101
|
Senda M, Kurauchi T, Kasai A, Ohnishi S. Suppressive mechanism of seed coat pigmentation in yellow soybean. BREEDING SCIENCE 2012; 61:523-30. [PMID: 23136491 PMCID: PMC3406792 DOI: 10.1270/jsbbs.61.523] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 08/08/2011] [Indexed: 05/14/2023]
Abstract
In soybean seeds, numerous variations in colors and pigmentation patterns exist, most of which are observed in the seed coat. Patterns of seed coat pigmentation are determined by four alleles (I, i(i), i(k) and i) of the classically defined I locus, which controls the spatial distribution of anthocyanins and proanthocyanidins in the seed coat. Most commercial soybean cultivars produce yellow seeds with yellow cotyledons and nonpigmented seed coats, which are important traits of high-quality seeds. Plants carrying the I or i(i) allele show complete inhibition of pigmentation in the seed coat or pigmentation only in the hilum, respectively, resulting in a yellow seed phenotype. Classical genetic analyses of the I locus were performed in the 1920s and 1930s but, until recently, the molecular mechanism by which the I locus regulated seed coat pigmentation remained unclear. In this review, we provide an overview of the molecular suppressive mechanism of seed coat pigmentation in yellow soybean, with the main focus on the effect of the I allele. In addition, we discuss seed coat pigmentation phenomena in yellow soybean and their relationship to inhibition of I allele action.
Collapse
Affiliation(s)
- Mineo Senda
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo, Hirosaki, Aomori 036-8561, Japan
- Corresponding author (e-mail: )
| | - Tasuku Kurauchi
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo, Hirosaki, Aomori 036-8561, Japan
| | - Atsushi Kasai
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo, Hirosaki, Aomori 036-8561, Japan
| | - Shizen Ohnishi
- Hokkaido Research Organization Central Agricultural Experiment Station, Higashi 6 Kita 15, Naganuma, Yubari, Hokkaido 069-1395, Japan
| |
Collapse
|
102
|
Li Y, Varala K, Moose SP, Hudson ME. The inheritance pattern of 24 nt siRNA clusters in arabidopsis hybrids is influenced by proximity to transposable elements. PLoS One 2012. [PMID: 23118865 DOI: 10.1371/journal.pone.0047043.t001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Hybrids often display increased size and growth, and thus are widely cultivated in agriculture and horticulture. Recent discoveries demonstrating the important regulatory roles of small RNAs have greatly improved our understanding of many basic biological questions, and could illuminate the molecular basis for the enhanced growth and size of hybrid plants. We profiled small RNAs by deep sequencing to characterize the inheritance patterns of small RNA levels in reciprocal hybrids of two Arabidopsis thaliana accessions, Columbia and Landsberg erecta. We find 24-nt siRNAs predominate among those small RNAs that are differentially expressed between the parents. Following hybridization, the transposable element (TE)-derived siRNAs are often inherited in an additive manner, whereas siRNAs associated with protein-coding genes are often down-regulated in hybrids to the levels observed for the parent with lower relative siRNA levels. Among the protein-coding genes that exhibit this pattern, genes that function in pathogen defense, abiotic stress tolerance, and secondary metabolism are significantly enriched. Small RNA clusters from protein-coding genes where a TE is present within one kilobase show a different predominant inheritance pattern (additive) from those that do not (low-parent dominance). Thus, down-regulation in the form of low-parent dominance is likely the default pattern of inheritance for genic siRNA, and a different inheritance mechanism for TE siRNA is suggested.
Collapse
Affiliation(s)
- Ying Li
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | | | | | | |
Collapse
|
103
|
Li J, Todd TC, Lee J, Trick HN. Biotechnological application of functional genomics towards plant-parasitic nematode control. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:936-944. [PMID: 21362123 DOI: 10.1111/j.1467-7652.2011.00601.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Plant-parasitic nematodes are primary biotic factors limiting the crop production. Current nematode control strategies include nematicides, crop rotation and resistant cultivars, but each has serious limitations. RNA interference (RNAi) represents a major breakthrough in the application of functional genomics for plant-parasitic nematode control. RNAi-induced suppression of numerous genes essential for nematode development, reproduction or parasitism has been demonstrated, highlighting the considerable potential for using this strategy to control damaging pest populations. In an effort to find more suitable and effective gene targets for silencing, researchers are employing functional genomics methodologies, including genome sequencing and transcriptome profiling. Microarrays have been used for studying the interactions between nematodes and plant roots and to measure both plants and nematodes transcripts. Furthermore, laser capture microdissection has been applied for the precise dissection of nematode feeding sites (syncytia) to allow the study of gene expression specifically in syncytia. In the near future, small RNA sequencing techniques will provide more direct information for elucidating small RNA regulatory mechanisms in plants and specific gene silencing using artificial microRNAs should further improve the potential of targeted gene silencing as a strategy for nematode management.
Collapse
Affiliation(s)
- Jiarui Li
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | | | | | | |
Collapse
|
104
|
Gillman JD, Tetlow A, Lee JD, Shannon JG, Bilyeu K. Loss-of-function mutations affecting a specific Glycine max R2R3 MYB transcription factor result in brown hilum and brown seed coats. BMC PLANT BIOLOGY 2011; 11:155. [PMID: 22070454 PMCID: PMC3229458 DOI: 10.1186/1471-2229-11-155] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 11/09/2011] [Indexed: 05/17/2023]
Abstract
BACKGROUND Although modern soybean cultivars feature yellow seed coats, with the only color variation found at the hila, the ancestral condition is black seed coats. Both seed coat and hila coloration are due to the presence of phenylpropanoid pathway derivatives, principally anthocyanins. The genetics of soybean seed coat and hilum coloration were first investigated during the resurgence of genetics during the 1920s, following the rediscovery of Mendel's work. Despite the inclusion of this phenotypic marker into the extensive genetic maps developed for soybean over the last twenty years, the genetic basis behind the phenomenon of brown seed coats (the R locus) has remained undetermined until now. RESULTS In order to identify the gene responsible for the r gene effect (brown hilum or seed coat color), we utilized bulk segregant analysis and identified recombinant lines derived from a population segregating for two phenotypically distinct alleles of the R locus. Fine mapping was accelerated through use of a novel, bioinformatically determined set of Simple Sequence Repeat (SSR) markers which allowed us to delimit the genomic region containing the r gene to less than 200 kbp, despite the use of a mapping population of only 100 F6 lines. Candidate gene analysis identified a loss of function mutation affecting a seed coat-specific expressed R2R3 MYB transcription factor gene (Glyma09g36990) as a strong candidate for the brown hilum phenotype. We observed a near perfect correlation between the mRNA expression levels of the functional R gene candidate and an UDP-glucose:flavonoid 3-O-glucosyltransferase (UF3GT) gene, which is responsible for the final step in anthocyanin biosynthesis. In contrast, when a null allele of Glyma09g36990 is expressed no upregulation of the UF3GT gene was found. CONCLUSIONS We discovered an allelic series of four loss of function mutations affecting our R locus gene candidate. The presence of any one of these mutations was perfectly correlated with the brown seed coat/hilum phenotype in a broadly distributed survey of soybean cultivars, barring the presence of the epistatic dominant I allele or gray pubescence, both of which can mask the effect of the r allele, resulting in yellow or buff hila. These findings strongly suggest that loss of function for one particular seed coat-expressed R2R3 MYB gene is responsible for the brown seed coat/hilum phenotype in soybean.
Collapse
Affiliation(s)
- Jason D Gillman
- USDA-ARS, Plant Genetics Research Unit, 110 Waters Hall, Columbia, MO 65211, USA
| | - Ashley Tetlow
- University of Missouri, Division of Plant Sciences, 110 Waters Hall, Columbia, MO 65211, USA
| | - Jeong-Deong Lee
- Division of Plant Biosciences, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - J Grover Shannon
- University of Missouri, Division of Plant Sciences, University of Missouri-Delta Research Center, Portageville, MO 63873, USA
| | - Kristin Bilyeu
- USDA-ARS, Plant Genetics Research Unit, 110 Waters Hall, Columbia, MO 65211, USA
| |
Collapse
|
105
|
Ohno S, Hosokawa M, Kojima M, Kitamura Y, Hoshino A, Tatsuzawa F, Doi M, Yazawa S. Simultaneous post-transcriptional gene silencing of two different chalcone synthase genes resulting in pure white flowers in the octoploid dahlia. PLANTA 2011; 234:1-7. [PMID: 21344312 DOI: 10.1007/s00425-011-1383-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2010] [Accepted: 01/26/2011] [Indexed: 05/08/2023]
Abstract
Garden dahlias (Dahlia variabilis) are autoallooctoploids with redundant genes producing wide color variations in flowers. There are no pure white dahlia cultivars, despite its long breeding history. However, the white areas of bicolor flower petals appear to be pure white. The objective of this experiment was to elucidate the mechanism by which the pure white color is expressed in the petals of some bicolor cultivars. A pigment analysis showed that no flavonoid derivatives were detected in the white areas of petals in a star-type cultivar 'Yuino' and the two seedling cultivars 'OriW1' and 'OriW2' borne from a red-white bicolor cultivar, 'Orihime', indicating that their white areas are pure white. Semi-quantitative RT-PCR showed that in the pure white areas, transcripts of two chalcone synthases (CHS), DvCHS1 and DvCHS2 which share 69% nucleotide similarity with each other, were barely detected. Premature mRNA of DvCHS1 and DvCHS2 were detected, indicating that these two CHS genes are silenced post-transcriptionally. RNA gel blot analysis revealed that small interfering RNAs (siRNAs) derived from CHSs were produced in these pure white areas. By high-throughput sequence analysis of small RNAs in the pure white areas with no mismatch acceptance, small RNAs were mapped to two alleles of DvCHS1 and two alleles of DvCHS2 expressed in 'Yuino' petals. Therefore, we concluded that simultaneous siRNA-mediated post-transcriptional gene silencing of redundant CHS genes results in the appearance of pure white color in dahlias.
Collapse
Affiliation(s)
- Sho Ohno
- Laboratory of Vegetable and Ornamental Horticulture, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | | | | | | | | | | | | | | |
Collapse
|
106
|
Ohno S, Hosokawa M, Kojima M, Kitamura Y, Hoshino A, Tatsuzawa F, Doi M, Yazawa S. Simultaneous post-transcriptional gene silencing of two different chalcone synthase genes resulting in pure white flowers in the octoploid dahlia. PLANTA 2011; 234:945-58. [PMID: 21688014 DOI: 10.1007/s00425-011-1456-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 05/30/2011] [Indexed: 05/18/2023]
Abstract
Garden dahlias (Dahlia variabilis) are autoallooctoploids with redundant genes producing wide color variations in flowers. There are no pure white dahlia cultivars, despite its long breeding history. However, the white areas of bicolor flower petals appear to be pure white. The objective of this experiment was to elucidate the mechanism by which the pure white color is expressed in the petals of some bicolor cultivars. A pigment analysis showed that no flavonoid derivatives were detected in the white areas of petals in a star-type cultivar 'Yuino' and the two seedling cultivars 'OriW1' and 'OriW2' borne from a red-white bicolor cultivar, 'Orihime', indicating that their white areas are pure white. Semi-quantitative RT-PCR showed that in the pure white areas, transcripts of two chalcone synthases (CHS), DvCHS1 and DvCHS2 which share 69% nucleotide similarity with each other, were barely detected. Premature mRNA of DvCHS1 and DvCHS2 were detected, indicating that these two CHS genes are silenced post-transcriptionally. RNA gel blot analysis revealed that small interfering RNAs (siRNAs) derived from CHSs were produced in these pure white areas. By high-throughput sequence analysis of small RNAs in the pure white areas with no mismatch acceptance, small RNAs were mapped to two alleles of DvCHS1 and two alleles of DvCHS2 expressed in 'Yuino' petals. Therefore, we concluded that simultaneous siRNA-mediated post-transcriptional gene silencing of redundant CHS genes results in the appearance of pure white color in dahlias.
Collapse
Affiliation(s)
- Sho Ohno
- Laboratory of Vegetable and Ornamental Horticulture, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | | | | | | | | | | | | | | |
Collapse
|
107
|
Hunt M, Kaur N, Stromvik M, Vodkin L. Transcript profiling reveals expression differences in wild-type and glabrous soybean lines. BMC PLANT BIOLOGY 2011; 11:145. [PMID: 22029708 PMCID: PMC3217893 DOI: 10.1186/1471-2229-11-145] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 10/26/2011] [Indexed: 05/08/2023]
Abstract
BACKGROUND Trichome hairs affect diverse agronomic characters such as seed weight and yield, prevent insect damage and reduce loss of water but their molecular control has not been extensively studied in soybean. Several detailed models for trichome development have been proposed for Arabidopsis thaliana, but their applicability to important crops such as cotton and soybean is not fully known. RESULTS Two high throughput transcript sequencing methods, Digital Gene Expression (DGE) Tag Profiling and RNA-Seq, were used to compare the transcriptional profiles in wild-type (cv. Clark standard, CS) and a mutant (cv. Clark glabrous, i.e., trichomeless or hairless, CG) soybean isoline that carries the dominant P1 allele. DGE data and RNA-Seq data were mapped to the cDNAs (Glyma models) predicted from the reference soybean genome, Williams 82. Extending the model length by 250 bp at both ends resulted in significantly more matches of authentic DGE tags indicating that many of the predicted gene models are prematurely truncated at the 5' and 3' UTRs. The genome-wide comparative study of the transcript profiles of the wild-type versus mutant line revealed a number of differentially expressed genes. One highly-expressed gene, Glyma04g35130, in wild-type soybean was of interest as it has high homology to the cotton gene GhRDL1 gene that has been identified as being involved in cotton fiber initiation and is a member of the BURP protein family. Sequence comparison of Glyma04g35130 among Williams 82 with our sequences derived from CS and CG isolines revealed various SNPs and indels including addition of one nucleotide C in the CG and insertion of ~60 bp in the third exon of CS that causes a frameshift mutation and premature truncation of peptides in both lines as compared to Williams 82. CONCLUSION Although not a candidate for the P1 locus, a BURP family member (Glyma04g35130) from soybean has been shown to be abundantly expressed in the CS line and very weakly expressed in the glabrous CG line. RNA-Seq and DGE data are compared and provide experimental data on the expression of predicted soybean gene models as well as an overview of the genes expressed in young shoot tips of two closely related isolines.
Collapse
Affiliation(s)
- Matt Hunt
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, 61801, USA
- Current address: Ohio State University, Columbus, OH 43210, USA
| | - Navneet Kaur
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, 61801, USA
| | - Martina Stromvik
- Department of Plant Science/McGill Centre for Bioinformatics, McGill University, Macdonald campus, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Lila Vodkin
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, 61801, USA
| |
Collapse
|
108
|
Kurauchi T, Kasai A, Tougou M, Senda M. Endogenous RNA interference of chalcone synthase genes in soybean: formation of double-stranded RNA of GmIRCHS transcripts and structure of the 5' and 3' ends of short interfering RNAs. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1264-70. [PMID: 21295373 DOI: 10.1016/j.jplph.2011.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Revised: 01/06/2011] [Accepted: 01/06/2011] [Indexed: 05/15/2023]
Abstract
In yellow soybean, seed coat pigmentation is inhibited via endogenous RNA interference (RNAi) of the chalcone synthase (CHS) genes. Genetic studies have shown that a single dominant gene, named the I gene, inhibits pigmentation over the entire seed coat in soybean. We previously isolated a candidate for the I gene from the yellow soybean genome with the I/I genotype, and designated it GmIRCHS. A structural feature of GmIRCHS is a perfect inverted repeat of the pseudoCHS gene lacking 5'-coding region. This suggests that the double-stranded RNA (dsRNA) structure of the pseudoCHS gene may be formed in the GmIRCHS transcript. RNAi is triggered by the dsRNA for a target gene, so the GmIRCHS transcript is likely to be a trigger for RNAi of CHS genes. In this study, we identified a 1087-bp dsRNA, including pseudoCHS region ranging from most of exon 2 to 3'-UTR, in the GmIRCHS transcript. Interestingly, this dsRNA was detected not only in the seed coat but also in the cotyledon and leaf tissues. Previously, CHS RNAi has been shown to be restricted to the seed coat, and we reported that endogenous short interfering RNAs of CHS genes (CHS siRNAs) are detected only in the seed coat and not in the cotyledon and leaf tissues. Taken together with these previous reports, our result suggests that seed-coat specificity of CHS RNAi may be determined in the amplification step of CHS siRNAs rather than dsRNA formation in the GmIRCHS transcript. Our studies further revealed that CHS siRNAs are modified at the 3' ends and bear 5' monophosphorylated ends, suggesting that CHS siRNA duplexes are generated by Dicer-like enzyme from CHS dsRNA and subsequently modified at the 3' ends for stabilizing CHS siRNAs.
Collapse
Affiliation(s)
- Tasuku Kurauchi
- Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho 3, Hirosaki, Aomori 036-8561, Japan
| | | | | | | |
Collapse
|
109
|
Domier LL, Hobbs HA, McCoppin NK, Bowen CR, Steinlage TA, Chang S, Wang Y, Hartman GL. Multiple loci condition seed transmission of soybean mosaic virus (SMV) and SMV-induced seed coat mottling in soybean. PHYTOPATHOLOGY 2011; 101:750-6. [PMID: 21561316 DOI: 10.1094/phyto-09-10-0239] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Infection of soybean plants with Soybean mosaic virus (SMV), which is transmitted by aphids and through seed, can cause significant reductions in seed production and quality. Because seedborne infections are the primary sources of inoculum for SMV infections in North America, host-plant resistance to seed transmission can limit the pool of plants that can serve as sources of inoculum. To examine the inheritance of SMV seed transmission in soybean, crosses were made between plant introductions (PIs) with high (PI88799), moderate (PI60279), and low (PI548391) rates of transmission of SMV through seed. In four F(2) populations, SMV seed transmission segregated as if conditioned by two or more genes. Consequently, a recombinant inbred line population was derived from a cross between PIs 88799 and 548391 and evaluated for segregation of SMV seed transmission, seed coat mottling, and simple sequence repeat markers. Chromosomal regions on linkage groups C1 and C2 were significantly associated with both transmission of isolate SMV 413 through seed and SMV-induced seed coat mottling, and explained ≈42.8 and 46.4% of the variability in these two traits, respectively. Chromosomal regions associated with seed transmission and seed coat mottling contained homologues of Arabidopsis genes DCL3 and RDR6, which encode enzymes involved in RNA-mediated transcriptional and posttranscriptional gene silencing.
Collapse
Affiliation(s)
- Leslie L Domier
- United States Department of Agriculture-Agricultural Research Service and Department of Crop Sciences, University of Illinois, Urbana 61801.
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Li Y, Li C, Ding G, Jin Y. Evolution of MIR159/319 microRNA genes and their post-transcriptional regulatory link to siRNA pathways. BMC Evol Biol 2011; 11:122. [PMID: 21569383 PMCID: PMC3118147 DOI: 10.1186/1471-2148-11-122] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 05/12/2011] [Indexed: 12/20/2022] Open
Abstract
Background MicroRNAs (miRNAs) are prevalent and important endogenous gene regulators in eukaryotes. MiR159 and miR319 are highly conserved miRNAs essential for plant development and fertility. Despite high similarity in conservation pattern and mature miRNA sequences, miR159 and miR319 have distinct expression patterns, targets and functions. In addition, both MIR319 and MIR159 precursors produce multiple miRNAs in a phased loop-to-base manner. Thus, MIR159 and MIR319 appear to be related in origin and considerably diverged. However the phylogeny of MIR159 and MIR319 genes and why such unusual style of miRNA production has been conserved during evolution is not well understood. Results We reconstructed the phylogeny of MIR159/319 genes and analyzed their mature miRNA expression. The inferred phylogeny suggests that the MIR159/319 genes may have formed at least ten extant early-branching clades through gene duplication and loss. A series of duplications occurred in the common ancestor of seed plants leading to the original split of flowering plant MIR159 and MIR319. The results also indicate that the expression of MIR159/319 is regulated at post-transcriptional level to switch on the expression of alternative miRNAs during development in a highly spatio-temporal specific manner, and to selectively respond to the disruption of defensive siRNA pathways. Such intra-stem-loop regulation appears diverged across the early-branching clades of MIR159/319 genes. Conclusions Our results support that the MIR159 and MIR319 genes evolve from a common ancestor, which is likely to be a phased stem-loop small RNA. Through duplication and loss of genes this miRNA gene family formed clades specific to moss, lycopods, gymnosperms and angiosperms including the two major clades of flowering plants containing the founding members of MIR319 and MIR159 genes in A.thaliana. Our analyses also suggest that some MIR159/319 have evolved into unusual miRNA genes that are regulated at post-transcriptional level to express multiple mature products with variable proportions under different circumstances. Moreover, our analyses reveal conserved regulatory link of MIR159/319 genes to siRNA pathway through post-transcriptional regulation.
Collapse
Affiliation(s)
- Yang Li
- School of Life Sciences, Shanghai University, 200444, Shanghai, P,R,China
| | | | | | | |
Collapse
|
111
|
Ohnishi S, Funatsuki H, Kasai A, Kurauchi T, Yamaguchi N, Takeuchi T, Yamazaki H, Kurosaki H, Shirai S, Miyoshi T, Horita H, Senda M. Variation of GmIRCHS (Glycine max inverted-repeat CHS pseudogene) is related to tolerance of low temperature-induced seed coat discoloration in yellow soybean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 122:633-42. [PMID: 20981401 DOI: 10.1007/s00122-010-1475-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 10/11/2010] [Indexed: 05/08/2023]
Abstract
In yellow soybean, seed coat pigmentation is inhibited by post-transcriptional gene silencing (PTGS) of chalcone synthase (CHS) genes. A CHS cluster named GmIRCHS (Glycine max inverted-repeat CHS pseudogene) is suggested to cause PTGS in yellow-hilum cultivars. Cold-induced seed coat discoloration (CD), a commercially serious deterioration of seed appearance, is caused by an inhibition of this PTGS upon exposure to low temperatures. In the highly CD-tolerant cultivar Toyoharuka, the GmIRCHS structure differs from that of other cultivars. The aim of this study was to determine whether the variation of GmIRCHS structure among cultivars is related to variations in CD tolerance. Using two sets of recombinant inbred lines between Toyoharuka and CD-susceptible cultivars, we compared the GmIRCHS genotype and CD tolerance phenotype during low temperature treatment. The GmIRCHS genotype was related to the phenotype of CD tolerance. A QTL analysis around GmIRCHS showed that GmIRCHS itself or a region located very close to it was responsible for CD tolerance. The variation in GmIRCHS can serve as a useful DNA marker for marker-assisted selection for breeding CD tolerance. In addition, QTL analysis of the whole genome revealed a minor QTL that also affected CD tolerance.
Collapse
Affiliation(s)
- Shizen Ohnishi
- Hokkaido Research Organization Tokachi Agricultural Experiment Station, Shinsei, Memuro, Kasai-gun, Hokkaido, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Polegri L, Calderini O, Arcioni S, Pupilli F. Specific expression of apomixis-linked alleles revealed by comparative transcriptomic analysis of sexual and apomictic Paspalum simplex Morong flowers. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:1869-83. [PMID: 20231327 DOI: 10.1093/jxb/erq054] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Apomixis is defined as clonal reproduction by seed. A comparative transcriptomic analysis was undertaken between apomictic and sexual genotypes of Paspalum simplex Morong to identify apomixis-related polymorphisms at the level of mRNA. cDNA-AFLP (amplified fragment length polymorphism) profiling of apomictic and sexual flowers at several stages of development yielded 202 amplicons that showed several kinds of expression specificities. Among these, the large majority consisted of amplicons that were present only in specific stages of development of the apomictic flowers. Ten percent of polymorphic amplicons were present with almost identical intensity in all stages of the apomictic flowers and never in the sexual flowers. Reverse transcription-PCR (RT-PCR) and Southern analyses of these amplicons showed that they belong to constitutively expressed alleles that are specifically present on the apomixis-controlling locus of P. simplex. The most frequent biological functions inferred from the sequence homology of the apomixis-linked alleles were related to signal transduction and nucleic acid/protein-binding activities. Most of these apomixis-linked alleles showed nonsense and frameshift mutations, revealing their probable pseudogene nature. None of the amplicons that were present only in specific stages of development of the apomictic flowers co-segregated with apomixis, indicating they did not originate from additional apomictic alleles but more probably from differential regulation of the same allele in apomictic and sexual flowers. The molecular functions inferred from sequence analysis of these latter amplicons were related to seed storage protein and regulatory genes of various types. The results are discussed regarding the possible role in apomictic reproduction of the differentially expressed genes in relation to their specificity of expression and inferred molecular functions.
Collapse
Affiliation(s)
- Livia Polegri
- CNR-Institute for Plant Genetics, Research Division: Perugia, Via della Madonna alta 130, I-06128 Perugia, Italy
| | | | | | | |
Collapse
|