106
|
Li W, Zhang H, Li X, Zhang F, Liu C, Du Y, Gao X, Zhang Z, Zhang X, Hou Z, Zhou H, Sheng X, Wang G, Guo Y. Intergrative metabolomic and transcriptomic analyses unveil nutrient remobilization events in leaf senescence of tobacco. Sci Rep 2017; 7:12126. [PMID: 28935979 PMCID: PMC5608745 DOI: 10.1038/s41598-017-11615-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 08/25/2017] [Indexed: 11/27/2022] Open
Abstract
Leaf senescence in plants is a coordinated process that involves remobilization of nutrients from senescing leaves to sink tissues. The molecular events associated with nutrient remobilization are however not well understood. In this study the tobacco system with a source-sink relationship between different leaf positions was used in analyzing the spatiotemporal changes of 76 metabolites from leaves at 3 different stalk positions and 8 developmental stages. The metabolomic data was then compared with RNA-seq data from the same samples to analyze the activities of the metabolic pathways that are important for nutrient remobilization. Integrative analyses on metabolites accumulation and expression changes of enzyme-encoding genes in corresponding metabolic pathways indicated a significant up-regulation of the tricarboxylic acid cycle and related metabolism of sugars, amino acids and fatty acids, suggesting the importance of energy metabolism during leaf senescence. Other changes of the metabolism during tobacco leaf senescence include increased activities of the GS/GOGAT cycle which is responsible for nitrogen recycling, and increased accumulation of nicotine. The results also suggested that a number of compounds seemed to be transported from senescing leaves at lower positions to sink leaves at upper positions. Some of these metabolites could play a role in nutrient remobilization.
Collapse
Affiliation(s)
- Wei Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, 266101, China
| | - Hailiang Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, 266101, China
| | - Xiaoxu Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, 266101, China
| | - Fengxia Zhang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Datun Road, Chaoyang District, Beijing, 100101, China
| | - Cheng Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, 266101, China
| | - Yongmei Du
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, 266101, China
| | - Xiaoming Gao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, 266101, China
| | - Zenglin Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, 266101, China
| | - Xiaobing Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, 266101, China
| | - Zhihui Hou
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, 266101, China
| | - Hui Zhou
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, 266101, China
| | - Xiaofei Sheng
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, 266101, China
| | - Guodong Wang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Datun Road, Chaoyang District, Beijing, 100101, China
| | - Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, 266101, China.
| |
Collapse
|
107
|
Lee S, Jeong H, Lee S, Lee J, Kim SJ, Park JW, Woo HR, Lim PO, An G, Nam HG, Hwang D. Molecular bases for differential aging programs between flag and second leaves during grain-filling in rice. Sci Rep 2017; 7:8792. [PMID: 28821707 PMCID: PMC5562787 DOI: 10.1038/s41598-017-07035-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 06/21/2017] [Indexed: 01/31/2023] Open
Abstract
Flag leaves (FL) and second leaves (SL) in rice show differential aging patterns during monocarpic senescence. Coordination of aging programs between FL and SL is important for grain yield and quality. However, the molecular bases for differential aging programs between FL and SL have not been systematically explored in rice. Here, we performed mRNA-sequencing of FL and SL at six time points during grain-filling and identified four molecular bases for differential aging programs between FL and SL: phenylpropanoid biosynthesis, photosynthesis, amino acid (AA) transport, and hormone response. Of them, photosynthesis (carbon assimilation) and AA transport (nitrogen remobilization) predominantly occurred in FL and SL, respectively, during grain-filling. Unlike other molecular bases, AA transport showed consistent differential expression patterns between FL and SL in independent samples. Moreover, long-distance AA transporters showed invariant differential expression patterns between FL and SL after panicle removal, which was consistent to invariant differential nitrogen contents between FL and SL after panicle removal. Therefore, our results suggest that the supplies of carbon and nitrogen to seeds is functionally segregated between FL and SL and that long-distance AA transport is an invariant core program for high nitrogen remobilization in SL.
Collapse
Affiliation(s)
- Shinyoung Lee
- Center for Plant Ageing Research, IBS, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea
| | - Hyobin Jeong
- Center for Plant Ageing Research, IBS, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea
| | - Sichul Lee
- Center for Plant Ageing Research, IBS, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea
| | - Jinwon Lee
- Center for Plant Ageing Research, IBS, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea
| | - Sun-Ji Kim
- Center for Plant Ageing Research, IBS, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea
| | - Ji-Won Park
- Center for Plant Ageing Research, IBS, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea
| | - Hye Ryun Woo
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea
| | - Pyung Ok Lim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea
| | - Gynheung An
- Department of Plant Molecular Systems Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 446-701, Republic of Korea
| | - Hong Gil Nam
- Center for Plant Ageing Research, IBS, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea. .,Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea.
| | - Daehee Hwang
- Center for Plant Ageing Research, IBS, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea. .,Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea.
| |
Collapse
|
112
|
Chrobok D, Law SR, Brouwer B, Lindén P, Ziolkowska A, Liebsch D, Narsai R, Szal B, Moritz T, Rouhier N, Whelan J, Gardeström P, Keech O. Dissecting the Metabolic Role of Mitochondria during Developmental Leaf Senescence. PLANT PHYSIOLOGY 2016; 172:2132-2153. [PMID: 27744300 PMCID: PMC5129728 DOI: 10.1104/pp.16.01463] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 10/13/2016] [Indexed: 05/20/2023]
Abstract
The functions of mitochondria during leaf senescence, a type of programmed cell death aimed at the massive retrieval of nutrients from the senescing organ to the rest of the plant, remain elusive. Here, combining experimental and analytical approaches, we showed that mitochondrial integrity in Arabidopsis (Arabidopsis thaliana) is conserved until the latest stages of leaf senescence, while their number drops by 30%. Adenylate phosphorylation state assays and mitochondrial respiratory measurements indicated that the leaf energy status also is maintained during this time period. Furthermore, after establishing a curated list of genes coding for products targeted to mitochondria, we analyzed in isolation their transcript profiles, focusing on several key mitochondrial functions, such as the tricarboxylic acid cycle, mitochondrial electron transfer chain, iron-sulfur cluster biosynthesis, transporters, as well as catabolic pathways. In tandem with a metabolomic approach, our data indicated that mitochondrial metabolism was reorganized to support the selective catabolism of both amino acids and fatty acids. Such adjustments would ensure the replenishment of α-ketoglutarate and glutamate, which provide the carbon backbones for nitrogen remobilization. Glutamate, being the substrate of the strongly up-regulated cytosolic glutamine synthase, is likely to become a metabolically limiting factor in the latest stages of developmental leaf senescence. Finally, an evolutionary age analysis revealed that, while branched-chain amino acid and proline catabolism are very old mitochondrial functions particularly enriched at the latest stages of leaf senescence, auxin metabolism appears to be rather newly acquired. In summation, our work shows that, during developmental leaf senescence, mitochondria orchestrate catabolic processes by becoming increasingly central energy and metabolic hubs.
Collapse
Affiliation(s)
- Daria Chrobok
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden (D.C., S.R.L., B.B., A.Z., D.L., P.G., O.K.)
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, S-90183 Umea, Sweden (P.L., T.M.)
- Department of Animal, Plant, and Soil Science, School of Life Science, Australian Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., J.W.)
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw I, 02-096 Warsaw, Poland (B.S.); and
- Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Université de Lorraine/Institut National de la Recherche Agronomique Faculté des Sciences et Technologies, 54506 Vandoeuvre-les-Nancy, France (N.R.)
| | - Simon R Law
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden (D.C., S.R.L., B.B., A.Z., D.L., P.G., O.K.)
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, S-90183 Umea, Sweden (P.L., T.M.)
- Department of Animal, Plant, and Soil Science, School of Life Science, Australian Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., J.W.)
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw I, 02-096 Warsaw, Poland (B.S.); and
- Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Université de Lorraine/Institut National de la Recherche Agronomique Faculté des Sciences et Technologies, 54506 Vandoeuvre-les-Nancy, France (N.R.)
| | - Bastiaan Brouwer
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden (D.C., S.R.L., B.B., A.Z., D.L., P.G., O.K.)
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, S-90183 Umea, Sweden (P.L., T.M.)
- Department of Animal, Plant, and Soil Science, School of Life Science, Australian Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., J.W.)
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw I, 02-096 Warsaw, Poland (B.S.); and
- Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Université de Lorraine/Institut National de la Recherche Agronomique Faculté des Sciences et Technologies, 54506 Vandoeuvre-les-Nancy, France (N.R.)
| | - Pernilla Lindén
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden (D.C., S.R.L., B.B., A.Z., D.L., P.G., O.K.)
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, S-90183 Umea, Sweden (P.L., T.M.)
- Department of Animal, Plant, and Soil Science, School of Life Science, Australian Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., J.W.)
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw I, 02-096 Warsaw, Poland (B.S.); and
- Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Université de Lorraine/Institut National de la Recherche Agronomique Faculté des Sciences et Technologies, 54506 Vandoeuvre-les-Nancy, France (N.R.)
| | - Agnieszka Ziolkowska
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden (D.C., S.R.L., B.B., A.Z., D.L., P.G., O.K.)
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, S-90183 Umea, Sweden (P.L., T.M.)
- Department of Animal, Plant, and Soil Science, School of Life Science, Australian Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., J.W.)
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw I, 02-096 Warsaw, Poland (B.S.); and
- Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Université de Lorraine/Institut National de la Recherche Agronomique Faculté des Sciences et Technologies, 54506 Vandoeuvre-les-Nancy, France (N.R.)
| | - Daniela Liebsch
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden (D.C., S.R.L., B.B., A.Z., D.L., P.G., O.K.)
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, S-90183 Umea, Sweden (P.L., T.M.)
- Department of Animal, Plant, and Soil Science, School of Life Science, Australian Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., J.W.)
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw I, 02-096 Warsaw, Poland (B.S.); and
- Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Université de Lorraine/Institut National de la Recherche Agronomique Faculté des Sciences et Technologies, 54506 Vandoeuvre-les-Nancy, France (N.R.)
| | - Reena Narsai
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden (D.C., S.R.L., B.B., A.Z., D.L., P.G., O.K.)
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, S-90183 Umea, Sweden (P.L., T.M.)
- Department of Animal, Plant, and Soil Science, School of Life Science, Australian Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., J.W.)
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw I, 02-096 Warsaw, Poland (B.S.); and
- Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Université de Lorraine/Institut National de la Recherche Agronomique Faculté des Sciences et Technologies, 54506 Vandoeuvre-les-Nancy, France (N.R.)
| | - Bozena Szal
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden (D.C., S.R.L., B.B., A.Z., D.L., P.G., O.K.)
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, S-90183 Umea, Sweden (P.L., T.M.)
- Department of Animal, Plant, and Soil Science, School of Life Science, Australian Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., J.W.)
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw I, 02-096 Warsaw, Poland (B.S.); and
- Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Université de Lorraine/Institut National de la Recherche Agronomique Faculté des Sciences et Technologies, 54506 Vandoeuvre-les-Nancy, France (N.R.)
| | - Thomas Moritz
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden (D.C., S.R.L., B.B., A.Z., D.L., P.G., O.K.)
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, S-90183 Umea, Sweden (P.L., T.M.)
- Department of Animal, Plant, and Soil Science, School of Life Science, Australian Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., J.W.)
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw I, 02-096 Warsaw, Poland (B.S.); and
- Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Université de Lorraine/Institut National de la Recherche Agronomique Faculté des Sciences et Technologies, 54506 Vandoeuvre-les-Nancy, France (N.R.)
| | - Nicolas Rouhier
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden (D.C., S.R.L., B.B., A.Z., D.L., P.G., O.K.)
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, S-90183 Umea, Sweden (P.L., T.M.)
- Department of Animal, Plant, and Soil Science, School of Life Science, Australian Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., J.W.)
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw I, 02-096 Warsaw, Poland (B.S.); and
- Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Université de Lorraine/Institut National de la Recherche Agronomique Faculté des Sciences et Technologies, 54506 Vandoeuvre-les-Nancy, France (N.R.)
| | - James Whelan
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden (D.C., S.R.L., B.B., A.Z., D.L., P.G., O.K.)
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, S-90183 Umea, Sweden (P.L., T.M.)
- Department of Animal, Plant, and Soil Science, School of Life Science, Australian Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., J.W.)
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw I, 02-096 Warsaw, Poland (B.S.); and
- Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Université de Lorraine/Institut National de la Recherche Agronomique Faculté des Sciences et Technologies, 54506 Vandoeuvre-les-Nancy, France (N.R.)
| | - Per Gardeström
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden (D.C., S.R.L., B.B., A.Z., D.L., P.G., O.K.)
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, S-90183 Umea, Sweden (P.L., T.M.)
- Department of Animal, Plant, and Soil Science, School of Life Science, Australian Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., J.W.)
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw I, 02-096 Warsaw, Poland (B.S.); and
- Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Université de Lorraine/Institut National de la Recherche Agronomique Faculté des Sciences et Technologies, 54506 Vandoeuvre-les-Nancy, France (N.R.)
| | - Olivier Keech
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden (D.C., S.R.L., B.B., A.Z., D.L., P.G., O.K.);
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, S-90183 Umea, Sweden (P.L., T.M.);
- Department of Animal, Plant, and Soil Science, School of Life Science, Australian Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., J.W.);
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw I, 02-096 Warsaw, Poland (B.S.); and
- Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Université de Lorraine/Institut National de la Recherche Agronomique Faculté des Sciences et Technologies, 54506 Vandoeuvre-les-Nancy, France (N.R.)
| |
Collapse
|