosynthesis of starch and storage proteins. Further analysis of 20 central-metabolic enzymes revealed six activities that were reduced under high-temperature conditions, indicating candidate roles in the observed reduction of grain dry weight. Nonetheless, a striking overall resilience of grain filling in the face of elevated temperatures can be attributed to acceleration of normal endosperm development.
Collapse
Affiliation(s)
- Susan K Boehlein
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Peng Liu
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Ashley Webster
- Department of Agronomy, University of Wisconsin, Madison, WI, 53706, USA
| | - Camila Ribeiro
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Masaharu Suzuki
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Shan Wu
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Jiahn-Chou Guan
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Jon D Stewart
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - William F Tracy
- Department of Agronomy, University of Wisconsin, Madison, WI, 53706, USA
| | - A Mark Settles
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Donald R McCarty
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Karen E Koch
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Larkin C Hannah
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Tracie A Hennen-Bierwagen
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Alan M Myers
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
144
|
Anacleto R, Badoni S, Parween S, Butardo VM, Misra G, Cuevas RP, Kuhlmann M, Trinidad TP, Mallillin AC, Acuin C, Bird AR, Morell MK, Sreenivasulu N. Integrating a genome-wide association study with a large-scale transcriptome analysis to predict genetic regions influencing the glycaemic index and texture in rice. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1261-1275. [PMID: 30549178 PMCID: PMC6575982 DOI: 10.1111/pbi.13051] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 11/15/2018] [Accepted: 11/25/2018] [Indexed: 05/19/2023]
Abstract
Reliably generating rice varieties with low glycaemic index (GI) is an important nutritional intervention given the high rates of Type II diabetes incidences in Asia where rice is staple diet. We integrated a genome-wide association study (GWAS) with a transcriptome-wide association study (TWAS) to determine the genetic basis of the GI in rice. GWAS utilized 305 re-sequenced diverse indica panel comprising ~2.4 million single nucleotide polymorphisms (SNPs) enriched in genic regions. A novel association signal was detected at a synonymous SNP in exon 2 of LOC_Os05g03600 for intermediate-to-high GI phenotypic variation. Another major hotspot region was predicted for contributing intermediate-to-high GI variation, involves 26 genes on chromosome 6 (GI6.1). These set of genes included GBSSI, two hydrolase genes, genes involved in signalling and chromatin modification. The TWAS and methylome sequencing data revealed cis-acting functionally relevant genetic variants with differential methylation patterns in the hot spot GI6.1 region, narrowing the target to 13 genes. Conversely, the promoter region of GBSSI and its alternative splicing allele (G allele of Wxa ) explained the intermediate-to-high GI variation. A SNP (C˃T) at exon-10 was also highlighted in the preceding analyses to influence final viscosity (FV), which is independent of amylose content/GI. The low GI line with GC haplotype confirmed soft texture, while other two low GI lines with GT haplotype were characterized as hard and cohesive. The low GI lines were further confirmed through clinical in vivo studies. Gene regulatory network analysis highlighted the role of the non-starch polysaccharide pathway in lowering GI.
Collapse
Affiliation(s)
| | - Saurabh Badoni
- International Rice Research InstituteLos BañosPhilippines
| | - Sabiha Parween
- International Rice Research InstituteLos BañosPhilippines
| | - Vito M. Butardo
- International Rice Research InstituteLos BañosPhilippines
- Department of Chemistry and BiotechnologyFaculty of Science, Engineering and TechnologySwinburne University of TechnologyHawthornVic.Australia
| | - Gopal Misra
- International Rice Research InstituteLos BañosPhilippines
| | | | - Markus Kuhlmann
- The Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany
| | | | | | - Cecilia Acuin
- International Rice Research InstituteLos BañosPhilippines
| | | | | | | |
Collapse
|
145
|
Yamaguchi T, Yamakawa H, Nakata M, Kuroda M, Hakata M. Suppression of phospholipase D genes improves chalky grain production by high temperature during the grain-filling stage in rice. Biosci Biotechnol Biochem 2019; 83:1102-1110. [DOI: 10.1080/09168451.2019.1580137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
ABSTRACT
High temperature (HT) during the grain developing stage causes deleterious effects on rice quality resulting in mature grains with a chalky appearance. Phospholipase D (PLD) plays an important role in plants, including responses to environmental stresses. OsPLDα1, α3 and β2-knockdown (KD) plants showed decreased production of chalky grains at HT. HT ripening increased H2O2 accumulated in the developing grains. However, the increase was canceled by the knockdown of OsPLDβ2. Expression levels of OsCATA which is one of three rice catalase genes, in developing grains of OsPLDβ2-KD plants at 10 DAF were increased compared with that in vector-controls in HT growth conditions. Overexpression of OsCATA markedly suppressed the production of chalky grains in HT growth conditions. These results suggested that OsPLDβ2 functions as a negative regulator of the induction of OsCATA and is involved in the production of chalky grains in HT growth conditions.
Collapse
Affiliation(s)
| | | | - Masaru Nakata
- Central Region Agricultural Research Center, NARO, Joetsu, Japan
| | - Masaharu Kuroda
- Central Region Agricultural Research Center, NARO, Joetsu, Japan
| | - Makoto Hakata
- Central Region Agricultural Research Center, NARO, Joetsu, Japan
| |
Collapse
|
146
|
Morita R, Crofts N, Shibatani N, Miura S, Hosaka Y, Oitome NF, Ikeda KI, Fujita N, Fukayama H. CO2-Responsive CCT Protein Stimulates the Ectopic Expression of Particular Starch Biosynthesis-Related Enzymes, Which Markedly Change the Structure of Starch in the Leaf Sheaths of Rice. PLANT & CELL PHYSIOLOGY 2019; 60:961-972. [PMID: 30690625 DOI: 10.1093/pcp/pcz008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 01/08/2019] [Indexed: 06/09/2023]
Abstract
CO2-responsive CCT protein (CRCT) is suggested to be a positive regulator of starch biosynthesis in the leaf sheaths of rice, regulating the expression levels of starch biosynthesis-related genes. In this study, the effects of CRCT expression levels on the expression of starch biosynthesis-related enzymes and the quality of starch were studied. Using native-PAGE/activity staining and immunoblotting, we found that the protein levels of starch synthase I, branching enzyme I, branching enzyme IIa, isoamylase 1 and phosphorylase 1 were largely correlated with the CRCT expression levels in the leaf sheaths of CRCT transgenic lines. In contrast, the CRCT expression levels largely did not affect the expression levels and/or activities of starch biosynthesis-related enzymes in the leaf blades and endosperm tissues. The analysis of the chain-length distribution of starch in the leaf sheaths showed that short chains with a degree of polymerization from 5 to 14 were increased in the overexpression lines but decreased in the knockdown lines. The amylose content of starch in the leaf sheath was greatly increased in the overexpression lines. In contrast, the molecular weight of the amylopectin of starch in the leaf sheath of overexpression lines did not change compared with those of the non-transgenic rice. These results suggest that CRCT can control the quality and the quantity of starch in the leaf sheath by regulating the expression of particular starch biosynthesis-related enzymes.
Collapse
Affiliation(s)
- Ryutaro Morita
- Laboratory of Tropical Crop Science, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
- Research Fellow of the Japan Society for the Promotion of Science, Tokyo, Japan
| | - Naoko Crofts
- Department of Biological Production, Akita Prefecture University, Akita, Japan
| | - Naoki Shibatani
- Laboratory of Tropical Crop Science, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Satoko Miura
- Department of Biological Production, Akita Prefecture University, Akita, Japan
| | - Yuko Hosaka
- Department of Biological Production, Akita Prefecture University, Akita, Japan
| | - Naoko F Oitome
- Department of Biological Production, Akita Prefecture University, Akita, Japan
| | - Ken-Ichi Ikeda
- Laboratory of Stress Cytology, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Naoko Fujita
- Department of Biological Production, Akita Prefecture University, Akita, Japan
| | - Hiroshi Fukayama
- Laboratory of Tropical Crop Science, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| |
Collapse
|
147
|
Fu Y, Gu Q, Dong Q, Zhang Z, Lin C, Hu W, Pan R, Guan Y, Hu J. Spermidine Enhances Heat Tolerance of Rice Seeds by Modulating Endogenous Starch and Polyamine Metabolism. Molecules 2019; 24:E1395. [PMID: 30970602 PMCID: PMC6480098 DOI: 10.3390/molecules24071395] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/30/2019] [Accepted: 04/01/2019] [Indexed: 02/02/2023] Open
Abstract
Polyamines have been reported to be involved in grain filling and they might contribute to the construction of heat resistance of some cereals. In this study, the hybrid rice 'YLY 689' was used to explore the possible effects of exogenous spermidine (Spd) on seed quality under high temperature during the filling stage. Rice spikes were treated with Spd or its synthesis inhibitor cyclohexylamine (CHA) after pollination, and then the rice plants were transferred to 40 °C for 5-day heat treatment. The results showed that, compared with the control under high temperature, Spd pretreatment significantly improved the germination percentage, germination index, vigor index, seedling shoot height, and dry weight of seeds harvested at 35 days after pollination, while the CHA significantly decreased the seed germination and seedling growth. Meanwhile, Spd significantly increased the peroxidase (POD) activity and decreased the malondialdehyde (MDA) content in seeds. In addition, after spraying with Spd, the endogenous content of spermidine and spermine and the expression of their synthetic genes, spermidine synthase (SPDSYN) and spermine synthase (SPMS1 and SPMS2), significantly increased, whereas the accumulation of amylose and total starch and the expression of their related synthase genes, soluble starch synthase II-3 (SS II-3) and granules bound starch synthase I (GBSSI), also increased to some extent. The data suggests that exogenous Spd pretreatment could alleviate the negative impacts of high temperature stress on rice seed grain filling and improve the rice seed quality to some extent, which might be partly caused by up-regulating endogenous polyamines and starch metabolism.
Collapse
Affiliation(s)
- Yuying Fu
- Seed Science Center, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China.
| | - Qingqing Gu
- Seed Science Center, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China.
| | - Qian Dong
- Seed Science Center, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China.
| | - Zhihao Zhang
- Seed Science Center, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China.
| | - Cheng Lin
- Seed Science Center, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China.
| | - Weimin Hu
- Seed Science Center, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China.
| | - Ronghui Pan
- Seed Science Center, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China.
| | - Yajing Guan
- Seed Science Center, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China.
| | - Jin Hu
- Seed Science Center, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China.
| |
Collapse
|
148
|
You X, Zhang W, Hu J, Jing R, Cai Y, Feng Z, Kong F, Zhang J, Yan H, Chen W, Chen X, Ma J, Tang X, Wang P, Zhu S, Liu L, Jiang L, Wan J. FLOURY ENDOSPERM15 encodes a glyoxalase I involved in compound granule formation and starch synthesis in rice endosperm. PLANT CELL REPORTS 2019; 38:345-359. [PMID: 30649573 DOI: 10.1007/s00299-019-02370-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 01/02/2019] [Indexed: 05/06/2023]
Abstract
FLO15encodes a plastidic glyoxalase I protein, OsGLYI7, which affects compound starch granule formation and starch synthesis in rice endosperm. Starch synthesis in rice (Oryza sativa) endosperm is a sophisticated process, and its underlying molecular machinery still remains to be elucidated. Here, we identified and characterized two allelic rice floury endosperm 15 (flo15) mutants, both with a white-core endosperm. The flo15 grains were characterized by defects in compound starch granule development, along with decreased starch content. Map-based cloning of the flo15 mutants identified mutations in OsGLYI7, which encodes a glyoxalase I (GLYI) involved in methylglyoxal (MG) detoxification. The mutations of FLO15/OsGLYI7 resulted in increased MG content in flo15 developing endosperms. FLO15/OsGLYI7 localizes to the plastids, and the in vitro GLYI activity derived from flo15 was significantly decreased relative to the wild type. Moreover, the expression of starch synthesis-related genes was obviously altered in the flo15 mutants. These findings suggest that FLO15 plays an important role in compound starch granule formation and starch synthesis in rice endosperm.
Collapse
Affiliation(s)
- Xiaoman You
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenwei Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinlong Hu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruonan Jing
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yue Cai
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhiming Feng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fei Kong
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haigang Yan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weiwei Chen
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Xingang Chen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing Ma
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaojie Tang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Peng Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shanshan Zhu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Linglong Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China.
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agriculture Sciences, Beijing, 100081, China.
| |
Collapse
|
149
|
Crofts N, Itoh A, Abe M, Miura S, Oitome NF, Bao J, Fujita N. Three Major Nucleotide Polymorphisms in the Waxy Gene Correlated with the Amounts of Extra-long Chains of Amylopectin in Rice Cultivars with S or L-type Amylopectin. J Appl Glycosci (1999) 2019; 66:37-46. [PMID: 34354518 PMCID: PMC8056923 DOI: 10.5458/jag.jag.jag-2018_005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 12/03/2018] [Indexed: 11/19/2022] Open
Abstract
Extra-long chains (ELC) of amylopectin in rice endosperm are synthesized by granule-bound starch synthase I encoded by the Waxy (Wx) gene, which primarily synthesizes amylose. Previous studies showed that single nucleotide polymorphisms (SNP) in intron 1 and exon 6 of the Wx gene influences ELC amount. However, whether these SNPs are conserved among rice cultivars and if any other SNPs are present in the Wx gene remained unknown. Here, we sequenced the Wx gene from 17 rice cultivars with S or L-type amylopectin, including those with known ELC content and those originating in China with unique starch properties, as well as typical japonica and indica cultivars. In addition to the two SNPs described above, an additional SNP correlating with ELC content was found in exon 10. Low ELC cultivars (<3.0 %) had thymine at the splicing donor site of intron 1, Tyr224 in exon 6, and Pro415 in exon 10. Cultivars with moderate ELC content (4.1–6.9 %) had guanine at the splicing donor site of intron 1, Ser224 in exon 6, and Pro415 in exon 10. Cultivars with high ELC content (7.7–13.9 %) had guanine at the splicing donor site of intron 1, Tyr224 in exon 6, and Ser415 in exon 10. The chain length distribution pattern of amylopectin was correlated with the amounts of SSIIa found in starch granules and gelatinization temperature, but not with ELC content. The combinations of SNPs in the Wx gene found in this study may provide useful information for screening specific cultivars with different ELC content.
Collapse
Affiliation(s)
- Naoko Crofts
- 1 Laboratory of Plant Physiology, Department of Biological Production, Faculty of Bioresource Sciences, Akita Prefectural University
| | - Ayaka Itoh
- 1 Laboratory of Plant Physiology, Department of Biological Production, Faculty of Bioresource Sciences, Akita Prefectural University
| | - Misato Abe
- 1 Laboratory of Plant Physiology, Department of Biological Production, Faculty of Bioresource Sciences, Akita Prefectural University
| | - Satoko Miura
- 1 Laboratory of Plant Physiology, Department of Biological Production, Faculty of Bioresource Sciences, Akita Prefectural University
| | - Naoko F Oitome
- 1 Laboratory of Plant Physiology, Department of Biological Production, Faculty of Bioresource Sciences, Akita Prefectural University
| | - Jinsong Bao
- 2 Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University
| | - Naoko Fujita
- 1 Laboratory of Plant Physiology, Department of Biological Production, Faculty of Bioresource Sciences, Akita Prefectural University
| |
Collapse
|
150
|
Li H, Gidley MJ, Dhital S. High-Amylose Starches to Bridge the “Fiber Gap”: Development, Structure, and Nutritional Functionality. Compr Rev Food Sci Food Saf 2019; 18:362-379. [DOI: 10.1111/1541-4337.12416] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Haiteng Li
- Univ. of Queensland, Centre for Nutrition and Food Sciences; Queensland Alliance for Agriculture and Food Innovation; Brisbane QLD 4072 Australia
| | - Michael J. Gidley
- Univ. of Queensland, Centre for Nutrition and Food Sciences; Queensland Alliance for Agriculture and Food Innovation; Brisbane QLD 4072 Australia
| | - Sushil Dhital
- Univ. of Queensland, Centre for Nutrition and Food Sciences; Queensland Alliance for Agriculture and Food Innovation; Brisbane QLD 4072 Australia
| |
Collapse
|